Fully Printed and Scalable Current and Voltage Sensors for Smart Grid Transmission Line Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Electrical Sensors
2.3. Characterization and Electrical Measurements
2.4. Testing of Current and Voltage Sensors
3. Results
3.1. Configuration and Preparation of Electrical Sensors
3.2. Working Mechanism and Simulation Analysis of Electrical Sensors
3.2.1. Current Sensor
3.2.2. Voltage Sensor
3.3. Optimization and Characterization of Electrical Sensors
3.3.1. Current Sensor
3.3.2. Voltage Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Chen, S.; Lu, Z.; Huang, Y.; Ma, S.; Zhao, Q. Technology Features of the New Generation Power System in China. Proc. Chin. Soc. Electr. Eng. 2018, 38, 1893–1904. [Google Scholar]
- Dorji, S.; Stonier, A.A.; Peter, G.; Kuppusamy, R.; Teekaraman, Y. An Extensive Critique on Smart Grid Technologies: Recent Advancements, Key Challenges, and Future Directions. Technologies 2023, 11, 81. [Google Scholar] [CrossRef]
- Shair, J.; Li, H.; Hu, J.; Xie, X. Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. Renew. Sustain. Energy Rev. 2021, 145, 111111. [Google Scholar]
- Yang, B.; Wang, W.; Yang, M.; Liu, T. Research on Grid-forming Energy Storage Control Strategy for Auxiliary Wind Power Grid-connection. High Volt. Appar. 2023, 59, 56–64. [Google Scholar]
- Li, Q.; Zhang, L.; Zhang, C.; Tian, Y.; Fan, Y.; Li, B.; An, Z.; Li, D.; Wang, Z.L. Compact, robust, and regulated-output hybrid generators for magnetic energy harvesting and self-powered sensing applications in power transmission lines. Energy Environ. Sci. 2024, 17, 2787–2799. [Google Scholar] [CrossRef]
- Huang, X.; Hu, D.; Wang, Q.; Wu, Z.; Wang, N.; Chen, Z.; Xu, S.; Chi, M.; Chen, S. Hybrid Nanogenerator Harvesting Electric-Field and Wind Energy for Self-Powered Sensors on High-Voltage Transmission Lines. Adv. Funct. Mater. 2024, 35, 241700. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.; Li, D.; Wang, Z. Progress in self-powered, multi-parameter, micro sensor technologies for power metaverse and smart grids. Nano Energy 2023, 118, 108959. [Google Scholar] [CrossRef]
- An, Z.; Zhang, L.; Fan, Y.; Li, Q.; Li, D. A comprehensive review of TMR current sensors for smart grids: Materials, optimization methods, and applications. Sens. Actuators A-Phys. 2025, 382, 116174. [Google Scholar] [CrossRef]
- Shi, Y.; Xin, Z.; Loh, P.C.; Blaabjerg, F. A Review of Traditional Helical to Recent Miniaturized Printed Circuit Board Rogowski Coils for Power-Electronic Applications. IEEE Trans. Power Electron. 2020, 35, 12207–12222. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Abd-Elhady, A.M. Power frequency AC voltage measurement based on double wound Rogowski coil. High Volt. 2017, 2, 129–135. [Google Scholar] [CrossRef]
- Bobowski, J.S.; Ferdous, M.S.; Johnson, T. Calibrated Single-Contact Voltage Sensor for High-Voltage Monitoring Applications. IEEE Trans. Instrum. Meas. 2015, 64, 923–934. [Google Scholar]
- Huangfu, Y.; Faifer, M.; Ottoboni, R.; Toscani, S. Design and Characterization of a Combined Low-Power Voltage and Current Instrument Transformer for Low-Voltage Applications. IEEE Trans. Instrum. Meas. 2024, 73, 9513210. [Google Scholar] [CrossRef]
