Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review
Abstract
:1. Introduction
- Assess the efficacy of a variety of electrical stimulation techniques.
- Provide an exhaustive overview of the current state of electrical stimulation research in mental stress.
- Identify critical challenges and research gaps in the field.
- Guide future developments in the field by achieving these objectives.
2. Methodology
2.1. Inclusion Criteria
2.2. Search Strategy
3. Mental Stress, Depression, and Anxiety
4. Electrical Stimulation Techniques
5. Transcranial Direct Current Stimulation
5.1. Parameter Optimization
5.1.1. Electrode Size and Characteristics
5.1.2. Electrode Location
5.1.3. Current and Dosage
5.1.4. Sham Conditions
6. Transcranial Alternating Current Stimulation
6.1. Parameter Optimization
6.1.1. Electrode Properties and Current/Frequency Settings
6.1.2. Dosage and Ramp Time
6.1.3. Sham Conditions
7. Transcranial Random Noise Stimulation
7.1. Parameter Optimization
7.1.1. Electrode Charecteristics
7.1.2. Current/Frequency
7.1.3. Dosage and Ramp Time
7.1.4. Sham Conditions
8. Transcranial Pulsed Current Stimulation
8.1. Parameter Optimization
8.1.1. Electrode Properties and Current/Frequency Settings
8.1.2. Dosage and Ramp Time
8.1.3. Sham Conditions
9. Biomarkers and Imaging Modalities
9.1. Biomarkers
9.1.1. Cortisol
9.1.2. Alpha Amylase
9.1.3. Blood Pressure
9.1.4. Heart Rate Variability
9.2. Imaging Modalities
10. Results
10.1. Mental Stress
10.2. Depression
10.3. Anxiety
11. Discussion
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Anterior Cingulate Cortex |
ACTH | Adrenocorticotropic Hormone |
ANS | Autonomic Nervous System |
A-tDCS | Anodal Transcranial Direct Current Stimulation |
BLA | Basolateral Amygdala |
CGI | Clinical Global Impression |
CRF | Corticotropin-Releasing Factor |
CNS | Central Nervous System |
CVLT-II | California Verbal Learning Test II |
C-tDCS | Cathodal Transcranial Direct Current Stimulation |
DBS | Deep Brain Stimulation |
DLPFC | Dorsolateral Prefrontal Cortex |
EEG | Electroencephalography |
ECT | Electroconvulsive Therapy |
fMRI | Functional Magnetic Resonance Imaging |
fNIRS | Functional Near-Infrared Spectroscopy |
GAD | Generalized Anxiety Disorder |
HAM-A | Hamilton Anxiety Rating Scale |
HAM-D | Hamilton Depression Rating Scale |
HC | Healthy Control |
HDRS | Hamilton Depression Rating Scale |
HD-tDCS | High-Definition Transcranial Direct Current Stimulation |
HPA | Hypothalamic–Pituitary–Adrenal |
MADRS | Montgomery–Åsberg Depression Rating Scale |
MDD | Major Depressive Disorder |
MINI | Mini International Neuropsychiatric Interview |
MODA | Mood Disorders Questionnaire |
PTSD | Post-Traumatic Stress Disorder |
QIDS-SR | Quick Inventory of Depressive Symptomatology—Self-Report |
Q-LES-Q-SF | Quality of Life Enjoyment and Satisfaction Questionnaire—Short Form |
rOFC | Rostral Orbitofrontal Cortex |
SAM | Sympathetic Adrenal Medulla |
sAA | Salivary Alpha-Amylase |
SDMT | Symbol Digit Modalities Test |
STAI | State-Trait Anxiety Inventory |
STDP | Spike-Timing-Dependent Plasticity |
TMS | Transcranial Magnetic Stimulation |
tACS | Transcranial Alternating Current Stimulation |
tDCS | Transcranial Direct Current Stimulation |
tES | Transcranial Electrical Stimulation |
tPCS | Transcranial Pulsed Current Stimulation |
tRNS | Transcranial Random Noise Stimulation |
VMPFC | Ventromedial Prefrontal Cortex |
VNS | Vagus Nerve Stimulation |
References
- Shaffique, S.; Farooq, S.S.; Anwar, H.; Asif, H.M.; Akram, M.; Jung, S.K. Meta-analysis of Prevalence of Depression, Anxiety and Stress Among University Students. RADS J. Biol. Res. Appl. Sci. 2020, 11, 27–32. [Google Scholar] [CrossRef]
- IHME. Global Burden of Disease Study 2019 (GBD 2019). Available online: https://ghdx.healthdata.org/gbd-2019 (accessed on 4 December 2024).
