Altered Muscle–Brain Connectivity During Left and Right Biceps Brachii Isometric Contraction Following Sleep Deprivation: Insights from PLV and PDC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sleep Deprivation and Exercise Modeling
2.3. Acquiring and Processing EEG and EMG Data
2.4. Analysis of Functional Connectivity of ROIs
2.5. Analysis of Effective Connectivity Between EEG and EMG
2.6. Data Statistics
3. Results
3.1. Results of Biceps Isometric Contraction Time and EMG Index
3.2. Comparison Results of Global Properties Among ROIs
3.3. Comparison Results of Functional Connectivity Among ROIs
3.4. Results of EEG-EMG During Isometric Contractions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herold, F.; Törpel, A.; Schega, L.; Müller, N.G. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements—A systematic review. Eur. Rev. Aging Phys. Act. 2019, 16, 10. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and Synaptic Down-Selection. Eur. J. Neurosci. 2020, 51, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef] [PubMed]
- Peruzzi, G.; Galli, A.; Giorgi, G.; Pozzebon, A. Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors. Sensors 2025, 25, 458. [Google Scholar] [CrossRef]
- Chi, S.H.; Buranruk, O.; Li, H. The Mechanisms of Central Alteration, Sympathovagal Imbalance, and α-Motor Unite Dysfunction after Acute Fatiguing Exercise: A Preliminary Study. Gazz. Medica Ital. Arch. Sci. Mediche 2022, 181, 50–58. [Google Scholar] [CrossRef]
- Jenkins, E.J.; Campbell, H.A.; Lee, J.K.W.; Mündel, T.; Cotter, J.D. Delineating the impacts of air temperature and humidity for endurance exercise. Exp. Physiol. 2023, 108, 207–220. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Bishop, D.J.; Antunes, B.M.; Beck, W.R.; Malta, E.S.; de Poli, R.A.B.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T.; Castro, A. Impacts of High-Intensity Exercise on the Metabolomics Profile of Human Skeletal Muscle Tissue. Scand. J. Med. Sci. Sports 2022, 32, 402–413. [Google Scholar] [CrossRef]
- Constantin-Teodosiu, D.; Constantin, D. Molecular Mechanisms of Muscle Fatigue. Int. J. Mol. Sci. 2021, 22, 11587. [Google Scholar] [CrossRef]
- Fulton, T.J.; Baranauskas, M.N.; Paris, H.L.; Koceja, D.M.; Mickleborough, T.D.; Chapman, R.F. Respiratory Muscle Fatigue Alters Cycling Performance and Locomotor Muscle Fatigue. Med. Sci. Sports Exerc. 2020, 52, 2380–2389. [Google Scholar] [CrossRef]
- Corvini, G.; Conforto, S. A Simulation Study to Assess the Factors of Influence on Mean and Median Frequency of sEMG Signals during Muscle Fatigue. Sensors 2022, 22, 6360. [Google Scholar] [CrossRef]
- Edward Jero, S.; Divya Bharathi, K.; Karthick, P.A.; Ramakrishnan, S. Muscle Fatigue Analysis in Isometric Contractions Using Geometric Features of Surface Electromyography Signals. Biomed. Signal Process. Control 2021, 68, 102603. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, M.; Geng, Y.; Meng, L.; Wan, H.; Ren, H.; Zhang, X.; Dai, C.; Gonçalves, A.D.; Teodosio, C.; et al. Effects of Acute Sleep Deprivation on H Reflex and V Wave. J. Sleep Res. 2021, 30, e13118. [Google Scholar] [CrossRef]
- Chen, W.; Ye, X. Changes in Synchronization of the Motor Unit in Muscle Fatigue Condition during the Dynamic and Isometric Contraction in the Biceps Brachii Muscle. Neurosci. Lett. 2021, 761, 136101. [Google Scholar] [CrossRef]
