Reliable Vehicle Routing Problem Using Traffic Sensors Augmented Information
Abstract
:1. Introduction
2. Literature Review
2.1. Routing Problem
2.2. Sensor Location Problem
2.3. Machine Learning
3. Problem Formulation
3.1. Network Representation
3.2. Problem Statement
4. Methodology
4.1. Traffic Assignment
- Perform stochastic assignment: V0 = P0T, since P0 associated with the initial travel costs on links, then set Vn = V0
- Update travel costs by Equation (8), then obtain Pn
- Get the auxiliary flow solution Yn = PnT
- Update link flows Vn+1 = Vn + dn (Yn − Vn)
- Convergence if the maximum change in link flow ≤ 0.1, stop. if not, go to step 2, then set n:=n + 1,
4.2. Route Generation Algorithm
4.3. Traffic Sensors Location Problem
Algorithm 1: Traffic Sensor Location Problem (TSLP) |
Input: Network G((N, A, Ŵ), Maximum iterations (iter.max = 100), Tolerance probability (Tp = 0.05), Neighbor search fraction (Nfs = 0.5), Path time circuity threshold (ρ = 1.5) Initialize:
While uncovered paths exist: uncoveredPaths = Identify uncovered paths from T For each iteration (up to iter.max): CandidateLinks = empty set randomly remove a fraction of previously selected sensors (based on Nfs) While uncoveredPaths is not empty: Evaluate coverage increment (ΔCoverage) for all links Construct Candidate Selection List (CSL) from links with coverage close to a maximum based on Tp randomly select a link from CSL add selected link to SensorSet update uncoveredPaths by removing paths covered by the selected link End While End For Check feasibility by recalculating shortest paths Update T with new paths if needed End While Return SensorSet (final distribution of sensors) |
4.4. Machine Learning for Augmenting Traffic Sensor Information
Algorithm 2: Deep Learning-based Traffic Flow Estimation |
Input: Network structure G(N, A), Set of links with sensors (L_sensors), Reference demand matrix (T0), Stochastic User Equilibrium (SUE) assignment model, Number of auto-encoder layers (L), Hidden units per layer (H) Step 1: Data Preparation Generate synthetic training data: For i = 1 to sample_size (n): Ti ← Randomly perturb T0 using a defined statistical distribution Vi ← Assign Ti to network using SUE model to get full link flows EndFor Step 2: SAE Model Pre-Training (Unsupervised) X ← Measured flows from L_sensors for all Vi For each layer l in SAEs (bottom-up): Initialize sparse auto-encoder AE_l AE_l ← Train auto-encoder on X to minimize reconstruction error with sparsity constraint X ← Encode X to hidden representation of AE_l for next layer EndFor Step 3: Fully Connected Layer Pre-Training (Supervised) Input_Features ← Output of final auto-encoder layer Fully_Connected ← Initialize fully connected layer Fully_Connected ← Train layer on Input_Features to predict full link flows Vi using supervised learning (Backpropagation) Step 4: Fine-Tuning (Supervised) For epochs = 1 to max_epochs: Forward propagate Input_Features through SAE and Fully_Connected layer Calculate prediction error between estimated and actual link flows Vi Update all weights and biases through Backpropagation to minimize prediction error EndFor Output: Trained Deep Learning Model capable of estimating entire network flows from partial sensor measurements |
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Sparse Auto-Encoder (SAE) Architecture and Hyperparameter Specifications
- Input Layer: NNN neurons (dependent on the number of traffic sensors)
- Hidden Layer 1: 512 neurons (ReLU activation)
- Hidden Layer 2: 256 neurons (ReLU activation)
- Latent Space: 128 neurons (Leaky ReLU activation, α = 0.01)
- Decoder Layers: Mirror the encoder structure
- Output Layer: NNN neurons (linear activation for regression tasks)
Hyperparameter | Value |
---|---|
Optimizer | Adam |
Learning Rate | 0.001 |
Batch Size | 64 |
Training Epochs | 200 |
Dropout Rate | 0.3 |
L2 Regularization | 10−5 |
Sparsity Constraint (KL Divergence Target) | 0.05 |
Activation Functions | ReLU, Leaky ReLU (α = 0.01) |
Loss Function | Mean Squared Error (MSE) |
Pre-training Method | Layer-wise greedy training |
Fine-tuning Method | Supervised backpropagation |
Appendix A.2. Implementation of Sparsity Constraints
Appendix A.3. Pre-Training Protocol and Training Configuration
- Layer-wise Unsupervised Training:
- Each layer is trained separately as an autoencoder before stacking them together.
- The reconstruction loss is minimized using Mean Squared Error (MSE).
- Supervised Fine-Tuning:
- The full network is fine-tuned using labeled sensor data.
- The Adam optimizer with a learning rate decay (0.99 per epoch) is applied.
- Batch Normalization:
- Batch normalization is applied after each layer to stabilize learning.
