Synergy-Based Evaluation of Hand Motor Function in Object Handling Using Virtual and Mixed Realities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synergy Extraction
2.1.1. Spatial Synergy
2.1.2. Cumulative Contribution Ratio and Eigenvalue
2.1.3. Principal Component Analysis (PCA)
2.1.4. Varimax Rotation
2.2. Virtual Object Manipulation Game
2.2.1. Leap Motion Controller and VR Game Content
2.2.2. Data Acquisition and Preprocessing
2.3. Mixed Reality Object Manipulation Game
HoloLens 2 and MR Game Content
2.4. Experimental Design
2.4.1. Method in Experiment 1
2.4.2. Method in Experiment 2
2.4.3. Method in Experiment 3
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Discussion
4.1. Sparsity of Synergies Obtained with PCA and Combining PCA and VARIMAX Rotation
- W1: Flexion-extension coordination of the ring and pinky fingers + involuntary movement of middle finger
- W2: Flexion-extension movement of the index finger
- W3: Flexion-extension + adduction-abduction movement of the thumb
- W4: Adduction-abduction coordination of the index, middle, ring, and pinky fingers
4.2. Synergy-Based Detection of Abnormal Hand Movements
4.3. Synergy Extraction of Hand Movement Using HoloLens 2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major trends in population growth around the world. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [PubMed]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [PubMed]
- Tinetti, M.E. Preventing falls in elderly persons. N. Engl. J. Med. 2003, 348, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Carment, L.; Abdellatif, A.; Lafuente-Lafuente, C.; Pariel, S.; Maier, M.A.; Belmin, J.; Lindberg, P.G. Manual dexterity and aging: A pilot study disentangling sensorimotor from cognitive decline. Front. Neurol. 2018, 9, 910. [Google Scholar]
- Hinkle, J.T.; Pontone, G.M. Psychomotor processing and functional decline in Parkinson’s disease predicted by the Purdue Pegboard test. Int. J. Geriatr. Psychiatry 2021, 36, 909–916. [Google Scholar] [CrossRef]
- Sunderland, A.; Bowers, M.P.; Sluman, S.-M.; Wilcock, D.J.; Ardron, M.E. Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. Stroke 1999, 30, 949–955. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index: A simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Gummesson, C.; Atroshi, I.; Ekdahl, C. The disabilities of the arm, shoulder and hand (DASH) outcome questionnaire: Longitudinal construct validity and measuring self-rated health change after surgery. BMC Musculoskelet. Disord. 2003, 4, 11. [Google Scholar]
- Sullivan, K.J.; Tilson, J.K.; Cen, S.Y.; Rose, D.K.; Hershberg, J.; Correa, A.; Gallichio, J.; McLeod, M.; Moore, C.; Wu, S.S.; et al. Fugl-Meyer assessment of sensorimotor function after stroke: Standardized training procedure for clinical practice and clinical trials. Stroke 2011, 42, 427–432. [Google Scholar]
- Wade, E.; Parnandi, A.R.; Mataric, M.J. Automated administration of the Wolf Motor Function Test for post-stroke assessment. In Proceedings of the 4th International Conference on Pervasive Computing Technologies for Healthcare, Munich, Germany, 22–25 March 2010; pp. 1–7. [Google Scholar]
- Gates, D.H.; Walters, L.S.; Cowley, J.; Wilken, J.M.; Resnik, L. Range of motion requirements for upper-limb activities of daily living. Am. J. Occup. Ther. 2016, 70, 7001350010p1–7001350010p10. [Google Scholar]
- Gracia-Ibáñez, V.; Vergara, M.; Sancho-Bru, J.L.; Mora, M.C.; Piqueras, C. Functional range of motion of the hand joints in activities of the International Classification of Functioning, Disability and Health. J. Hand Ther. 2017, 30, 337–347. [Google Scholar]
- Coupier, J.; Hamoudi, S.; Telese-Izzi, S.; Feipel, V.; Rooze, M.; Van Sint Jan, S. A novel method for in-vivo evaluation of finger kinematics including definition of healthy motion patterns. Clin. Biomech. 2016, 31, 47–58. [Google Scholar]
- Mottet, D.; van Dokkum, L.E.H.; Froger, J.; Gouaïch, A.; Laffont, I. Trajectory formation principles are the same after mild or moderate stroke. PLoS ONE 2017, 12, e0173674. [Google Scholar]