- Reinert, M.; Fritze, D.; Nguyen, T. The State of Mental Health in America 2023; Technical Report; Mental Health America: Alexandria, VA, USA, 2022. [Google Scholar]
- WHO. Mental Health and COVID-19: Scientific Brief; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- Levecque, K.; Anseel, F.; Beuckelaer, A.D.; Heyden, J.; Gisle, L. Work organization and mental health problems in PhD students. Res. Policy 2017, 46, 868–879. [Google Scholar] [CrossRef]
- Amaro, P.; Fonseca, C.; Afonso, A.; Jacinto, G.; Gomes, L.; Pereira, H.; José, H.; Silva, C.; Lima, A.; Arco, H.; et al. Depression and Anxiety of Portuguese University Students: A Cross-Sectional Study about Prevalence and Associated Factors. Depress. Anxiety 2024, 2024, 5528350. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, R.; Walters, E.E. Lifetime Prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef]
- Fitzgerald, P.B. The emerging use of brain stimulation treatments for psychiatric disorders. Aust. N. Z. J. Psychiatry 2011, 45, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Rowny, S.; Lisanby, S.H. Brain Stimulation in Psychiatry. In Psychiatry, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; Chapter 109. [Google Scholar]
- Zhang, Y.; Lin, P.; Wang, R.; Zhou, J.; Xu, X.; Wang, J.; Ge, S. The Neural Basis of the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Emotion Regulation Related Brain Regions: An rs-fMRI Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 4076–4085. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, N.; Xu, J.; Liu, Z.; Zhou, Y.; Yang, Y.; Li, S.; Huang, Y.; Jiang, S. Flexible electronics for cardiovascular healthcare monitoring. Innovation 2023, 4, 100485. [Google Scholar] [CrossRef]
- Lv, T.R.; Zhang, W.H.; Yang, Y.Q.; Zhang, J.C.; Yin, M.J.; Yin, Z.; Yong, K.T.; An, Q.F. Micro/Nano-Fabrication of Flexible Poly(3,4-ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices. Small 2023, 19, 2301071. [Google Scholar] [CrossRef]
- Antal, A.; Fischer, T.; Saiote, C.; Miller, R.; Chaieb, L.; Wang, D.J.; Plessow, F.; Paulus, W.; Kirschbaum, C. Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure. Hum. Brain Mapp. 2014, 35, 3750–3759. [Google Scholar] [CrossRef]
- Bogdanov, M.; Schwabe, L. Transcranial stimulation of the dorsolateral prefrontal cortex prevents stress-induced working memory deficits. J. Neurosci. 2016, 36, 1429–1437. [Google Scholar] [CrossRef]
- Austin, A.; Jiga-Boy, G.M.; Rea, S.; Newstead, S.A.; Roderick, S.; Davis, N.J.; Marc Clement, R.; Boy, F. Prefrontal electrical stimulation in non-depressed reduces levels of reported negative affects from daily stressors. Front. Psychol. 2016, 7, 171847. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, L.; Pattini, E.; Sgoifo, A.; Ottaviani, C. Effects of prefrontal transcranial direct current stimulation on autonomic and neuroendocrine responses to psychosocial stress in healthy humans. Stress 2020, 23, 26–36. [Google Scholar] [CrossRef]
- Ankri, Y.L.E.; Braw, Y.; Luboshits, G.; Meiron, O. The effects of stress and transcranial direct current stimulation (tDCS) on working memory: A randomized controlled trial. Cogn. Affect. Behav. Neurosci. 2020, 20, 103–114. [Google Scholar] [CrossRef]
- Kim, J.; Jang, K.I.; Roh, D.; Kim, H.; Kim, D.H. A direct comparison of the electrophysiological effects of transcranial direct and alternating current stimulation in healthy subjects. Brain Res. 2020, 1747, 147065. [Google Scholar] [CrossRef]
- Brunelin, J.; Fecteau, S. Impact of bifrontal transcranial Direct Current Stimulation on decision-making and stress reactivity. A pilot study. J. Psychiatr. Res. 2021, 135, 15–19. [Google Scholar] [CrossRef]
- Ghafoor, U.; Afzal Khan, M.N.; Yang, D.; Hong, K.S. Influence of tACS/tDCS on resting state effective connectivity in the frontal cortex: An functional near-infrared spectroscopy study. In Proceedings of the ASCC 2022—2022 13th Asian Control Conference, Seogwipo, Republic of Korea, 4–7 May 2022; pp. 1563–1568. [Google Scholar]
- De Wandel, L.; De Smet, S.; Pulopulos, M.M.; Lemmens, G.M.; Hidalgo, V.; Salvador, A.; Vanderhasselt, M.A.; Pruessner, J.; Baeken, C. The effects of left dorsolateral prefrontal transcranial direct current stimulation on episodic future thinking following acute psychosocial stress. Memory 2023, 31, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kim, Y.; Yoon, I.Y.; Hong, J.K. Effects of cranial electrotherapy stimulation on improving depressive symptoms in people with stress: A randomized, double-blind controlled study. J. Affect. Disord. 2023, 340, 835–842. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Zhao, J.; Leng, X.; Han, J.; Xia, F.; Pang, Y.; Chen, H. Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex improves attentional control in chronically stressed adults. Front. Neurosci. 2023, 17, 1182728. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.S.; Toya, T.; Ahmad, A.; Clark, M.M.; Gilliam, W.P.; Lerman, L.O.; Lerman, A. Mental Stress and Its Effects on Vascular Health. Mayo Clin. Proc. 2022, 97, 951–990. [Google Scholar] [CrossRef]