Appendix A.4. Empirical Justification for Activation Function Selection
- Convergence speed (number of epochs to reach optimal loss)
- Final validation loss (MSE)
- Robustness to vanishing gradients
- ReLU
- Leaky ReLU (α = 0.01)
- Sigmoid
- Swish
Activation Function | Final MSE Loss | Epochs to Converge | Observations |
---|---|---|---|
ReLU | 0.0241 | 120 | Moderate performance, some dead neurons |
Leaky ReLU (α = 0.01) | 0.0189 | 85 | Best performance, avoids dead neurons |
Sigmoid | 0.0352 | 150 | Slower convergence, vanishing gradients |
Swish | 0.0224 | 100 | Stable but slightly higher loss |
Appendix A.5. Ablation Study on Architectural Choices
- Number of hidden layers
- Dimensionality of the latent space
- Inclusion of KL divergence-based sparsity constraints.
Configuration | Final MSE Loss | Training Time | Observations |
---|---|---|---|
Baseline (No sparsity, 3 hidden layers) | 0.0278 | 2 h 15 min | Overfitting observed |
With sparsity constraint (KL Divergence, 3 layers) | 0.0189 | 2 h 40 min | Best generalization |
With 5 hidden layers | 0.0202 | 3 h 10 min | Slightly better but more expensive |
Without pre-training | 0.0345 | 2 h 00 min | Poor feature learning |
- KL divergence-based sparsity significantly improves generalization.
- Three hidden layers with a 128 dimensional latent space provide the best trade-off between accuracy and computational efficiency.
- Pre-training stabilizes feature extraction and improves final estimation performance.
References
- Owais, M.; Osman, M.K. Complete hierarchical multi-objective genetic algorithm for transit network design problem. Expert Syst. Appl. 2018, 114, 143–154. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. Design scheme of multiple-subway lines for minimizing passengers transfers in mega-cities transit networks. Int. J. Rail Transp. 2021, 9, 540–563. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. An optimal metro design for transit networks in existing square cities based on non-demand criterion. Sustainability 2020, 12, 9566. [Google Scholar] [CrossRef]
- Angelelli, E.; Morandi, V.; Speranza, M.G. Congestion avoiding heuristic path generation for the proactive route guidance. Comput. Oper. Res. 2018, 99, 234–248. [Google Scholar] [CrossRef]
- Owais, M.; Hassan, T. Incorporating dynamic bus stop simulation into static transit assignment models. Int. J. Civ. Eng. 2018, 16, 67–77. [Google Scholar]
- Owais, M.; Ahmed, A.S.; Moussa, G.S.; Khalil, A.A. Integrating underground line design with existing public transportation systems to increase transit network connectivity: Case study in Greater Cairo. Expert Syst. Appl. 2021, 167, 114183. [Google Scholar]
- Rasmussen, T.K.; Watling, D.P.; Prato, C.G.; Nielsen, O.A. Stochastic user equilibrium with equilibrated choice sets: Part II–Solving the restricted SUE for the logit family. Transp. Res. Part B Methodol. 2015, 77, 146–165. [Google Scholar]
- Galligari, A.; Sciandrone, M. A computational study of path-based methods for optimal traffic assignment with both inelastic and elastic demand. Comput. Oper. Res. 2019, 103, 158–166. [Google Scholar]
- Bekhor, S.; Toledo, T.; Prashker, J. Implementation issues of route choice models in path-based algorithms. In Proceedings of the 11th International Conference on Travel Behaviour Research, Kyoto, Japan, 16–20 August 2006. [Google Scholar]
- Owais, M.; Alshehri, A. Pareto optimal path generation algorithm in stochastic transportation networks. IEEE Access 2020, 8, 58970–58981. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar]
- Owais, M.; Moussa, G.S.; Hussain, K.F. Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach. Oper. Res. Perspect. 2019, 6, 100100. [Google Scholar] [CrossRef]
- Owais, M. Location Strategy for Traffic Emission Remote Sensing Monitors to Capture the Violated Emissions. J. Adv. Transp. 2019, 2019, 6520818. [Google Scholar] [CrossRef]
- Owais, M.; Moussa, G.S.; Hussain, K.F. Robust Deep Learning Architecture for Traffic Flow Estimation from a Subset of Link Sensors. J. Transp. Eng. Part A Syst. 2020, 146, 04019055. [Google Scholar] [CrossRef]