- Shafiq, M.; Kauhaniemi, K.; Robles, G.; Isa, M.; Kumpulainen, L. Online condition monitoring of MV cable feeders using Rogowski coil sensors for PD measurements. Electr. Power Syst. Res. 2019, 167, 150–162. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Wiak, S. Applicability of Combined Transducers for Distorted Current Metering in Electrical Substations. Energies 2024, 17, 5738. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Abd-Elhady, A.M. Design and Modeling of a Two-Winding Rogowski Coil Sensor for Measuring Three-Phase Currents of a Motor Fed Through a Three-Core Cable. IEEE Sens. J. 2021, 21, 8289–8296. [Google Scholar]
- Xiao, Y.; Jiao, H.; Huo, F.; Shen, Z. Lightning Current Measurement Method Using Rogowski Coil Based on Integral Circuit with Low-Frequency Attenuation Feedback. Sensors 2024, 24, 4980. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Kato, M.; Yahagi, T.; Murayama, H.; Yamada, N.; Yoshida, K.; Maehara, K.; Fukuda, Y.; Sashida, K.; Ikeda, K.; et al. MEMS Rogowski coil current sensor with spiral return coil. Electr. Eng. Jpn. 2022, 215, e23408. [Google Scholar]
- Yamashita, T.; Zhang, Y.; Itoh, T.; Maeda, R. Development of thin film based flexible current clamp sensor using screen-printed coil. Microsyst. Technol.-Micro-Nanosyst.-Inf. Storage Process. Syst. 2016, 22, 577–581. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsu, W.-H.; Cheng, S.-H.; Cheng, Y.T. A Power Sensor Tag With Interference Reduction for Electricity Monitoring of Two-Wire Household Appliances. IEEE Trans. Ind. Electron. 2014, 61, 2062–2070. [Google Scholar]
- Schoinas, S.; El Guamra, A.-M.; Moreillon, F.; Passeraub, P. Fabrication and Characterization of a Flexible Fluxgate Sensor with Pad-Printed Solenoid Coils. Sensors 2020, 20, 2275. [Google Scholar] [CrossRef]
- Jiang, Y.; Islam, M.N.; He, R.; Huang, X.; Cao, P.-F.; Advincula, R.C.; Dahotre, N.; Dong, P.; Wu, H.F.; Choi, W. Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Adv. Mater. Technol. 2023, 8, 2200492. [Google Scholar]
- Hossain, M.J.; Tabatabaei, B.T.; Kiki, M.; Choi, J.-W. Additive Manufacturing of Sensors: A Comprehensive Review. Int. J. Precis. Eng. Manuf.-Green Technol. 2025, 12, 277–300. [Google Scholar] [CrossRef]
- Bastola, A.; He, Y.; Im, J.; Rivers, G.; Wang, F.; Worsley, R.; Austin, J.S.; Nelson-Dummett, O.; Wildman, R.D.; Hague, R.; et al. Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Mater. Today Electron. 2023, 6, 100058. [Google Scholar]
- Li, B.; Peng, C.; Ling, B.; Chu, Z.; Zhang, Z.; Xia, S. Novel MEMS current sensor based on 3D induction coil. Transducer Microsyst. Technol. 2019, 38, 63–65. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhang, L.; Zhang, C.; An, Z.; Li, B.; Li, D. Fully Printed and Scalable Current and Voltage Sensors for Smart Grid Transmission Line Monitoring. Sensors 2025, 25, 2287. https://doi.org/10.3390/s25072287
Fan Y, Zhang L, Zhang C, An Z, Li B, Li D. Fully Printed and Scalable Current and Voltage Sensors for Smart Grid Transmission Line Monitoring. Sensors. 2025; 25(7):2287. https://doi.org/10.3390/s25072287
Chicago/Turabian StyleFan, Yanyun, Lei Zhang, Chi Zhang, Zhengang An, Bo Li, and Dachao Li. 2025. "Fully Printed and Scalable Current and Voltage Sensors for Smart Grid Transmission Line Monitoring" Sensors 25, no. 7: 2287. https://doi.org/10.3390/s25072287
APA StyleFan, Y., Zhang, L., Zhang, C., An, Z., Li, B., & Li, D. (2025). Fully Printed and Scalable Current and Voltage Sensors for Smart Grid Transmission Line Monitoring. Sensors, 25(7), 2287. https://doi.org/10.3390/s25072287