- Hill, D.C.; Moss, R.H.; Sykes-Muskett, B.; Conner, M.; O’connor, D.B. Stress and eating behaviors in children and adolescents: Systematic review and meta-analysis. RADS J. Biol. Res. Appl. Sci. 2017, 11, 27–32. [Google Scholar] [CrossRef]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- McEwen, B.S. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front. Neuroendocrinol. 2018, 49, 8–30. [Google Scholar] [CrossRef] [PubMed]
- O’connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and Health: A Review of Psychobiological Processes. Annu. Rev. Psychol. 2021, 72, 4.1–4.6. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Barrot, M.; Dileone, R.J.; Eisch, A.J.; Gold, S.J.; Monteggia, L.M. Neurobiology of Depression. Neuron 2002, 34, 13–25. [Google Scholar] [CrossRef]
- Palazidou, E. The neurobiology of depression. Br. Med. Bull. 2012, 101, 127–145. [Google Scholar] [CrossRef]
- Kendler, K.S.; Karkowski, L.M.; Prescott, C.A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatry 1999, 156, 837–841. [Google Scholar] [CrossRef]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of Perceived Mental Stress Using A Commercially Available EEG Headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
- Dean, J.; Keshavan, M. The neurobiology of depression: An integrated view. Asian J. Psychiatry 2017, 27, 101–111. [Google Scholar] [CrossRef]
- Pechtel, P.; Pizzagalli, D.A. Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology 2011, 214, 55–70. [Google Scholar] [CrossRef]
- Willner, P. Chronic Mild Stress (CMS) Revisited: Consistency and Behavioural-Neurobiological Concordance in the Effects of CMS. Neuropsychobiology 2005, 52, 90–110. [Google Scholar] [CrossRef] [PubMed]
- Praag, H.M.V. Can stress cause depression? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 891–907. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, D.F.; Niciu, M.J.; Mathews, D.C.; Richards, E.M.; Zarate, C.A. Neurobiology of anxious depression: A review. Depress. Anxiety 2013, 30, 374–385. [Google Scholar] [CrossRef]
- Rao, S.; Zisook, S. Anxious depression: Clinical features and treatment. Curr. Psychiatry Rep. 2009, 11, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Parreira, J.D.; Shahrbabak, S.M.; Sanchez-Perez, J.A.; Rahman, F.N.; Gazi, A.H.; Inan, O.T.; Hahn, J.-O. A Synthetic Multi-Modal Variable to Capture Cardiovascular Responses to Acute Mental Stress and Transcutaneous Median Nerve Stimulation. IEEE Trans. Biomed. Eng. 2024, 72, 346–357. [Google Scholar] [CrossRef]
- Daviu, N.; Bruchas, M.R.; Moghaddam, B.; Sandi, C.; Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. Stress 2019, 11, 100191. [Google Scholar] [CrossRef]
- Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Ry, S.D.; Cavallo, F. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers. IEEE Trans. Biomed. Eng. 2018, 65, 1748–1758. [Google Scholar]
- Yavari, F.; Jamil, A.; Samani, M.M.; Vidor, L.P.; Nitsche, M.A. Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neurosci. Biobehav. Rev. 2017, 85, 81–92. [Google Scholar] [CrossRef]
- Ruffini, G.; Wendling, F.; Merlet, I.; Molaee-Ardekani, B.; Mekonnen, A.; Salvador, R.; Soria-Frisch, A.; Grau, C.; Dunne, S.; Miranda, P.C. Transcranial Current Brain Stimulation (tCS): Models and Technologies. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 333–345. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Purpura, D.P.; Mcmurty, J.G. Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 1965, 28, 166–185. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Grover, P. STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using Spatio-Temporal Interference. IEEE Trans. Biomed. Eng. 2020, 67, 726–737. [Google Scholar] [CrossRef]
- Wagner, T.; Fregni, F.; Fecteau, S.; Grodzinsky, A.; Zahn, M.; Pascual-Leone, A. Transcranial direct current stimulation: A computer-based human model study. NeuroImage 2007, 35, 1113–1124. [Google Scholar] [CrossRef]
- Rossini, P.M.; Rossi, S. Transcranial magnetic stimulation: Diagnostic, therapeutic, and research potential. Neurology 2007, 68, 484–488. [Google Scholar] [CrossRef] [PubMed]
- George, M.S.; Aston-Jones, G. Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology 2010, 35, 301–316. [Google Scholar] [CrossRef]
- Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci. 2013, 16, 838–844. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Khan, M.N.A.; Hong, K.S. Investigating the effects of stimulation duration for brain-computer interface. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 635–640. [Google Scholar]
- Nitsche, M.A.; Seeber, A.; Frommann, K.; Klein, C.C.; Rochford, C.; Nitsche, M.S.; Fricke, K.; Liebetanz, D.; Lang, N.; Antal, A.; et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 2005, 568, 291–303. [Google Scholar] [CrossRef]
- Malekahmad, M.; Frazer, A.; Zoghi, M.; Jaberzadeh, S. Transcranial pulsed current stimulation: A scoping review of the current literature on scope, nature, underlying mechanisms, and gaps. Psychophysiology 2024, 61, e14521. [Google Scholar] [CrossRef]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Paulus, W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 2013, 7, 317. [Google Scholar] [CrossRef]
- Paulus, W.; Nitsche, M.A.; Antal, A. Application of Transcranial Electric Stimulation (tDCS, tACS, tRNS). Eur. Psychol. 2016, 21, 4–14. [Google Scholar] [CrossRef]
- Roy, A.; Baxter, B.; He, B. High-Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: A Simultaneous tDCS–EEG Study. IEEE Trans. Biomed. Eng. 2014, 61, 1967–1978. [Google Scholar] [CrossRef]
- Pathak, H.; Sreeraj, V.S.; Venkatasubramanian, G. Transcranial Alternating Current Stimulation (tACS) and Its Role in Schizophrenia: A Scoping Review. Clin. Psychopharmacol. Neurosci. 2023, 21, 634–649. [Google Scholar] [CrossRef]
- Utz, K.S.; Dimova, V.; Oppenländer, K.; Kerkhoff, G. Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications. Neuropsychologia 2010, 48, 2789–2810. [Google Scholar] [CrossRef] [PubMed]
- Villamar, M.F.; Volz, M.S.; Bikson, M.; Datta, A.; Dasilva, A.F.; Fregni, F. Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). J. Vis. Exp. JoVE 2013, 77, e50309. [Google Scholar]
- Datta, A.; Bansal, V.; Diaz, J.; Patel, J.; Reato, D.; Bikson, M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009, 2, 201–207.e1. [Google Scholar] [CrossRef]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial direct current stimulation (tDCS): A Beginner’s guide for design and implementation. Front. Neurosci. 2017, 11, 276151. [Google Scholar] [CrossRef]
- Nasseri, P.; Nitsche, M.A.; Ekhtiari, H. A framework for categorizing electrode montages in transcranial direct current stimulation. Front. Hum. Neurosci. 2015, 9, 54. [Google Scholar] [CrossRef]
- Moliadze, V.; Antal, A.; Paulus, W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin. Neurophysiol. 2010, 121, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.C.; Lomarev, M.; Hallett, M. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 2006, 117, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Datta, A.; Rahman, A.; Scaturro, J. Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode’s position and size. Clin. Neurophysiol. 2010, 121, 1976–1978. [Google Scholar] [CrossRef]
- Solomons, C.D.; Shanmugasundaram, V. Transcranial direct current stimulation: A review of electrode characteristics and materials. Med. Eng. Phys. 2020, 85, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, R.F.; Schneider, T.R.; Rach, S.; Trautmann-Lengsfeld, S.A.; Engel, A.K.; Herrmann, C.S. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 2014, 24, 333–339. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Rach, S.; Neuling, T.; Strüber, D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013, 7, 46064. [Google Scholar] [CrossRef]
- Cecere, R.; Rees, G.; Romei, V. Individual differences in alpha frequency drive crossmodal illusory perception. Curr. Biol. 2015, 25, 231–235. [Google Scholar] [CrossRef]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008, 1, 97–105. [Google Scholar] [CrossRef]
- Ali, M.M.; Sellers, K.K.; Fröhlich, F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 2013, 33, 11262–11275. [Google Scholar] [CrossRef]
- Schutter, D.J.; Hortensius, R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin. Neurophysiol. 2010, 121, 1080–1084. [Google Scholar] [CrossRef]
- Zaehle, T.; Rach, S.; Herrmann, C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 2010, 5, e13766. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Herrmann, C.S. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plast. 2016, 2016, 3616807. [Google Scholar] [CrossRef] [PubMed]
- Kar, K.; Krekelberg, B. Transcranial alternating current stimulation attenuates visual motion adaptation. J. Neurosci. 2014, 34, 7334–7340. [Google Scholar] [CrossRef] [PubMed]