- Fu, L. An adaptive routing algorithm for in-vehicle route guidance systems with real-time information. Transp. Res. Part B Methodol. 2001, 35, 749–765. [Google Scholar] [CrossRef]
- Miller-Hooks, E.D.; Mahmassani, H.S. Least expected time paths in stochastic, time-varying transportation networks. Transp. Sci. 2000, 34, 198–215. [Google Scholar] [CrossRef]
- Fakhrmoosavi, F.; Zockaie, A.; Abdelghany, K.; Hashemi, H. An iterative learning approach for network contraction: Path finding problem in stochastic time—Varying networks. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 859–876. [Google Scholar] [CrossRef]
- Orda, A.; Rom, R. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 1990, 37, 607–625. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Tsitsiklis, J.N. Dynamic shortest paths in acyclic networks with Markovian arc costs. Oper. Res. 1993, 41, 91–101. [Google Scholar] [CrossRef]
- Ziliaskopoulos, A.K.; Mahmassani, H.S. Time-dependent, shortest-path algorithm for real-time intelligent vehicle highway system applications. Transp. Res. Rec. 1993, 1408, 94–100. [Google Scholar]
- Bellman, R. The theory of dynamic programming. Bull. Am. Math. Soc. 1954, 60, 503–515. [Google Scholar] [CrossRef]
- Zockaie, A.; Mahmassani, H.S.; Fakhrmoosavi, F. Reliability-Based User Equilibrium in Dynamic Stochastic Networks: A Scenario Approach Considering Travel Time Correlations and Heterogeneous Users. In Proceedings of the Transportation Research Board 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Owais, M.; El Sayed, M.A. Red light crossing violations modelling using deep learning and variance-based sensitivity analysis. Expert Syst. Appl. 2025, 267, 126258. [Google Scholar]
- Hall, R.W. The fastest path through a network with random time-dependent travel times. Transp. Sci. 1986, 20, 182–188. [Google Scholar] [CrossRef]
- Dean, B.C. Shortest paths in FIFO time-dependent networks: Theory and algorithms. Rapp. Tech. Mass. Inst. Technol. 2004. [Google Scholar]
- Angelelli, E.; Arsik, I.; Morandi, V.; Savelsbergh, M.; Speranza, M. Proactive route guidance to avoid congestion. Transp. Res. Part B Methodol. 2016, 94, 1–21. [Google Scholar]
- Kim, S.; Lewis, M.E.; White, C.C. Optimal vehicle routing with real-time traffic information. IEEE Trans. Intell. Transp. Syst. 2005, 6, 178–188. [Google Scholar]
- Miller-Hooks, E. Adaptive least-expected time paths in stochastic, time-varying transportation and data networks. Netw. Int. J. 2001, 37, 35–52. [Google Scholar]
- Yang, Z.; Gao, Z.; Sun, H.; Liu, F.; Zhao, J. Finding Most Reliable Path With Extended Shifted Lognormal Distribution. IEEE Access 2018, 6, 72494–72505. [Google Scholar]
- Fan, Y.; Kalaba, R.; Moore, J., II. Shortest paths in stochastic networks with correlated link costs. Comput. Math. Appl. 2005, 49, 1549–1564. [Google Scholar] [CrossRef]
- Nie, Y.M.; Wu, X. Reliable a priori shortest path problem with limited spatial and temporal dependencies. In Transportation and Traffic Theory 2009: Golden Jubilee; Springer: Boston, MA, USA, 2009; pp. 169–195. [Google Scholar]
- Zockaie, A.; Mahmassani, H.S.; Nie, Y. Path finding in stochastic time varying networks with spatial and temporal correlations for heterogeneous travelers. Transp. Res. Rec. 2016, 2567, 105–113. [Google Scholar]
- Zockaie, A.; Nie, Y.M.; Mahmassani, H.S. Simulation-based method for finding minimum travel time budget paths in stochastic networks with correlated link times. Transp. Res. Rec. 2014, 2467, 140–148. [Google Scholar] [CrossRef]
- Huang, H.; Gao, S. Optimal paths in dynamic networks with dependent random link travel times. Transp. Res. Part B Methodol. 2012, 46, 579–598. [Google Scholar]
- Shahabi, M.; Unnikrishnan, A.; Boyles, S.D. An outer approximation algorithm for the robust shortest path problem. Transp. Res. Part E Logist. Transp. Rev. 2013, 58, 52–66. [Google Scholar]
- Ji, Z.; Kim, Y.S.; Chen, A. Multi-objective α-reliable path finding in stochastic networks with correlated link costs: A simulation-based multi-objective genetic algorithm approach (SMOGA). Expert Syst. Appl. 2011, 38, 1515–1528. [Google Scholar]