- Harvy, J.; Bezerianos, A.; Li, J. Reliability of EEG Measures in Driving Fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2743–2753. [Google Scholar] [CrossRef]
- Sghirripa, S.; d’Unienville, N.; Chatburn, A.; Temby, P.; Crone, D.; Bond, M.; Schlesewsky, M.; Bornkessel-Schlesewsky, I.; Immink, M. EEG Alpha and Theta Oscillatory Responses to a Go/NoGo Task Performed during Submaximal Exercise at Light, Moderate and Hard Intensities. Sport Rxiv 2023. [Google Scholar] [CrossRef]
- Son, K.; Lee, J.M.; Son, Y.T.; Kim, J.W.; Jin, M.U.; Lee, K.B. How Does the Use of an Intraoral Scanner Affect Muscle Fatigue? A Preliminary In Vivo Study. Bioengineering 2022, 9, 358. [Google Scholar] [CrossRef]
- Luo, X.; Tan, H.; Wen, W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering 2024, 11, 358. [Google Scholar] [CrossRef]
- Gong, M.; Sun, M.; Sun, Y.; Jin, L.; Li, S. Effects of Acute Sleep Deprivation on Sporting Performance in Athletes: A Comprehensive Systematic Review and Meta-Analysis. Nat. Sci. Sleep 2024, 16, 935–948. [Google Scholar] [CrossRef]
- Matsubara, A.; Deng, G.; Gong, L.; Chew, E.; Furue, M.; Xu, Y.; Fang, B.; Hakozaki, T. Sleep Deprivation Increases Facial Skin Yellowness. J. Clin. Med. 2023, 12, 615. [Google Scholar] [CrossRef]
- Suzuki, Y.; Shimizu, Y.; Maruo, K.; Tsubaki, T.; Tanabe, Y.; Hada, Y. Balance Ability Characteristics and Related Factors in Athletes Across Different Sports: A Preliminary Study. Healthcare 2024, 12, 2240. [Google Scholar] [CrossRef]
- Christopher, S.M.; Cook, C.E.; Snodgrass, S.J. What are the biopsychosocial risk factors associated with pain in postpartum runners? Development of a clinical decision tool. PLoS ONE 2021, 16, e0255383. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, Y.J.; Heo, W.; Kim, S. The Study of Variation of Metabolites by Sleep Deficiency, and Intervention Possibility of Aerobic Exercise. Int. J. Environ. Res. Public Health 2022, 19, 2774. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Guo, H. Study on the Equation for Estimating the Maximum Muscle Strength (1RM) of Young Adults. Master’s Thesis, Tianjin University of Sport, Tianjin, China, 2012; pp. 15–37. [Google Scholar]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Hillard, P.J.A.; Katz, E.S.; et al. National Sleep Foundation’s Updated Sleep Duration Recommendations: Final Report. Sleep Health 2015, 1, 233–243. [Google Scholar] [CrossRef]
- Hermens, H.; Frerisk, B. SENIAM. The State of the Art on Sensors and Sensor Placement Procedures for Surface ElectroMyoGraphy: A Proposal for Senor Placement Procedures; Roessingh Research and Development: Enschede, The Netherlands, 1997; Available online: https://www.researchgate.net/publication/265407503 (accessed on 1 January 1997).
- Sousa, A.S.P.; Noites, A.; Vilarinho, R.; Santos, R. Long-Term Electrode-Skin Impedance Variation for Electromyographic Measurements. Sensors 2023, 23, 8582. [Google Scholar] [CrossRef]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage 2007, 34, 1600–1611. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef]
- Brmlab Hackerspace Prague. Closest 10-10 Electrode Position to Each Brodmann Area. Available online: https://brmlab.cz/project/brain_hacking/broadmannarea (accessed on 14 October 2011).