- Neuling, T.; Rach, S.; Herrmann, C.S. Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 2013, 7, 161. [Google Scholar] [CrossRef]
- Alekseichuk, I.; Wischnewski, M.; Opitz, A. A minimum effective dose for (transcranial) alternating current stimulation. Brain Stimul. 2022, 15, 1221–1222. [Google Scholar] [CrossRef]
- Kasten, F.H.; Herrmann, C.S. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front. Hum. Neurosci. 2017, 11, 2. [Google Scholar] [CrossRef]
- Stacey, W.; Durand, D. Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 2000, 83, 1394–1402. [Google Scholar] [CrossRef]
- Terney, D.; Chaieb, L.; Moliadze, V.; Antal, A.; Paulus, W. Increasing Human Brain Excitability by Transcranial High-Frequency Random Noise Stimulation. J. Neurosci. 2008, 52, 14147–14155. [Google Scholar] [CrossRef]
- Fertonani, A.; Pirulli, C.; Miniussi, C. Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning. J. Neurosci. 2011, 31, 15416–15423. [Google Scholar] [CrossRef]
- Moss, F.; Ward, L.M.; Sannita, W.G. Stochastic resonance and sensory information processing: A tutorial and review of application. Clin. Neurophysiol. 2004, 115, 267–281. [Google Scholar] [CrossRef]
- Miniussi, C.; Harris, J.A.; Ruzzoli, M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 2013, 37, 1702–1712. [Google Scholar] [CrossRef]
- Snowball, A.; Tachtsidis, I.; Popescu, T.; Thompson, J.; Delazer, M.; Zamarian, L.; Zhu, T.; Cohen Kadosh, R. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr. Biol. 2013, 23, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Remedios, L.; Mabil, P.; Flores-Hernández, J.; Torres-Ramírez, O.; Huidobro, N.; Castro, G.; Cervantes, L.; Tapia, J.A.; De la Torre Valdovinos, B.; Manjarrez, E. Effects of Short-Term Random Noise Electrical Stimulation on Dissociated Pyramidal Neurons from the Cerebral Cortex. Neuroscience 2019, 404, 371–386. [Google Scholar] [CrossRef]
- Chaieb, L.; Antal, A.; Pisoni, A.; Saiote, C.; Ambrus, G.; Opitz, A.; Focke, N.; Paulus, W. Safety of 5 kHz tACS. Brain Stimul. 2014, 7, 92–96. [Google Scholar] [CrossRef]
- Brancucci, A.; Rivolta, D.; Nitsche, M.A.; Manippa, V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiol. Behav. 2023, 261, 114073. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Dmochowski, J.P.; Guleyupoglu, B.; Bikson, M.; Fregni, F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: A computer based high-resolution modeling study. NeuroImage 2013, 65, 280–287. [Google Scholar] [CrossRef]
- Castillo Saavedra, L.; Morales-Quezada, L.; Doruk, D.; Rozinsky, J.; Coutinho, L.; Faria, P.; Perissinotti, I.; Wang, Q.M.; Fregni, F. QEEG indexed frontal connectivity effects of transcranial pulsed current stimulation (tPCS): A sham-controlled mechanistic trial. Neurosci. Lett. 2014, 577, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Duarte, I.; Gebodh, N.; Schestatsky, P.; Guleyupoglu, B.; Reato, D.; Bikson, M.; Fregni, F. Transcranial Electrical Stimulation: Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), Transcranial Pulsed Current Stimulation (tPCS), and Transcranial Random Noise Stimulation (tRNS). In The Stimulated Brain: Cognitive Enhancement Using Non-Invasive Brain Stimulation; Academic Press: Cambridge, MA, USA, 2014; pp. 35–59. [Google Scholar]
- Morales-Quezada, L.; Leite, J.; Carvalho, S.; Castillo-Saavedra, L.; Cosmo, C.; Fregni, F. Behavioral effects of transcranial pulsed current stimulation (tPCS): Speed-accuracy tradeoff in attention switching task. Neurosci. Res. 2016, 109, 48–53. [Google Scholar] [CrossRef]
- Thibaut, A.; Russo, C.; Morales-Quezada, L.; Hurtado-Puerto, A.; Deitos, A.; Freedman, S.; Carvalho, S.; Fregni, F. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity. Neurosci. Lett. 2017, 637, 207–214. [Google Scholar] [CrossRef]
- Lovallo, W.R. Stress and Health: Biological and Psychological Interactions; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Miller, G.E.; Chen, E.; Zhou, E.S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull. 2007, 133, 25–45. [Google Scholar] [CrossRef]
- Arul-Anandam, A.P.; Loo, C.; Sachdev, P. Transcranial direct current stimulation—What is the evidence for its efficacy and safety? F1000 Med. Rep. 2009, 1, 58. [Google Scholar] [CrossRef] [PubMed]
- Sterling, P. Allostasis: A New Paradigm to Explain Arousal Pathology. In Handbook of Life Stress, Cognition and Health; Fisher, S., Reason, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988; pp. 629–649. [Google Scholar]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The Trier Social Stress Test: A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N.; Gaab, J.; Berger, S.; Jud, A.; Kirschbaum, C.; Ehlert, U. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int. J. Psychophysiol. 2005, 55, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Ayada, C.; Toru, Ü.; Korkut, Y. The relationship of stress and blood pressure effectors. Hippokratia 2015, 19, 99–108. [Google Scholar]