- Ji, Z.; Chen, A.; Subprasom, K. Finding multi-objective paths in stochastic networks: A simulation-based genetic algorithm approach. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; pp. 174–180. [Google Scholar]
- Sen, S.; Pillai, R.; Joshi, S.; Rathi, A.K. A mean-variance model for route guidance in advanced traveler information systems. Transp. Sci. 2001, 35, 37–49. [Google Scholar]
- Rajabi-Bahaabadi, M.; Shariat-Mohaymany, A.; Babaei, M.; Ahn, C.W. Multi-objective path finding in stochastic time-dependent road networks using non-dominated sorting genetic algorithm. Expert Syst. Appl. 2015, 42, 5056–5064. [Google Scholar]
- Ma, T.; Zhou, Z.; Antoniou, C. Dynamic factor model for network traffic state forecast. Transp. Res. Part B Methodol. 2018, 118, 281–317. [Google Scholar] [CrossRef]
- Castillo, E.; Menéndez, J.M.; Sánchez-Cambronero, S. Traffic estimation and optimal counting location without path enumeration using Bayesian networks. Comput. Aided Civ. Infrastruct. Eng. 2008, 23, 189–207. [Google Scholar]
- Owais, M. Traffic sensor location problem: Three decades of research. Expert Syst. Appl. 2022, 208, 118134. [Google Scholar]
- Owais, M.; Shahin, A.I. Exact and Heuristics Algorithms for Screen Line Problem in Large Size Networks: Shortest Path-Based Column Generation Approach. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24829–24840. [Google Scholar]
- Castillo, E.; Conejo, A.J.; Menéndez, J.M.; Jiménez, P. The observability problem in traffic network models. Comput. Aided Civ. Infrastruct. Eng. 2008, 23, 208–222. [Google Scholar]
- Castillo, E.; Jimenez, P.; Menendez, J.M.; Conejo, A.J. The observability problem in traffic models: Algebraic and topological methods. IEEE Trans. Intell. Transp. Syst. 2008, 9, 275–287. [Google Scholar] [CrossRef]
- Castillo, E.; Nogal, M.; Rivas, A.; Sánchez-Cambronero, S. Observability of traffic networks. Optimal location of counting and scanning devices. Transp. B Transp. Dyn. 2013, 1, 68–102. [Google Scholar] [CrossRef]
- Gentili, M.; Mirchandani, P. Locating sensors on traffic networks: Models, challenges and research opportunities. Transp. Res. Part C Emerg. Technol. 2012, 24, 227–255. [Google Scholar] [CrossRef]
- Hu, S.-R.; Peeta, S.; Liou, H.-T. Integrated Determination of Network Origin–Destination Trip Matrix and Heterogeneous Sensor Selection and Location Strategy. IEEE Trans. Intell. Transp. Syst. 2016, 17, 195–205. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, N.; Ling, S.; Ma, S.; Huang, Y. Heterogeneous sensor location model for path reconstruction. Transp. Res. Part B Methodol. 2016, 91, 77–97. [Google Scholar] [CrossRef]
- Xu, X.; Lo, H.K.; Chen, A.; Castillo, E. Robust network sensor location for complete link flow observability under uncertainty. Transp. Res. Part B Methodol. 2016, 88, 1–20. [Google Scholar] [CrossRef]
- Cai, D.; Chen, K.; Lin, Z.; Li, D.; Zhou, T.; Ling, Y.; Leung, M.-F. JointSTNet: Joint Pre-Training for Spatial-Temporal Traffic Forecasting. IEEE Trans. Consum. Electron. 2024. [Google Scholar] [CrossRef]
- Bernas, M.; Płaczek, B.; Korski, W.; Loska, P.; Smyła, J.; Szymała, P. A survey and comparison of low-cost sensing technologies for road traffic monitoring. Sensors 2018, 18, 3243. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.; Menéndez, J.M.; Jiménez, P. Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations. Transp. Res. Part B Methodol. 2008, 42, 455–481. [Google Scholar] [CrossRef]
- Zhou, X.; Mahmassani, H.S. Dynamic origin-destination demand estimation using automatic vehicle identification data. IEEE Trans. Intell. Transp. Syst. 2006, 7, 105–114. [Google Scholar] [CrossRef]
- Bianco, L.; Confessore, G.; Reverberi, P. A network based model for traffic sensor location with implications on O/D matrix estimates. Transp. Sci. 2001, 35, 50–60. [Google Scholar]
- Mínguez, R.; Sánchez-Cambronero, S.; Castillo, E.; Jiménez, P. Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks. Transp. Res. Part B Methodol. 2010, 44, 282–298. [Google Scholar] [CrossRef]
