Artificial Intelligence for Objective Assessment of Acrobatic Movements: Applying Machine Learning for Identifying Tumbling Elements in Cheer Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Tumbling Elements
Element | Abbr. | No. | Description [3] | Movement Sequence |
---|---|---|---|---|
Back full | BF | 127 | The back is a backflip (i.e., a 360° reverse rotation about the transverse axis) with a simultaneous full twist (i.e., a 360° rotation around the longitudinal axis). | |
Back handspring | BHS | 365 | The back handspring is a reverse rotation about the transverse axis through a temporary handstand position. | |
Back layout | BL | 118 | The back layout is a backflip (i.e., a 360° reverse rotation about the transverse axis) performed with a fully extended to slightly hollow position in the air. | |
Back tuck | BT | 180 | The back tuck is a backflip (i.e., a 360° reverse rotation about the transverse axis) with the knees pulled towards the chest and the hips flexed mid-air (i.e., a tuck position). | |
Front walkover | FW | 27 | The front walkover is an element in which the athlete moves through a handstand into a split-legged bridge position and then stands up smoothly. | |
Round off | RO | 285 | The round off is an element in which the athlete supports the body weight with their arms while rotating sideways through an inverted position, landing on both feet on the ground at the same time, facing the direction from which they came. |
2.3. Data Acquisition
2.4. Computational Details
2.4.1. Data Preprocessing and Unsupervised Learning Analysis
2.4.2. Classification and Model Training
2.4.3. Model Analysis
3. Results
4. Discussion
4.1. Learning of the Classification Model
4.2. Model Analysis with Respect to Cheerleading Elements and Their Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Machine Learning
Appendix A.1. Cross-Validation of Classification Models
Appendix A.2. Different Kernel Performances
Kernel Combination | C × Matern | C × RBF | C × Rational Quadratic | C + Matern | C + RBF | C + Rational Quadratic |
---|---|---|---|---|---|---|
Test accuracy | 88.50% | 87.80% | 88.60% | 83.10% | 84.30% | 84.30% |
Appendix A.3. Kernel Performance on Raw Data
Element | Precision | Recall | f1-Score |
---|---|---|---|
BF | 0.92 | 0.92 | 0.92 |
BHS | 0.81 | 0.93 | 0.86 |
BL | 0.50 | 0.42 | 0.46 |
BT | 0.49 | 0.49 | 0.49 |
FW | 1.00 | 0.20 | 0.33 |
RO | 0.94 | 0.96 | 0.95 |
Accuracy | 0.78 |
Appendix A.4. Neural Network Approach
Element | Precision | Recall | f1-Score |
---|---|---|---|
BF | 0.89 | 1.00 | 0.94 |
BHS | 0.91 | 0.98 | 0.94 |
BL | 0.00 | 0.00 | 0.00 |
BT | 0.51 | 0.77 | 0.61 |
FW | 0.00 | 0.00 | 0.00 |
RO | 0.78 | 0.93 | 0.85 |
Accuracy | 0.78 |
References
- Xu, A.L.; Suresh, K.V.; Lee, R.J. Progress in Cheerleading Safety: Update on the Epidemiology of Cheerleading Injuries Presenting to US Emergency Departments, 2010–2019. Orthop. J. Sports Med. 2021, 9, 23259671211038895. [Google Scholar] [CrossRef] [PubMed]
- Paquette, B.L. Acceleration Patterns During Standing and Running Tumbling Passes in Collegiate Cheerleading. Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2023. [Google Scholar]
- International Cheer Union. Divisions Rules & Regulations 2020–2021. 2021. Available online: https://cheerunion.org.ismmedia.com/ISM3/std-content/repos/Top/docs/ICU_Rules_TC-PC_2020.pdf (accessed on 10 January 2025).