- Grässler, B.; Herold, F.; Dordevic, M.; Gujar, T.A.; Darius, S.; Böckelmann, I.; Müller, N.G.; Hökelmann, A. Multimodal measurement approach to identify individuals with mild cognitive impairment: Study protocol for a cross-sectional trial. BMJ Open 2021, 11, e046879. [Google Scholar] [CrossRef]
- Peabody, J.E.; Ryznar, R.; Ziesmann, M.T.; Gillman, L. A Systematic Review of Heart Rate Variability as a Measure of Stress in Medical Professionals. Cureus 2023, 15, e34345. [Google Scholar] [CrossRef] [PubMed]
- Ziaratnia, S.; Sripian, P.; Laohakangvalvit, T.; Sugaya, M. Comparison of Physiological Responses to Stroop Word Color Test and IAPS Stimulation; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2023; pp. 211–222. [Google Scholar]
- Phutela, N.; Relan, D.; Gabrani, G.; Kumaraguru, P.; Samuel, M. Stress Classification Using Brain Signals Based on LSTM Network. Comput. Intell. Neurosci. 2022, 2022, 7607592. [Google Scholar] [CrossRef]
- Sharma, G.; Rahmatkar, S.N.; Rana, A.K.; Sharma, P.; Patial, V.; Singh, D.; Roy Chowdhury, S. Preclinical Validation of Electrodes for Single Anodal Transcranial Direct Current Stimulation on Rat Model with Chronic Stress-Induced Depression. IEEE Sens. J. 2023, 23, 12133–12145. [Google Scholar] [CrossRef]
- Hong, K.S.; Khan, M.N.; Ghafoor, U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared spectroscopy for targeted neuromodulation: A review. J. Neural Eng. 2022, 19, 041001. [Google Scholar] [CrossRef]
- Khan, M.N.; Zahour, N.; Tariq, U.; Masri, G.; Almadani, I.F.; Al-Nashah, H. Exploring Effects of Mental Stress with Data Augmentation and Classification Using fNIRS. Sensors 2025, 25, 428. [Google Scholar] [CrossRef]
- Katmah, R.; Al-Shargie, F.; Tariq, U.; Babiloni, F.; Al-Mughairbi, F.; Al-Nashash, H. Mental Stress Management Using fNIRS Directed Connectivity and Audio Stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Powell, T.Y.; Boonstra, T.W.; Martin, D.M.; Loo, C.K.; Breakspear, M. Modulation of Cortical Activity by Transcranial Direct Current Stimulation in Patients with Affective Disorder. PLoS ONE 2014, 9, e98503. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.K.; Husain, M.M.; McDonald, W.M.; Aaronson, S.; O’Reardon, J.P.; Alonzo, A.; Weickert, C.S.; Martin, D.M.; McClintock, S.M.; Mohan, A.; et al. International randomized-controlled trial of transcranial Direct Current Stimulation in depression. Brain Stimul. 2018, 11, 125–133. [Google Scholar] [CrossRef]
- Alonzo, A.; Fong, J.; Ball, N.; Martin, D.; Chand, N.; Loo, C. Pilot trial of home-administered transcranial direct current stimulation for the treatment of depression. J. Affect. Disord. 2019, 252, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.L.; Alagapan, S.; Lugo, C.E.; Mellin, J.M.; Lustenberger, C.; Rubinow, D.R.; Fröhlich, F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry 2019, 9, 106. [Google Scholar] [CrossRef]
- Nishida, K.; Koshikawa, Y.; Morishima, Y.; Yoshimura, M.; Katsura, K.; Ueda, S.; Ikeda, S.; Ishii, R.; Pascual-Marqui, R.; Kinoshita, T. Pre-stimulus Brain Activity is Associated with State-Anxiety Changes During Single-Session Transcranial Direct Current Stimulation. Front. Hum. Neurosci. 2019, 13, 266. [Google Scholar] [CrossRef]
- Haller, N.; Senner, F.; Brunoni, A.R.; Padberg, F.; Palm, U. Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J. Psychiatr. Res. 2020, 130, 31–34. [Google Scholar] [CrossRef]
- Nikolin, S.; Alonzo, A.; Martin, D.; Gálvez, V.; Buten, S.; Taylor, R.; Goldstein, J.; Oxley, C.; Hadzi-Pavlovic, D.; Loo, C.K. Transcranial random noise stimulation for the acute treatment of depression: A randomized controlled trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, L.; Huang, J.; Xu, X.; Wang, Y.; Jin, H. Efficacy and Safety of tDCS and tACS in Treatment of Major Depressive Disorder: A Randomized, Double-Blind, Factorial Placebo-Controlled Study Design. Neuropsychiatr. Dis. Treat. 2021, 17, 1459–1468. [Google Scholar] [CrossRef]
- Arabi, A.; Chalabianloo, G.; Abdi, R. The effect of transcranial direct-current stimulation on cortical coherence patterns in patients with major depression. Adv. Cogn. Sci. 2022, 23, 1–17. [Google Scholar]