- Wang, N.; Gentili, M.; Mirchandani, P. Model to locate sensors for estimation of static origin-destination volumes given prior flow information. Transp. Res. Rec. J. Transp. Res. Board 2012, 2283, 67–73. [Google Scholar]
- Zhou, X.; List, G.F. An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications. Transp. Sci. 2010, 44, 254–273. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J. Optimal traffic counting locations for origin–destination matrix estimation. Transp. Res. Part B Methodol. 1998, 32, 109–126. [Google Scholar] [CrossRef]
- Yim, P.K.; Lam, W.H. Evaluation of count location selection methods for estimation of OD matrices. J. Transp. Eng. 1998, 124, 376–383. [Google Scholar]
- Yang, C.; Chootinan, P.; Chen, A. Traffic counting location planning using genetic algorithm. J. East. Asia Soc. Transp. Stud. 2003, 5, 898–913. [Google Scholar]
- Chootinan, P.; Chen, A.; Yang, H. A bi-objective traffic counting location problem for origin-destination trip table estimation. Transportmetrica 2005, 1, 65–80. [Google Scholar]
- Alqubaysi, T.; Al Asmari, A.F.; Alanazi, F.; Almutairi, A.; Armghan, A. Federated Learning-Based Predictive Traffic Management Using a Contained Privacy-Preserving Scheme for Autonomous Vehicles. Sensors 2025, 25, 1116. [Google Scholar] [CrossRef]
- Yang, H.; Iida, Y.; Sasaki, T. An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts. Transp. Res. Part B Methodol. 1991, 25, 351–363. [Google Scholar]
- Chen, A.; Pravinvongvuth, S.; Chootinan, P.; Lee, M.; Recker, W. Strategies for selecting additional traffic counts for improving OD trip table estimation. Transportmetrica 2007, 3, 191–211. [Google Scholar]
- Almutairi, A.; Asmari, A.F.A.; Alqubaysi, T.; Alanazi, F.; Armghan, A. Ensuring Driving and Road Safety of Autonomous Vehicles Using a Control Optimiser Interaction Framework Through Smart “Thing” Information Sensing and Actuation. Machines 2024, 12, 798. [Google Scholar] [CrossRef]
- Fei, X.; Mahmassani, H.S. Structural analysis of near-optimal sensor locations for a stochastic large-scale network. Transp. Res. Part C Emerg. Technol. 2011, 19, 440–453. [Google Scholar] [CrossRef]
- Salari, M.; Kattan, L.; Lam, W.H.; Esfeh, M.A.; Fu, H. Modeling the effect of sensor failure on the location of counting sensors for origin-destination (OD) estimation. Transp. Res. Part C Emerg. Technol. 2021, 132, 103367. [Google Scholar]
- Hu, S.-R.; Peeta, S.; Chu, C.-H. Identification of vehicle sensor locations for link-based network traffic applications. Transp. Res. Part B Methodol. 2009, 43, 873–894. [Google Scholar]
- Ng, M. Synergistic sensor location for link flow inference without path enumeration: A node-based approach. Transp. Res. Part B Methodol. 2012, 46, 781–788. [Google Scholar]
- Al Asmari, A.F.; Almutairi, A.; Alanazi, F.; Alqubaysi, T.; Armghan, A. Conjecture Interaction Optimization Model for Intelligent Transportation Systems in Smart Cities using Reciprocated Multi-Instance Learning for Road Traffic Management. IEEE Access 2025, 13, 34539–34562. [Google Scholar]
- Gentili, M.; Mirchandani, P.B. Locating active sensors on traffic networks. Ann. Oper. Res. 2005, 136, 229–257. [Google Scholar]
- Bianco, L.; Confessore, G.; Gentili, M. Combinatorial aspects of the sensor location problem. Ann. Oper. Res. 2006, 144, 201–234. [Google Scholar] [CrossRef]
- Bianco, L.; Cerrone, C.; Cerulli, R.; Gentili, M. Locating sensors to observe network arc flows: Exact and heuristic approaches. Comput. Oper. Res. 2014, 46, 12–22. [Google Scholar] [CrossRef]
- He, S.-x. A graphical approach to identify sensor locations for link flow inference. Transp. Res. Part B Methodol. 2013, 51, 65–76. [Google Scholar] [CrossRef]
- Castillo, E.; Calviño, A.; Lo, H.K.; Menéndez, J.M.; Grande, Z. Non-planar hole-generated networks and link flow observability based on link counters. Transp. Res. Part B Methodol. 2014, 68, 239–261. [Google Scholar] [CrossRef]