- Jarque-Bou, N.; Gracia-Ibáñez, V.; Sancho-Bru, J.-L.; Vergara, M.; Pérez-González, A.; Andrés, F.J. Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders. Appl. Ergon. 2016, 56, 52–61. [Google Scholar] [PubMed]
- Braido, P.; Zhang, X. Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum. Mov. Sci. 2004, 22, 661–678. [Google Scholar] [PubMed]
- Jarrassé, N.; Ribeiro, A.T.; Sahbani, A.; Bachta, W.; Roby-Brami, A. Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects. J. Neuroeng. Rehabil. 2014, 11, 113. [Google Scholar]
- Liu, Y.; Jiang, L.; Yang, D.; Liu, H. Analysis of hand and wrist postural synergies in tolerance grasping of various objects. PLoS ONE 2016, 11, e0161772. [Google Scholar]
- Mason, C.R.; Gomez, J.E.; Ebner, T.J. Hand synergies during reach-to-grasp. J. Neurophysiol. 2001, 86, 2896–2910. [Google Scholar]
- Patel, V.; Thukral, P.; Burns, M.K.; Florescu, I.; Chandramouli, R.; Vinjamuri, R. Hand grasping synergies as biometrics. Front. Bioeng. Biotechnol. 2017, 5, 26. [Google Scholar]
- Santello, M.; Flanders, M.; Soechting, J.F. Postural hand synergies for tool use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar]
- Thakur, P.H.; Bastian, A.J.; Hsiao, S.S. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J. Neurosci. 2008, 28, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E.; Ghahramani, Z. Analysis of the synergies underlying complex hand manipulation. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 2, pp. 4637–4640. [Google Scholar]
- Fukunishi, A.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model. Front. Comput. Neurosci. 2024, 18, 1355855. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Inomata, E.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Muscle control analysis of human walking and cycling in speed and load variations with time-varying synergy. IEEE Sens. J. 2024, 24, 41474–41483. [Google Scholar] [CrossRef]
- Lee, M.; Lee, J.; Shin, J.; Bae, J. Evaluation of finger force control ability in terms of multi-finger synergy. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1253–1262. [Google Scholar] [CrossRef]
- Jarque-Bou, N.J.; Vergara, M.; Sancho-Bru, J.L.; Gracia-Ibáñez, V.; Roda-Sales, A. Hand kinematics characterization while performing activities of daily living through kinematics reduction. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1556–1565. [Google Scholar] [CrossRef]
- Camardella, C.; Tse, K.C.; Frisoli, A.; Tong, R.K.-Y. Investigating muscle synergies changes after rehabilitation robotics training on stroke survivors: A pilot study. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada,, 20–24 July 2020; pp. 3731–3734. [Google Scholar]
- Ranaldi, S.; Gizzi, L.; Severini, G.; De Marchis, C. Optimal Identification of Muscle Synergies From Typical Sit-to-Stand Clinical Tests. IEEE Open J. Eng. Med. Biol. 2023, 4, 31–37. [Google Scholar] [CrossRef]
- Tsatsis, C.G.; Rice, K.E.; Protopopova, V.; Ramos, D.; Jadav, J.; Coppola, J.F.; Broderick, M.; Putrino, D. Lateropulsion rehabilitation using virtual reality for stroke patients. In Proceedings of the 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 5 May 2017; pp. 1–6. [Google Scholar]
- Norouzi-Gheidari, N.; Levin, M.F.; Fung, J.; Archambault, P. Interactive virtual reality game-based rehabilitation for stroke patients. In Proceedings of the 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA, USA, 26–29 August 2013; pp. 220–221. [Google Scholar]
- Liao, K.-L.; Huang, M.; Wang, Y.; Wu, Z.; Yang, R.; Zhang, J.; Wang, L. A virtual reality serious game design for upper limb rehabilitation. In Proceedings of the 2021 IEEE 9th International Conference on Serious Games and Applications for Health (SeGAH), Dubai, United Arab Emirates, 4–6 August 2021; pp. 1–5. [Google Scholar]
- Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From game design elements to gamefulness: Defining “gamification”. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 29–30 September 2011; pp. 9–15. [Google Scholar]
- Song, X.; Ding, L.; Zhao, J.; Jia, J.; Shull, P. Cellphone augmented reality game-based rehabilitation for improving motor function and mental state after stroke. In Proceedings of the 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar]