- Huang, H.; Chen, Y.; Kong, S.; Zhang, M.; Wu, C.; Lyu, D.; Huang, Q.; Yang, W.; Shi, S.; Qian, N.; et al. Targeting right orbitofrontal cortex (OFC) with transcranial direct current stimulation (tDCS) can improve cognitive executive function in a major depressive episode, but not depressive mood: A Double-blind Randomized Controlled Pilot Trial. J. Psychiatr. Res. 2023, 168, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Pedraz-Petrozzi, B.; Sardinha, H.; Gilles, M.; Deuschle, M. Effects of left anodal transcranial direct current stimulation on hypothalamic-pituitary-adrenal axis activity in depression: A randomized controlled pilot trial. Sci. Rep. 2023, 13, 5619. [Google Scholar] [CrossRef]
- Murphy, O.W.; Hoy, K.E.; Wong, D.; Bailey, N.W.; Fitzgerald, P.B.; Segrave, R.A. Effects of transcranial direct current stimulation and transcranial random noise stimulation on working memory and task-related EEG in major depressive disorder. Brain Cogn. 2023, 173, 106105. [Google Scholar] [CrossRef]
- Chan, H.N.; Alonzo, A.; Martin, D.M.; Player, M.; Mitchell, P.B.; Sachdev, P.; Loo, C.K. Treatment of Major Depressive Disorder by Transcranial Random Noise Stimulation: Case Report of a Novel Treatment. Biol. Psychiatry 2012, 72, 9–10. [Google Scholar] [CrossRef]
- Riddle, J.; Rubinow, D.R.; Frohlich, F. A case study of weekly tACS for the treatment of major depressive disorder. Brain Stimul. 2020, 13, 576. [Google Scholar] [CrossRef]
- Zanardi, R.; Poletti, S.; Prestifilippo, D.; Attanasio, F.; Barbini, B.; Colombo, C. Transcranial direct current stimulation: A novel approach in the treatment of vascular depression. Brain Stimul. 2020, 13, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, K.; Xue, Q.; Peng, M.; Yin, L.; Gu, X.; Leng, H.; Lu, J.; Liu, H.; Wang, D.; et al. Transcranial alternating current stimulation for treating depression: A randomized controlled trial. Brain 2022, 145, 83–91. [Google Scholar] [CrossRef]
- Movahed, F.S.; Goradel, J.A.; Pouresmali, A.; Mowlaie, M. Effectiveness of Transcranial Direct Current Stimulation on Worry, Anxiety, and Depression in Generalized Anxiety Disorder: A Randomized, Single-Blind Pharmacotherapy and Sham-Controlled Clinical Trial. Iran. J. Psychiatry Behav. Sci. 2018, 12, e11071. [Google Scholar]
- Lin, Y.; Zhang, C.; Wang, Y. A Randomized Controlled Study of Transcranial Direct Current Stimulation in Treatment of Generalized Anxiety Disorder. Brain Stimul. 2019, 12, 403. [Google Scholar] [CrossRef]
- de Lima, A.L.; Braga, F.M.A.; da Costa, R.M.M.; Gomes, E.P.; Brunoni, A.R.; Pegado, R. Transcranial direct current stimulation for the treatment of generalized anxiety disorder: A randomized clinical trial. J. Affect. Disord. 2019, 259, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Mehrsafar, A.H.; Rosa, M.A.S.; Zadeh, A.M.; Gazerani, P. A feasibility study of application and potential effects of a single session transcranial direct current stimulation (tDCS) on competitive anxiety, mood state, salivary levels of cortisol and alpha amylase in elite athletes under a real-world competition. Physiol. Behav. 2020, 227, 113173. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Slawka, E.; Pacheco-Barrios, K.; Cardenas-Rojas, A.; Castelo-Branco, L.; Fregni, F. The pros and cons of tDCS as a therapeutic tool in the rehabilitation of chronic pain. Princ. Pract. Clin. Res. 2022, 8, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Modolo, J.; Zhang, M.; Duprez, J.; Frohlich, F. Mechanisms and Controversies of tACS (Transcranial Alternating Current Stimulation). arXiv 2024, arXiv:2410.05841. [Google Scholar]
- Paulus, W. Transcranial brain stimulation: Potential and limitations. E-Neuroforum 2014, 5, 29–36. [Google Scholar] [CrossRef]
Reference | Sample Size | tES Type | Session Duration | mA/Hz | Task | Outcomes Measurement | Results |
---|---|---|---|---|---|---|---|
[13] | 60 healthy controls | Active vs. Sham tDCS | 20 min over 3 days | 1 mA | TSST | Cortisol fMRI | Positive A-tDCS and C-tDCS effects. |
[14] | 120 healthy controls | Anodal, Cathodal, or sham tDCS | 30 min | 1.075 mA | CBBT and DSB-VM | TSST, MMQ, BP, pulse, and cortisol | A-tDCS: Positive effects |
[15] | 66 healthy controls | Active vs. Sham tDCS | 12 min | 1.5 mA | NA | PMS | Positive effects |
[16] | 30 healthy controls | A-tDCS vs. sham | 15 min | 2 mA | Stress interview and arithmetic task | HRV, TSST, CES-D and Cortisol | Positive effects |
[17] | 69 healthy controls | tDCS vs. Sham | 20 min | 2 mA | N-Back | TSST, STAI-T, cortisol and VAS | Inconclusive |
[18] | 60 healthy controls | Single-session tDCS vs. gamma-tACS | 30 min | tACS: 2 mA (40 Hz) tDCS: 2 mA | NA | Resting state EEG | Positive effects |
[19] | 30 healthy controls | Active tDCS vs. Sham | 20 min | 2 mA | Maastricht acute stress test | Cortisol | Positive effects |