- Salari, M.; Kattan, L.; Lam, W.H.; Lo, H.; Esfeh, M.A. Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure. Transp. Res. Part B Methodol. 2019, 121, 216–251. [Google Scholar] [CrossRef]
- Shao, M.; Xie, C.; Sun, L. Optimization of network sensor location for full link flow observability considering sensor measurement error. Transp. Res. Part C Emerg. Technol. 2021, 133, 103460. [Google Scholar] [CrossRef]
- Owais, M.; Matouk, A.E. A factorization scheme for observability analysis in transportation networks. Expert Syst. Appl. 2021, 174, 114727. [Google Scholar] [CrossRef]
- Yang, H.; Yang, C.; Gan, L. Models and algorithms for the screen line-based traffic-counting location problems. Comput. Oper. Res. 2006, 33, 836–858. [Google Scholar] [CrossRef]
- Owais, M.; El deeb, M.; Abbas, Y.A. Distributing Portable Excess Speed Detectors in AL Riyadh City. Int. J. Civ. Eng. 2020, 18, 1301–1314. [Google Scholar] [CrossRef]
- Sun, W.; Shao, H.; Shen, L.; Wu, T.; Lam, W.H.; Yao, B.; Yu, B. Bi-objective traffic count location model for mean and covariance of origin–destination estimation. Expert Syst. Appl. 2021, 170, 114554. [Google Scholar] [CrossRef]
- Fu, H.; Lam, W.H.; Shao, H.; Xu, X.; Lo, H.; Chen, B.Y.; Sze, N.; Sumalee, A. Optimization of traffic count locations for estimation of travel demands with covariance between origin-destination flows. Transp. Res. Part C Emerg. Technol. 2019, 108, 49–73. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, Z.; Yang, H.; Wang, Y. A Novel Framework for Road Side Unit Location Optimization for Origin-Destination Demand Estimation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21113–21126. [Google Scholar] [CrossRef]
- Friedman, J.H. Data Mining and Statistics: What’s the connection? Comput. Sci. Stat. 1998, 29, 3–9. [Google Scholar]
- Goswami, S.; Kumar, A. Traffic Flow Prediction Using Deep Learning Techniques. In Proceedings of the International Conference on Computing Science, Communication and Security, Seoul, Republic of Korea, 3–5 November 2022; pp. 198–213. [Google Scholar]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- Yin, X.; Wu, G.; Wei, J.; Shen, Y.; Qi, H.; Yin, B. Deep learning on traffic prediction: Methods, analysis and future directions. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4927–4943. [Google Scholar]
- Guo, K.; Hu, Y.; Qian, Z.; Liu, H.; Zhang, K.; Sun, Y.; Gao, J.; Yin, B. Optimized graph convolution recurrent neural network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1138–1149. [Google Scholar]
- Alshehri, A.; Owais, M.; Gyani, J.; Aljarbou, M.H.; Alsulamy, S. Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information. Sustainability 2023, 15, 9881. [Google Scholar] [CrossRef]
- Liu, T.; Meidani, H. End-to-end heterogeneous graph neural networks for traffic assignment. Transp. Res. Part C Emerg. Technol. 2024, 165, 104695. [Google Scholar]
- Fan, W.; Tang, Z.; Ye, P.; Xiao, F.; Zhang, J. Deep learning-based dynamic traffic assignment with incomplete origin–destination data. Transp. Res. Rec. 2023, 2677, 1340–1356. [Google Scholar]
- Ma, W.; Yuan, J.; An, K.; Yu, C. Route flow estimation based on the fusion of probe vehicle trajectory and automated vehicle identification data. Transp. Res. Part C Emerg. Technol. 2022, 144, 103907. [Google Scholar]
- Tang, K.; Cao, Y.; Chen, C.; Yao, J.; Tan, C.; Sun, J. Dynamic origin-destination flow estimation using automatic vehicle identification data: A 3D convolutional neural network approach. Comput. Aided Civ. Infrastruct. Eng. 2021, 36, 30–46. [Google Scholar]
- Bentsen, L.Ø.; Warakagoda, N.D.; Stenbro, R.; Engelstad, P. Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures. Appl. Energy 2023, 333, 120565. [Google Scholar]
- Gao, Y.; Zhu, Q.; Shi, X.; Jin, H. A Transformer-Based Spatio-Temporal Graph Neural Network for Anomaly Detection on Dynamic Graphs. In Proceedings of the CCF Conference on Big Data, Qingdao, China, 9–11 August 2024; pp. 202–217. [Google Scholar]
- Luo, Q.; He, S.; Han, X.; Wang, Y.; Li, H. LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting. Knowl. Based Syst. 2024, 293, 111637. [Google Scholar] [CrossRef]