- Betker, A.L.; Szturm, T.; Moussavi, Z.K.; Nett, C. Video game-based exercises for balance rehabilitation: A single-subject design. Arch. Phys. Med. Rehabil. 2006, 87, 1141–1149. [Google Scholar] [CrossRef]
- Sekhavat, Y.A.; Namani, M.S. Projection-based AR: Effective visual feedback in gait rehabilitation. IEEE Trans. Hum.-Mach. Syst. 2018, 48, 626–636. [Google Scholar] [CrossRef]
- Garzotto, F.; Torelli, E.; Vona, F.; Aruanno, B. HoloLearn: Learning through mixed reality for people with cognitive disability. In Proceedings of the 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Taichung, Taiwan, 10–12 December 2018; pp. 189–190. [Google Scholar]
- Condino, S.; Turini, G.; Viglialoro, R.; Gesi, M.; Ferrari, V. Wearable augmented reality application for shoulder rehabilitation. Electronics 2019, 8, 1178. [Google Scholar] [CrossRef]
- Tada, K.; Sorimachi, Y.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Integrated quantitative evaluation of spatial cognition and motor function with HoloLens mixed reality. Sensors 2024, 24, 528. [Google Scholar] [CrossRef]
- Pezzera, M.; Chitti, E.; Borghese, N.A. MIRARTS: A mixed reality application to support postural rehabilitation. In Proceedings of the 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, BC, Canada, 12–14 August 2020; pp. 1–7. [Google Scholar]
- Aruanno, B.; Garzotto, F.; Rodriguez, M.C. HoloLens-based mixed reality experiences for subjects with Alzheimer’s disease. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, Italy, 18–20 September 2017; pp. 1–9. [Google Scholar]
- Delis, I.; Panzeri, S.; Pozzo, T.; Berret, B. A unifying model of concurrent spatial and temporal modularity in muscle activity. J. Neurophysiol. 2014, 111, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the accuracy and robustness of the leap motion controller. Sensors 2013, 13, 6380–6393. [Google Scholar] [CrossRef] [PubMed]
- Feix, T.; Romero, J.; Schmiedmayer, H.-B.; Dollar, A.M.; Kragic, D. The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 2015, 46, 66–77. [Google Scholar] [CrossRef]
- Ungureanu, D.; Bogo, F.; Galliani, S.; Sama, P.; Duan, X.; Meekhof, C.; Stühmer, J.; Cashman, T.J.; Tekin, B.; Schönberger, J.L.; et al. Hololens 2 research mode as a tool for computer vision research. arXiv 2020, arXiv:2008.11239. [Google Scholar]
- Barradas, V.R.; Cho, W.; Koike, Y. EMG space similarity feedback promotes learning of expert-like muscle activation patterns in a complex motor skill. Front. Hum. Neurosci. 2023, 16, 805867. [Google Scholar] [CrossRef]
- El-Badawi, M.G.Y.; Butt, M.M.; Al-Zuhair, A.G.H.; Fadel, R.A. Extensor tendons of the fingers: Arrangement and variations-II. Clin. Anat. 1995, 8, 391–398. [Google Scholar] [CrossRef]
- Prevete, R.; Donnarumma, F.; d’Avella, A.; Pezzulo, G. Evidence for sparse synergies in grasping actions. Sci. Rep. 2018, 8, 616. [Google Scholar] [CrossRef]
Task Completion Time [s] | Failed Attempts | |
---|---|---|
LMC task | ||
HoloLens 2 task |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorimachi, Y.; Akaida, H.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Synergy-Based Evaluation of Hand Motor Function in Object Handling Using Virtual and Mixed Realities. Sensors 2025, 25, 2080. https://doi.org/10.3390/s25072080
Sorimachi Y, Akaida H, Kutsuzawa K, Owaki D, Hayashibe M. Synergy-Based Evaluation of Hand Motor Function in Object Handling Using Virtual and Mixed Realities. Sensors. 2025; 25(7):2080. https://doi.org/10.3390/s25072080
Chicago/Turabian StyleSorimachi, Yuhei, Hiroki Akaida, Kyo Kutsuzawa, Dai Owaki, and Mitsuhiro Hayashibe. 2025. "Synergy-Based Evaluation of Hand Motor Function in Object Handling Using Virtual and Mixed Realities" Sensors 25, no. 7: 2080. https://doi.org/10.3390/s25072080
APA StyleSorimachi, Y., Akaida, H., Kutsuzawa, K., Owaki, D., & Hayashibe, M. (2025). Synergy-Based Evaluation of Hand Motor Function in Object Handling Using Virtual and Mixed Realities. Sensors, 25(7), 2080. https://doi.org/10.3390/s25072080