Lithological Mapping in High-Vegetation Areas Using Sentinel-2, Sentinel-1, and Digital Elevation Models
Abstract
:1. Introduction
2. Materials and Datasets
2.1. Study Area
2.2. Remote Sensing Image and Preprocessing
2.2.1. Sentinel-2 Imagery and Preprocessing
2.2.2. Sentinel-1 Imagery and Preprocessing
2.2.3. SRTM DEM
2.3. Sample Dataset
3. Method
4. Results and Discussion
4.1. Parameter Adjustment
4.2. Classification Results of Different Data Combinations
4.3. Lithological Mapping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Ott, R.F. How lithology impacts global topography, vegetation, and animal biodiversity: A global-scale analysis of mountainous regions. Geophys. Res. Lett. 2020, 47, e2020GL088649. [Google Scholar] [CrossRef]
- Boughattas, N.E.H.; Katlane, F.; Amami, R.; Kefauver, S.C.; Abrougui, K.; Naceur, M.S.; Hameed, M.; Ghazouani, H.; Hussain, Z.; Ansar, S. Improving estimation of water soil erosion by introducing lithological formation for environmental remediation. Environ. Res. 2023, 231, 116210. [Google Scholar] [CrossRef]
- Muñoz, R.; Enríquez, M.; Bongers, F.; López-Mendoza, R.D.; Miguel-Talonia, C.; Meave, J.A. Lithological substrates influence tropical dry forest structure, diversity, and composition, but not its dynamics. Front. For. Glob. Change 2023, 6, 1082207. [Google Scholar] [CrossRef]
- Ma, X.; Yang, H.; Yang, H.; Shu, H. The distribution of formation lithology and its control on geological disasters in the Bailong River basin of southern Gansu Province, China. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; p. 062004. [Google Scholar] [CrossRef]
- Rajan Girija, R.; Mayappan, S. Mapping of mineral resources and lithological units: A review of remote sensing techniques. Int. J. Image Data Fusion 2019, 10, 79–106. [Google Scholar] [CrossRef]
- Houshmand, N.; GoodFellow, S.; Esmaeili, K.; Calderón, J.C.O. Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Appl. Comput. Geosci. 2022, 16, 100104. [Google Scholar] [CrossRef]
- Pechnig, R.; Haverkamp, S.; Wohlenberg, J.; Zimmermann, G.; Burkhardt, H. Integrated log interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones. J. Geophys. Res. Solid Earth 1997, 102, 18363–18390. [Google Scholar] [CrossRef]
- Grebby, S.; Cunningham, D.; Tansey, K.; Naden, J. The impact of vegetation on lithological mapping using airborne multispectral data: A case study for the north Troodos region, Cyprus. Remote Sens. 2014, 6, 10860–10887. [Google Scholar] [CrossRef]
- Harris, J.; McGregor, R.; Budkewitsch, P. Geological analysis of hyperspectral data over southwest Baffin Island: Methods for producing spectral maps that relate to variations in surface lithologies. Can. J. Remote Sens. 2010, 36, 412–435. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhang, F.; Dong, Y.; Song, Z.; Liu, G. Remote sensing for lithology mapping in vegetation-covered regions: Methods, challenges, and opportunities. Minerals 2023, 13, 1153. [Google Scholar] [CrossRef]
- Guo, S.; Yang, C.; He, R.; Li, Y. Improvement of Lithological Mapping Using Discrete Wavelet Transformation from Sentinel-1 SAR Data. Remote Sens. 2022, 14, 5824. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, C.; Meng, Z. Lithology discrimination using Sentinel-1 dual-pol data and SRTM data. Remote Sens. 2021, 13, 1280. [Google Scholar] [CrossRef]
- Grebby, S.; Cunningham, D.; Naden, J.; Tansey, K. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data. Remote Sens. Environ. 2010, 114, 713–724. [Google Scholar] [CrossRef]
- Sun, Y.; Pang, S.; Li, H.; Qiao, S.; Zhang, Y. Enhanced Lithology Classification Using an Interpretable SHAP Model Integrating Semi-Supervised Contrastive Learning and Transformer with Well Logging Data. Nat. Resour. Res. 2025, 34, 785–813. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 6867–6896. [Google Scholar] [CrossRef]
- Sutojo, T.; Ignatius Moses Setiadi, D.R.; Rustad, S.; Akrom, M.; Herowati, W. Hybrid Quantum-Deep Learning Approach: Optimizing Land Cover Classification with GMM Outlier and Fusion Key Feature Selection. Int. J. Intell. Eng. Syst. 2025, 18, 638. [Google Scholar] [CrossRef]