- Li, Y.; Yu, D.; Liu, Z.; Zhang, M.; Gong, X.; Zhao, L. Graph neural network for spatiotemporal data: Methods and applications. arXiv 2023, arXiv:2306.00012. [Google Scholar]
- Hou, M.; Xia, F.; Gao, H.; Chen, X.; Chen, H. Urban region profiling with spatio-temporal graph neural networks. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1736–1747. [Google Scholar]
- Wu, D.; Peng, K.; Wang, S.; Leung, V.C. Spatial–Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting. IEEE Internet Things J. 2023, 11, 14267–14281. [Google Scholar]
- Huo, G.; Zhang, Y.; Wang, B.; Gao, J.; Hu, Y.; Yin, B. Hierarchical spatio–temporal graph convolutional networks and transformer network for traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3855–3867. [Google Scholar] [CrossRef]
- Kumar, R.; Mendes-Moreira, J.; Chandra, J. Spatio-temporal parallel transformer based model for traffic prediction. ACM Trans. Knowl. Discov. Data 2024, 18, 1–25. [Google Scholar] [CrossRef]
- Wei, S.; Yang, Y.; Liu, D.; Deng, K.; Wang, C. Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting. Electronics 2024, 13, 3151. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, G.; Ye, C. A Spatio-temporal Graph Transformer driven model for recognizing fine-grained data human activity. Alex. Eng. J. 2024, 104, 31–45. [Google Scholar]
- Wang, Z.; Wang, Y.; Jia, F.; Zhang, F.; Klimenko, N.; Wang, L.; He, Z.; Huang, Z.; Liu, Y. Spatiotemporal Fusion Transformer for large-scale traffic forecasting. Inf. Fusion 2024, 107, 102293. [Google Scholar] [CrossRef]
- Wang, F.; Xin, X.; Lei, Z.; Zhang, Q.; Yao, H.; Wang, X.; Tian, Q.; Tian, F. Transformer-based spatio-temporal traffic prediction for access and metro networks. J. Light. Technol. 2024, 42, 5204–5213. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, G.; Wang, L.; Kong, X. Graph spatial-temporal transformer network for traffic prediction. Big Data Res. 2024, 36, 100427. [Google Scholar]
- Powell, W.B.; Sheffi, Y. The convergence of equilibrium algorithms with predetermined step sizes. Transp. Sci. 1982, 16, 45–55. [Google Scholar]
- Daganzo, C.F.; Sheffi, Y. On stochastic models of traffic assignment. Transp. Sci. 1977, 11, 253–274. [Google Scholar] [CrossRef]
- Prashker, J.N.; Bekhor, S. Route choice models used in the stochastic user equilibrium problem: A review. Transp. Rev. 2004, 24, 437–463. [Google Scholar]
- Spiess, H. Technical note—Conical volume-delay functions. Transp. Sci. 1990, 24, 153–158. [Google Scholar]
- Maher, M. Algorithms for logit-based stochastic user equilibrium assignment. Transp. Res. Part B Methodol. 1998, 32, 539–549. [Google Scholar]
- Yen, J.Y. Finding the k shortest loopless paths in a network. Manag. Sci. 1971, 17, 712–716. [Google Scholar] [CrossRef]
- Owais, M.; Ahmed, A.S. Frequency based transit assignment models: Graph formulation study. IEEE Access 2022, 10, 62991–63003. [Google Scholar] [CrossRef]
- Florian, M.; Hearn, D. Network equilibrium models and algorithms. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 1995; Volume 8, pp. 485–550. [Google Scholar]
- Owais, M. Deep learning for integrated origin–destination estimation and traffic sensor location problems. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6501–6513. [Google Scholar] [CrossRef]
- Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 2007, 19, 153. [Google Scholar]
- Owais, M. Preprocessing and postprocessing analysis for hot-mix asphalt dynamic modulus experimental data. Constr. Build. Mater. 2024, 450, 138693. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Almutairi, A.; Owais, M.; Ahmed, A.S. Notes on bus user assignment problem using section network representation method. Appl. Sci. 2024, 14, 3406. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar]
- Oliveira, T.P.; Barbar, J.S.; Soares, A.S. Computer network traffic prediction: A comparison between traditional and deep learning neural networks. Int. J. Big Data Intell. 2016, 3, 28–37. [Google Scholar]
- Gravelines, C. Deep Learning via Stacked Sparse Autoencoders for Automated Voxel-Wise Brain Parcellation Based on Functional Connectivity. Master’s Thesis, Western University, London, ON, Canada, 2014. [Google Scholar]