- Scrivener, C.L.; Reader, A.T. Variability of EEG Electrode Positions and Their Underlying Brain Regions: Visualizing Gel Artifacts from a Simultaneous EEG-fMRI Dataset. Brain Behav. 2022, 12, e2476. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xia, M.; Liao, X.; Evans, A.; He, Y. GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 2015, 9, 386. [Google Scholar] [CrossRef]
- Zalesky, A.; Fornito, A.; Bullmore, E.T. Network-based statistic: Identifying differences in brain networks. NeuroImage 2010, 53, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Hou, Q.M.; Zhang, F.; Duan, X.; Zhang, Y.L.; Lee, Y.J.; Yan, H. Brain networks in newborns and infants with and without sensorineural hearing loss: A functional near-infrared spectroscopy study. World J. Psychiatry 2024, 14, 1547–1557. [Google Scholar] [CrossRef]
- Xia, M.; Wang, J.; He, Y. BrainNetViewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar]
- van Mier, H.I.; Perlmutter, J.S.; Petersen, S.E. Functional Changes in Brain Activity during Acquisition and Practice of Movement Sequences. Mot. Control 2004, 8, 500–520. [Google Scholar] [CrossRef] [PubMed]
- Niso, G.; Bruña, R.; Pereda, E.; Gutiérrez, R.; Bajo, R.; Maestú, F.; del-Pozo, F. HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity. Neuroinformatics 2013, 11, 405–434. [Google Scholar] [CrossRef]
- Millet, G.Y.; Martin, V.; Temesi, J. The role of the nervous system in neuromuscular fatigue induced by ultra-endurance exercise. Appl. Physiol. Nutr. Metab. 2018, 43, 1151–1157. [Google Scholar] [CrossRef]
- Willmer, F.; Reuter, C.; Pramsohler, S.; Faulhaber, M.; Burkhardt, A.; Netzer, N. The Effects of Napping on Wakefulness and Endurance Performance in Athletes: A Randomized Crossover Study. Life 2023, 13, 1414. [Google Scholar] [CrossRef]
- Hao, L.; Wu, Y.; Xie, J.; Chen, X. Electroacupuncture Enhances Cognitive Deficits in a Rat Model of Rapid Eye Movement Sleep Deprivation via Targeting MiR-132. Evid.-Based Complement. Altern. Med. 2022, 16, 7044208. [Google Scholar] [CrossRef]
- Suganya, K.; Kayalvizhi, E.; Yuvaraj, R.; Chandrasekar, M.; Kavitha, U.; Konakanchi, S.K. Effect of Withania Somnifera on the antioxidant and neurotransmitter status in sleep deprivation induced Wistar rats. Bioinformation 2020, 16, 631–637. [Google Scholar] [CrossRef]
- Monteiro, L.Z.; de Farias, J.M.; de Lima, T.R.; Schäfer, A.A.; Meller, F.O.; Silva, D.A.S. Physical Activity and Sleep in Adults and Older Adults in Southern Brazil. Int. J. Environ. Res. Public Health 2023, 20, 1461. [Google Scholar] [CrossRef]
- Mei, Z.; Zhang, Y.; Fan, Q.; Luo, S.; Luo, S. The effects of mobile phone dependence on athletic performance and its mechanisms. Front. Psychol. 2024, 15, 1391258. [Google Scholar] [CrossRef]
- Pihlainen, K.; Pesola, A.J.; Helén, J.; Häkkinen, K.; Finni, T.; Ojanen, T.; Vaara, J.P.; Santtila, M.; Raitanen, J.; Kyröläinen, H. Training-Induced Acute Neuromuscular Responses to Military Specific Test during a Six-Month Military Operation. Int. J. Environ. Res. Public Health 2020, 18, 215. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shin, H.; Li, X.; Li, S.; Zhou, P. Localized Electrical Impedance Myography of the Biceps Brachii Muscle during Different Levels of Isometric Contraction and Fatigue. Sensors 2016, 16, 581. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.H.; Ryu, Y.U. Applying proprioceptive neuromuscular facilitation stretching: Optimal contraction intensity to attain the maximum increase in range of motion in young males. J. Phys. Ther. Sci. 2015, 27, 2129–2132. [Google Scholar] [CrossRef]