[20] | 15 healthy controls | A-HD-tDCS/tACS | 12 min | tACS: 1 mA (10 Hz) tDCS: 1 mA | NA | fNIRS | Positive effect |
[21] | 60 healthy controls | tDCS vs. Sham | 20 min | 2 mA | MIST | EFT, VAS, BSRI, and cortisol | No effects |
[22] | 62 healthy controls | CES vs. Sham | 30 min during Day and 30 min during night for 3 weeks | 10 Hz and 0.3 mA | NA | PSS, ISI, PSQI, BDI-II, STAI-S, WHOQOL-BREF, cortisol and QEEG | Positive effects |
[23] | 40 healthy controls | A-tDCS vs. sham | 20 min for 5 days | 2 mA | Attention Network Test | PSS, STAI, and EEG | Positive effects |
Reference | Sample Size | tES Type | Session Duration | mA/Hz | Task | Outcomes Measurement | Results |
---|---|---|---|---|---|---|---|
[113] | 18 major depressive disorder patients | Active vs. Sham tDCS | 20 min | 2 mA | Visual working memory task | MINI, MADRS, and EEG | Positive effects |
[114] | 130 major depressive disorder patients | Active vs. Sham tDCS | 30 min | 2.5 mA | NA | MADRS | Positive effects |
[115] | 34 major depressive disorder patients | Self administered 20–28 tDCS | 30 min | 2 mA | NA | QIDS-SR, MADRS, BDI and Q-LES-Q-SF | Positive effects |
[116] | 10 major depressive disorder patients | Active vs. Sham tACS | 40 min | 1 mA each/−2 mA (ref) 10 Hz/40 Hz | NA | HDRS, MADRS, BDI, and hdrEEG | No effects. |
[117] | 14 major depressive disorder patients and 19 healthy controls | Active vs. Sham A-tDCS | 20 min | 1 mA | STAI | Resting State EEG | Positive effects |
[118] | 6 major depressive disorder patients | Active tACS | 10/20 min per day for 10 days | 2 mA at 40 Hz (0 face shift) | 3N-back task | HAMD21, BDI, RWT, TMT-A/B, PANAS and CGI | Positive effects |
[126] | 1 major depressive disorder patients | Active vs. Sham tACS | 40 min | 1 mA each/−2 mA (ref) at 10 Hz | NA | MADRS and hdrEEG | Positive effects |
[127] | 93 major depressive disorder patients | Active vs. Sham A-tDCS | 30 min | 2 mA | NA | HDRS and MODA | Positive effects |
[119] | 66 major depressive disorder patients | Active vs. Sham tRNS | 30 min | 2 mA and offset of 2 mA | Digit span subtest | MADRS, CGI-I, BDI-II, Q-LES-SF, CVLT-II, RUFF, WAIS-IV, SDMT and KEFS | Negative effects |
[120] | 112 major depressive disorder patients | Active vs. Sham tDCS | 30 min per day for 10 times | 2 mA | NA | MADRS, HAMA, QIDS-SR, CGI and fMRI | Positive effects |
[121] | 36 major depressive disorder patients | Active vs. Sham tDCS | 20 min for 10 days | 2 mA | NA | EEG | Positive effects |
[128] | 100 major depressive disorder patients | Active vs. Sham tACS | 40 min for 20 sessions | 15 mA at 7.5 Hz | NA | HDRS-17 | Positive effects |
[122] | 70 major depressive disorder patientsD | Active vs. Sham (rOFC/IDLPFC) tDCS | 20 min | 2 mA | NA | HAMD17, MADRS, and QIDS-SR | Negative effects |
[123] | 40 major depressive disorder patients | Active vs. Sham tDCS | 30 min | 2 mA | NA | Cortisol | Negative effects |
[124] | 49 major depressive disorder patients | Active A-tDCS, HF-tRNS or Sham | 22 min | tDCS: 1 mA tACS: 1 mA with 1 mA Dc offset (100–640 Hz) | Sternberg WM task and PASAT | WAIS-IV, STAI and TMS-EEG | No effects |
Reference | Sample Size | tES Type | Session Duration | Intensity | Task | Outcome Measures | Results |
---|---|---|---|---|---|---|---|
[129] | 18 GAD patients | Active vs. Sham tDCS | 20 min/session, 10 sessions over 4 weeks | 2 mA | NA | HARS, HDRS, PSWQ | Positive effects |
[130] | 20 GAD patients | Active vs. Sham tDCS | 20 min/day for 10 days | 2 mA | NA | HAMA, HAMD | Positive effects |
[131] | 30 GAD patients | Active vs. Sham tDCS | 20 min/day for 5 days | 2 mA | NA | HAM-A, BAI, ISSL, PNAS, BDI | Neutral effects |
[132] | 12 healthy controls | A-tDCS/R C-tDCS vs. Sham tDCS | 20 min | 2 mA | Archery competition | BMSS, STAI-II, Cortisol | Positive effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.M.; Khan, M.N.A.; Tariq, U.; Al-Nashash, H. Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review. Sensors 2025, 25, 2133. https://doi.org/10.3390/s25072133
Prasad SM, Khan MNA, Tariq U, Al-Nashash H. Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review. Sensors. 2025; 25(7):2133. https://doi.org/10.3390/s25072133
Chicago/Turabian StylePrasad, Sandra Mary, M. N. Afzal Khan, Usman Tariq, and Hasan Al-Nashash. 2025. "Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review" Sensors 25, no. 7: 2133. https://doi.org/10.3390/s25072133
APA StylePrasad, S. M., Khan, M. N. A., Tariq, U., & Al-Nashash, H. (2025). Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review. Sensors, 25(7), 2133. https://doi.org/10.3390/s25072133