- Fathollahi, A.; Gheisarnejad, M.; Boudjadar, J.; Homayounzadeh, M.; Khooban, M.-H. Optimal design of wireless charging electric buses-based machine learning: A case study of Nguyen-Dupuis network. IEEE Trans. Veh. Technol. 2023, 72, 8449–8458. [Google Scholar]
- Zhu, S.; Cheng, L.; Chu, Z.; Chen, A.; Chen, J. Identification of network sensor locations for estimation of traffic flow. Transp. Res. Rec. 2014, 2443, 32–39. [Google Scholar]
O/D | K | Hw | ||
---|---|---|---|---|
1/2 | 0.4 | 40 | 48 | [1-5-6-7-8-2]; [1-5-6-7-11-2]; [1-5-6-10-11-2]; [1-5-9-10-11-2]; [1-12-6-7-8-2]; [1-12-6-7-11-2]; [1-12-6-10-11-2]; [1-12-8-2] |
1/3 | 0.8 | 80 | 92 | [1-5-6-7-11-3]; [1-5-6-10-11-3]; [1-5-9-10-11-3]; [1-5-9-13-3]; [1-12-6-7-11-3]; [1-12-6-10-11-3] |
4/2 | 0.6 | 60 | 68 | [4-5-6-7-8-2]; [4-5-6-7-11-2]; [4-5-6-10-11-2]; [4-5-9-10-11-2]; [4-9-10-11-2] |
4/3 | 0.2 | 20 | 25 | [4-5-6-7-11-3]; [4-5-6-10-11-3]; [4-5-9-10-11-3]; [4-5-9-13-3]; [4-9-10-11-3]; [4-9-13-3] |
Link (a) | Nodes | Qij | Χij | True Link Flow | Best Estimated Link Flow | ||
---|---|---|---|---|---|---|---|
1 | 1-5 | 7 | 71 | 1 | 4 | 79.70 | E 1 |
2 | 1-12 | 9 | 55 | 1 | 4 | 64.75 | 64.75 |
3 | 4-5 | 9 | 55 | 1 | 4 | 37.61 | 37.62 |
4 | 4-9 | 12 | 71 | 1 | 4 | 71.96 | 71.91 |
5 | 5-6 | 3 | 41 | 1 | 4 | 72.58 | 72.59 |
6 | 5-9 | 9 | 41 | 1 | 4 | 44.83 | 44.86 |
7 | 6-7 | 5 | 71 | 1 | 4 | 67.55 | 67.52 |
8 | 6-10 | 5 | 27 | 1 | 4 | 22.78 | 22.79 |
9 | 7-8 | 5 | 71 | 1 | 4 | 22.97 | E |
10 | 7-11 | 9 | 71 | 1 | 4 | 44.54 | E |
11 | 8-2 | 9 | 71 | 1 | 4 | 70.02 | 22.97 |
12 | 9-10 | 10 | 55 | 1 | 4 | 52.34 | 44.54 |
13 | 9-13 | 9 | 55 | 1 | 4 | 64.42 | 69.11 |
14 | 10-11 | 6 | 71 | 1 | 4 | 75.13 | 75.12 |
15 | 11-2 | 9 | 55 | 1 | 4 | 50.41 | 50.41 |
16 | 11-3 | 8 | 55 | 1 | 4 | 69.27 | 69.26 |
17 | 12-6 | 7 | 13 | 1 | 4 | 17.73 | 17.72 |
18 | 12-8 | 14 | 55 | 1 | 4 | 47.02 | E |
19 | 13-3 | 11 | 55 | 1 | 4 | 64.43 | 64.41 |
O/D | Path Structure | Path Times Characteristics in STRNP | ||||
---|---|---|---|---|---|---|
Free Flow Time | Min | Max | Mean | Standard Deviation | ||
1/2 | 1-5-6-7-8-2 | 29 | 29 | 309 | 47.8 | 21.5 |
1-5-6-7-11-2 | 33 | 33 | 322 | 51.8 | 22 | |
1-5-6-10-11-2 | 30 | 30 | 320 | 50.8 | 22.8 | |
1-5-9-10-11-2 | 41 | 41 | 304 | 53.4 | 20.3 | |
1-12-6-7-8-2 | 35 | 35 | 326 | 48.2 | 23.8 | |
1-12-6-7-11-2 | 39 | 39 | 339 | 52.2 | 24.3 | |
1-12-6-10-11-2 | 36 | 36 | 337 | 51.2 | 25.1 | |
1-12-8-2 | 32 | 32 | 85 | 33.7 | 13 | |
1/3 | 1-5-6-7-11-3 | 32 | 32 | 319 | 50.6 | 22.3 |
1-5-6-10-11-3 | 29 | 29 | 317 | 49.6 | 23.1 | |
1-5-9-10-11-3 | 40 | 40 | 301 | 52.2 | 20.5 | |
1-5-9-13-3 | 36 | 36 | 279 | 47.8 | 19.7 | |
1-12-6-7-11-3 | 38 | 38 | 343 | 51.1 | 24.7 | |
1-12-6-10-11-3 | 35 | 35 | 344 | 50.1 | 25.5 | |
4/2 | 4-5-6-7-8-2 | 31 | 31 | 167 | 42.3 | 8.8 |
4-5-6-7-11-2 | 35 | 35 | 185 | 46.2 | 9.5 | |
4-5-6-10-11-2 | 32 | 32 | 180 | 45.2 | 10.2 | |
4-5-9-10-11-2 | 43 | 43 | 165 | 47.8 | 8 | |
4-9-10-11-2 | 37 | 37 | 127 | 40.5 | 5.9 | |
4/3 | 4-5-6-7-11-3 | 34 | 34 | 177 | 45.1 | 9.4 |
4-5-6-10-11-3 | 31 | 31 | 175 | 44.1 | 10.2 | |
4-5-9-10-11-3 | 42 | 42 | 159 | 46.7 | 7.7 | |
4-5-9-13-3 | 38 | 38 | 124 | 42.3 | 6.6 | |
4-9-10-11-3 | 36 | 36 | 124 | 39.3 | 5.4 | |
4-9-13-3 | 32 | 32 | 83 | 34.9 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.; Owais, M. Reliable Vehicle Routing Problem Using Traffic Sensors Augmented Information. Sensors 2025, 25, 2262. https://doi.org/10.3390/s25072262
Almutairi A, Owais M. Reliable Vehicle Routing Problem Using Traffic Sensors Augmented Information. Sensors. 2025; 25(7):2262. https://doi.org/10.3390/s25072262
Chicago/Turabian StyleAlmutairi, Ahmed, and Mahmoud Owais. 2025. "Reliable Vehicle Routing Problem Using Traffic Sensors Augmented Information" Sensors 25, no. 7: 2262. https://doi.org/10.3390/s25072262
APA StyleAlmutairi, A., & Owais, M. (2025). Reliable Vehicle Routing Problem Using Traffic Sensors Augmented Information. Sensors, 25(7), 2262. https://doi.org/10.3390/s25072262