- Li, B.; Han, S.S.; Ye, Y.P.; Li, Y.X.; Meng, S.Q.; Feng, S.; Li, H.; Cui, Z.L.; Zhang, Y.S.; Zhang, Y.; et al. Cross sectional associations of physical activity and sleep with mental health among Chinese university students. Sci. Rep. 2024, 14, 31614. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, X.; Huang, T.; Kaner, J. Effect of different postures and loads on joint motion and muscle activity in older adults during overhead retrieval. Front. Physiol. 2024, 14, 1303577. [Google Scholar] [CrossRef]
- Liao, F.; Zhang, X.; Cao, C.; Hung, I.Y.; Chen, Y.; Jan, Y.K. Effects of Muscle Fatigue and Recovery on Complexity of Surface Electromyography of Biceps Brachii. Entropy 2021, 23, 1036. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yang, L.; Huang, W. Altered topological organization of resting-state functional networks in children with infantile spasms. Front. Neurosci. 2022, 16, 952940. [Google Scholar] [CrossRef]
- Ke, M.; Li, J.; Wang, L. Alteration in Resting-State EEG Microstates Following 24 Hours of Total Sleep Deprivation in Healthy Young Male Subjects. Front. Hum. Neurosci. 2021, 15, 636252. [Google Scholar] [CrossRef]
- Thomas, B.T.; Jesisca, Y.; Michael, T.; Chee, W.L. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. NeuroImage 2015, 111, 147–158. [Google Scholar] [CrossRef]
- Dias, M.P.F.; Silva, S.A.T.; Calixto-Júnior, R.; De Oliveira, V.A.; Kosour, C.; Silva Vilela Terra, A.M. Is There a Relation between Brain and Muscle Activity after Virtual Reality Training in Individuals with Stroke? A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 12705. [Google Scholar] [CrossRef] [PubMed]
- Morozumi, K.; Ohsugi, H.; Morishita, K.; Yokoi, Y. Fundamental research on surface electromyography analysis using discrete wavelet transform-an analysis of the central nervous system factors affecting muscle strength. J. Phys. Ther. Sci. 2021, 33, 63–68. [Google Scholar] [CrossRef]
- Lv, D.; Sun, R.; Zhu, Q.; Zuo, J.; Qin, S.; Cheng, Y. Intentional or Designed? The Impact of Stance Attribution on Cognitive Processing of Generative AI Service Failures. Brain Sci. 2024, 14, 1032. [Google Scholar] [CrossRef]
- Batzikosta, A.; Moraitou, D.; Steiropoulos, P.; Papantoniou, G.; Kougioumtzis, G.A.; Katsouri, I.G.; Sofologi, M.; Tsolaki, M. Examining Specific Theory-of-Mind Aspects in Amnestic and Non-Amnestic Mild Cognitive Impairment: Their Relationships with Sleep Duration and Cognitive Planning. Brain Sci. 2025, 15, 57. [Google Scholar] [CrossRef]
- Talamonti, D.; Vincent, T.; Fraser, S.; Nigam, A.; Lesage, F.; Bherer, L. The Benefits of Physical Activity in Individuals with Cardiovascular Risk Factors: A Longitudinal Investigation Using fNIRS and Dual-Task Walking. J. Clin. Med. 2021, 10, 579. [Google Scholar] [CrossRef]
- Alcock, L.; Vitório, R.; Stuart, S.; Rochester, L.; Pantall, A. Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults. Sensors 2023, 23, 6921. [Google Scholar] [CrossRef]
- Riazi, H.; Nazari, M.; Raoufy, M.R.; Mirnajafi-Zadeh, J.; Shojaei, A. Olfactory Epithelium Stimulation Using Rhythmic Nasal Air-Puffs Improves the Cognitive Performance of Individuals with Acute Sleep Deprivation. Brain Sci. 2024, 14, 378. [Google Scholar] [CrossRef]