- Subhash, S.; Srivatsa, P.N.; Siddesh, S.; Ullas, A.; Santhosh, B. Artificial Intelligence-based Voice Assistant. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 593–596. [Google Scholar]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.A.; Yogamani, S.; Pérez, P. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4909–4926. [Google Scholar] [CrossRef]
- Richter, C.; O’Reilly, M.; Delahunt, E. Machine learning in sports science: Challenges and opportunities. Sports Biomech. 2024, 23, 961–967. [Google Scholar]
- Reis, F.J.J.; Alaiti, R.K.; Vallio, C.S.; Hespanhol, L. Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz. J. Phys. Ther. 2024, 28, 101083. [Google Scholar] [CrossRef]
- Molavian, R.; Fatahi, A.; Abbasi, H.; Khezri, D. Artificial intelligence approach in biomechanics of gait and sport: A systematic literature review. J. Biomed. Phys. Eng. 2023, 13, 383. [Google Scholar]
- Mouloodi, S.; Rahmanpanah, H.; Gohery, S.; Burvill, C.; Tse, K.M.; Davies, H.M. What can artificial intelligence and machine learning tell us? A review of applications to equine biomechanical research. J. Mech. Behav. Biomed. Mater. 2021, 123, 104728. [Google Scholar]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef]
- Claudino, J.G.; Capanema, D.d.O.; de Souza, T.V.; Serrão, J.C.; Machado Pereira, A.C.; Nassis, G.P. Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: A Systematic Review. Sports Med. Open 2019, 5, 28. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Overview of Supervised Learning. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Hastie, T., Tibshirani, R., Friedman, J., Eds.; Springer: New York, NY, USA, 2009; pp. 9–41. [Google Scholar]
- Rossi, A.; Pappalardo, L.; Cintia, P. A narrative review for a machine learning application in sports: An example based on injury forecasting in soccer. Sports 2021, 10, 5. [Google Scholar] [CrossRef]
- Wang, Z.; Veličković, P.; Hennes, D.; Tomašev, N.; Prince, L.; Kaisers, M.; Bachrach, Y.; Elie, R.; Wenliang, L.K.; Piccinini, F.; et al. TacticAI: An AI assistant for football tactics. Nat. Commun. 2024, 15, 1906. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.; Ullah, A. Advanced biomechanical analytics: Wearable technologies for precision health monitoring in sports performance. Digit. Health 2024, 10, 20552076241256745. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Huang, P.; Li, R.; Liu, Z.; Zou, Y. Exploring the Application of Artificial Intelligence in Sports Training: A Case Study Approach. Complexity 2021, 2021, 4658937. [Google Scholar] [CrossRef]
- Wang, L.j.; Lu, W.g.; Wang, C.h. Research on key technology of cheerleading intelligent tutoring system design. In Proceedings of the 2012 7th International Conference on Computer Science & Education (ICCSE), Melbourne, Australia, 14–17 July 2012; pp. 1498–1501. [Google Scholar]
- Zhao, Y.; Dong, F.; Sun, T.; Ju, Z.; Yang, L.; Shan, P.; Li, L.; Lv, X.; Lian, C. Image expression of time series data of wearable IMU sensor and fusion classification of gymnastics action. Expert Syst. Appl. 2024, 238, 121978. [Google Scholar] [CrossRef]
- Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.; Samek, W.; Müller, K.-R. Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 2019, 10, 1096. [Google Scholar] [CrossRef]
- Farrahi, V.; Niemelä, M.; Tjurin, P.; Kangas, M.; Korpelainen, R.; Jämsä, T. Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data. IEEE J. Biomed. Health Inform. 2020, 24, 27–38. [Google Scholar] [CrossRef]
- Ueberschär, O.; Fleckenstein, D.; Warschun, F.; Kränzler, S.; Walter, N.; Hoppe, M.W. Measuring biomechanical loads and asymmetries in junior elite long-distance runners through triaxial inertial sensors. Sports Orthop. Traumatol. 2019, 35, 296–308. [Google Scholar] [CrossRef]
- Fercher, C.; Bartsch, J.; Kluge, S.; Schneider, F.; Liedtke, A.M.; Schleichardt, A.; Ueberschär, O. Applying Multi-Purpose Commercial Inertial Sensors for Monitoring Equine Locomotion in Equestrian Training. Sensors 2024, 24, 8170. [Google Scholar] [CrossRef]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial measurement units for clinical movement analysis: Reliability and concurrent validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef]