- Pan, T.; Zuo, R.; Wang, Z. Geological Mapping via Convolutional Neural Network Based on Remote Sensing and Geochemical Survey Data in Vegetation Coverage Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3485–3494. [Google Scholar] [CrossRef]
- Liu, H.; Wu, K.; Xu, H.; Xu, Y. Lithology Classification Using TASI Thermal Infrared Hyperspectral Data with Convolutional Neural Networks. Remote Sens. 2021, 13, 3117. [Google Scholar] [CrossRef]
- Farquad, M.A.H.; Bose, I. Preprocessing unbalanced data using support vector machine. Decis. Support Syst. 2012, 53, 226–233. [Google Scholar] [CrossRef]
- Mosa, M.A. Optimizing text classification accuracy: A hybrid strategy incorporating enhanced NSGA-II and XGBoost techniques for feature selection. Prog. Artif. Intell. 2025, 1–25. [Google Scholar] [CrossRef]
- Harris, J.; Grunsky, E.C. Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data. Comput. Geosci. 2015, 80, 9–25. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, J.; Huang, C.; Zhang, Y.; Li, X. Mapping maize area in heterogeneous agricultural landscape with multi-temporal Sentinel-1 and Sentinel-2 images based on random forest. Remote Sens. 2021, 13, 2988. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Majidi Nezhad, M.; Nastasi, B.; Groppi, D.; Lamagna, M.; Piras, G.; Astiaso Garcia, D. Green energy sources assessment using sentinel-1 satellite remote sensing. Front. Energy Res. 2021, 9, 649305. [Google Scholar] [CrossRef]
- Lee, J.-S.; Ainsworth, T.L.; Wang, Y.; Chen, K.-S. Polarimetric SAR speckle filtering and the extended sigma filter. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1150–1160. [Google Scholar] [CrossRef]
- Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 2001, 55, 75–79. [Google Scholar] [CrossRef]
- Van Nieuwenhuizen, N.; Lindsay, J.B.; DeVries, B. Smoothing of digital elevation models and the alteration of overland flow path length distributions. Hydrol. Process. 2021, 35, e14271. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Tang, F.; Ishwaran, H. Random forest missing data algorithms. Stat. Anal. Data Min. ASA Data Sci. J. 2017, 10, 363–377. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Janitza, S.; Hornung, R. On the overestimation of random forest’s out-of-bag error. PLoS ONE 2018, 13, e0201904. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J. Asian Earth Sci. 2017, 146, 90–102. [Google Scholar] [CrossRef]
- Conceição, A.A.; Pirani, J.R.; Meirelles, S.T. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Braz. J. Bot. 2007, 30, 641–656. [Google Scholar] [CrossRef]
Datasets | Number of Features | Optimal Parameter | Minimum OOB | |
---|---|---|---|---|
BagFraction | NumberOfTrees | |||
S2 | 15 | 0.8 | 300 | 0.146 |
S1 | 3 | 0.8 | 300 | 0.317 |
DEM | 6 | 0.8 | 300 | 0.413 |
S2+S1 | 18 | 0.8 | 200 | 0.143 |
S2+DEM | 21 | 0.7 | 300 | 0.131 |
S1+DEM | 9 | 0.8 | 150 | 0.241 |
S1+S2+DEM | 24 | 0.7 | 300 | 0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, G.; Song, Z.; Li, M.; Wang, M.; Wang, S. Lithological Mapping in High-Vegetation Areas Using Sentinel-2, Sentinel-1, and Digital Elevation Models. Sensors 2025, 25, 2136. https://doi.org/10.3390/s25072136
Chen Y, Liu G, Song Z, Li M, Wang M, Wang S. Lithological Mapping in High-Vegetation Areas Using Sentinel-2, Sentinel-1, and Digital Elevation Models. Sensors. 2025; 25(7):2136. https://doi.org/10.3390/s25072136
Chicago/Turabian StyleChen, Yansi, Genyuan Liu, Zhihong Song, Ming Li, Minhua Wang, and Shuang Wang. 2025. "Lithological Mapping in High-Vegetation Areas Using Sentinel-2, Sentinel-1, and Digital Elevation Models" Sensors 25, no. 7: 2136. https://doi.org/10.3390/s25072136
APA StyleChen, Y., Liu, G., Song, Z., Li, M., Wang, M., & Wang, S. (2025). Lithological Mapping in High-Vegetation Areas Using Sentinel-2, Sentinel-1, and Digital Elevation Models. Sensors, 25(7), 2136. https://doi.org/10.3390/s25072136