- Facer-Childs, E.R.; Campos, B.M.; Middleton, B.; Skene, D.J.; Bagshaw, A.P. Circadian phenotype impacts the brain’s resting-state functional connectivity, attentional performance, and sleepiness. Sleep 2019, 42, zsz033. [Google Scholar] [CrossRef]
- Brito, F.A.C.; Monteiro, L.C.P.; Rocha, S.E.G.; de Lima, R.C.; Santos-Lobato, B.L.; Cabral, A.S.; Callegari, B.; Costa e Silva, A.D.A.; Souza, G.S. The role of sex and handedness in the performance of the smartphone-based Finger-Tapping Test. PLoS Digit. Health 2023, 2, e0000304. [Google Scholar] [CrossRef]
- Tomasi, D.; Volkow, N.D. Associations between handedness and brain functional connectivity patterns in children. Nat. Commun. 2024, 15, 2355. [Google Scholar] [CrossRef]
- Aune, M.A.; Lorås, H.; Djuvsland, A.; Ingvaldsen, R.P.; Aune, T.K. More Pronounced Bimanual Interference in Proximal Compared to Distal Effectors of the Upper Extremities. Front. Psychol. 2020, 11, 544990. [Google Scholar] [CrossRef] [PubMed]
- Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.R.; Nikulin, V.V. Sensorimotor Functional Connectivity: A Neurophysiological Factor Related to BCI Performance. Front. Neurosci. 2020, 14, 575081. [Google Scholar] [CrossRef]
- Fleischer, P.; Abbasi, A.; Gulati, T. Modulation of Neural Spiking in Motor Cortex-Cerebellar Networks during Sleep Spindles. eNeuro 2024, 11, ENEURO.0150-23.2024. [Google Scholar] [CrossRef]
- Di Rienzo, F.; Debarnot, U.; Daligault, S.; Delpuech, C.; Doyon, J.; Guillot, A. Brain plasticity underlying sleep-dependent motor consolidation after motor imagery. Cereb. Cortex 2023, 33, 11431–11445. [Google Scholar] [CrossRef]
- Ariani, G.; Pruszynski, J.A.; Diedrichsen, J. Motor planning brings human primary somatosensory cortex into action-specific preparatory states. eLife 2022, 11, e69517. [Google Scholar] [CrossRef]
Index | Results |
---|---|
Gender (number) | Male (35) |
Age (years) | 18~25 |
BMI (kg/m2) 1 | 22.02 ± 2.14 |
Percentage of body fat (%) | 13.92 ± 4.63 |
1 RM value of the biceps of the left arm (kg) 2 | 14.95 ± 2.52 |
1 RM value of the biceps of the right arm (kg) | 15.37 ± 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, P.; Bai, Y.; Du, W.; Wei, X.; Liu, B.; Zhao, S.; Jiang, H.; Chi, A.; Shao, M. Altered Muscle–Brain Connectivity During Left and Right Biceps Brachii Isometric Contraction Following Sleep Deprivation: Insights from PLV and PDC. Sensors 2025, 25, 2162. https://doi.org/10.3390/s25072162
Chi P, Bai Y, Du W, Wei X, Liu B, Zhao S, Jiang H, Chi A, Shao M. Altered Muscle–Brain Connectivity During Left and Right Biceps Brachii Isometric Contraction Following Sleep Deprivation: Insights from PLV and PDC. Sensors. 2025; 25(7):2162. https://doi.org/10.3390/s25072162
Chicago/Turabian StyleChi, Puyan, Yun Bai, Weiping Du, Xin Wei, Bin Liu, Shanguang Zhao, Hongke Jiang, Aiping Chi, and Mingrui Shao. 2025. "Altered Muscle–Brain Connectivity During Left and Right Biceps Brachii Isometric Contraction Following Sleep Deprivation: Insights from PLV and PDC" Sensors 25, no. 7: 2162. https://doi.org/10.3390/s25072162
APA StyleChi, P., Bai, Y., Du, W., Wei, X., Liu, B., Zhao, S., Jiang, H., Chi, A., & Shao, M. (2025). Altered Muscle–Brain Connectivity During Left and Right Biceps Brachii Isometric Contraction Following Sleep Deprivation: Insights from PLV and PDC. Sensors, 25(7), 2162. https://doi.org/10.3390/s25072162