- Ueberschär, O.; Fleckenstein, D.; Warschun, F.; Walter, N.; Wüstenfeld, J.C.; Wolfarth, B.; Hoppe, M.W. Energy cost of running under hypogravity in well-trained runners and triathletes: A biomechanical perspective. Int. J. Comput. Sci. Sport 2019, 18, 60–80. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; Walt, S.J.v.d.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 563–564. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R. Digital Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975; Chapter 2; pp. 58–61. [Google Scholar]
- Wiener, N. Generalized harmonic analysis. Acta Math. 1930, 55, 117–258. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Linear Methods for Classification. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Hastie, T., Tibshirani, R., Friedman, J., Eds.; Springer: New York, NY, USA, 2009; pp. 101–137. [Google Scholar]
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef]
- Williams, C.K.I.; Barber, D. Bayesian classification with Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1342–1351. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Bayes, M.; Price, M. An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F.R.S. Communicated by Mr. Price, in a Letter to John Canton, A.M.F.R.S. Philos. Trans. 1763, 53, 370–418. [Google Scholar]
- Matérn, B. Spatial Variation; Springer: New York, NY, USA, 1986; Volume 36. [Google Scholar]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection; Morgan Kaufman Publishing: Burlington, MA, USA, 1995. [Google Scholar]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Hansen, L.K.; Larsen, J. Linear unlearning for cross-validation. Adv. Comput. Math. 1996, 5, 269–280. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Foley, D. Considerations of sample and feature size. IEEE Trans. Inf. Theory 1972, 18, 618–626. [Google Scholar] [CrossRef]
- Cover, T.M. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. IEEE Trans. Electron. Comput. 1965, EC-14, 326–334. [Google Scholar] [CrossRef]
- Viering, T.; Loog, M. The Shape of Learning Curves: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 7799–7819. [Google Scholar] [CrossRef]
- Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 177. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar]
- Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
- Kaufman, S.; Rosset, S.; Perlich, C.; Stitelman, O. Leakage in data mining: Formulation, detection, and avoidance. ACM Trans. Knowl. Discov. Data 2012, 6, 15. [Google Scholar] [CrossRef]
Data Type | Split Method | Constant Value | α | Length Scale |
---|---|---|---|---|
Raw data | K-fold | 2205.374 | 0.129 | 2.662 |
Stratified group K-fold | 9030.786 | 0.115 | 3.647 | |
Power spectra | K-fold | 925.599 | 23,618.319 | 22.788 |
Stratified group K-fold | 116.713 | 0.752 | 0.291 |
Element | Precision | Recall | f1-Score |
---|---|---|---|
BF | 0.96 | 1.00 | 0.98 |
BHS | 0.87 | 0.99 | 0.93 |
BL | 0.69 | 0.58 | 0.63 |
BT | 0.85 | 0.72 | 0.78 |
FW | 1.00 | 0.80 | 0.89 |
RO | 0.96 | 0.97 | 0.96 |
Accuracy | 0.89 |
Element | Precision | Recall | f1-Score |
---|---|---|---|
BF | 0.96 | 0.96 | 0.96 |
BHS | 0.82 | 0.99 | 0.90 |
BL | 0.75 | 0.48 | 0.59 |
BT | 0.93 | 0.72 | 0.81 |
FW | 0.83 | 0.50 | 0.63 |
RO | 0.85 | 0.94 | 0.89 |
Accuracy | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesely, S.; Hofer, E.; Curth, R.; Paryani, S.; Mills, N.; Ueberschär, O.; Westermayr, J. Artificial Intelligence for Objective Assessment of Acrobatic Movements: Applying Machine Learning for Identifying Tumbling Elements in Cheer Sports. Sensors 2025, 25, 2260. https://doi.org/10.3390/s25072260
Wesely S, Hofer E, Curth R, Paryani S, Mills N, Ueberschär O, Westermayr J. Artificial Intelligence for Objective Assessment of Acrobatic Movements: Applying Machine Learning for Identifying Tumbling Elements in Cheer Sports. Sensors. 2025; 25(7):2260. https://doi.org/10.3390/s25072260
Chicago/Turabian StyleWesely, Sophia, Ella Hofer, Robin Curth, Shyam Paryani, Nicole Mills, Olaf Ueberschär, and Julia Westermayr. 2025. "Artificial Intelligence for Objective Assessment of Acrobatic Movements: Applying Machine Learning for Identifying Tumbling Elements in Cheer Sports" Sensors 25, no. 7: 2260. https://doi.org/10.3390/s25072260
APA StyleWesely, S., Hofer, E., Curth, R., Paryani, S., Mills, N., Ueberschär, O., & Westermayr, J. (2025). Artificial Intelligence for Objective Assessment of Acrobatic Movements: Applying Machine Learning for Identifying Tumbling Elements in Cheer Sports. Sensors, 25(7), 2260. https://doi.org/10.3390/s25072260