A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram
Abstract
:1. Introduction
2. Phase-Only Hologram Generation
3. Results and Discussion
3.1. Secured CGH of a Digital Document
3.1.1. CGH Generation of Digital Documents
3.1.2. XOR Encryption
3.1.3. Security Analysis of XOR-Encrypted CGH
Entropy Analysis
Correlation Coefficient Analysis
NPCR and UACI Analysis
Security Implications Against Brute-Force Attacks
3.1.4. CGH Decryption and Reconstruction of Digital Documents
3.2. Secured CGH of a Physical Document
3.2.1. CGH Generation of Physical Documents
3.2.2. Printing of the CGH
Grayscale CGH
Binarized CGH
3.2.3. Scanning of the Printed CGH
3.2.4. CGH Reconstruction of Physical Documents
3.3. Factors Affecting the Quality of the Reconstruction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UK Finance, Fraud the Facts 2019. The Definitive Overview of Payment Industry Fraud. Available online: https://www.ukfinance.org.uk/system/files/Fraud%20The%20Facts%202019%20-%20FINAL%20ONLINE.pdf (accessed on 7 April 2025).
- Rudner, M. Misuse of passports: Identity fraud, the propensity to travel, and international terrorism. Stud. Confl. Terror. 2008, 31, 95–110. [Google Scholar] [CrossRef]
- Shin, F.Y. Digital Watermarking and Steganography: Fundamentals and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Frattolillo, F. Watermarking protocols: Problems, challenges and a possible solution. Comput. J. 2015, 58, 944–960. [Google Scholar] [CrossRef]
- Petitcolas, F.A.; Katzenbeisser, S. Information Hiding Techniques for Steganography and Digital Watermarking (Artech House Computer Security Series); Artech House: Norwood, MA, USA, 2000. [Google Scholar]
- Desai, H.V. Steganography, cryptography, watermarking: A comparitive study. J. Glob. Res. Comput. Sci. 2012, 3, 33–35. [Google Scholar]
- Garg, P.; Chhabra, S.; Gupta, G.; Srivastava, V.; Gupta, G. Analysis of Document Security Features. In Proceedings of the IFIP International Conference on Digital Forensics, Arlington, VR, USA, 30–31 January 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 143–159. [Google Scholar]
- Wu, W.; Liu, H.; Yuan, J.; Zhang, Z.; Wang, L.; Dong, S.; Hao, J. Nanoemulsion fluorescent inks for anti-counterfeiting encryption with dual-mode, full-color, and long-term stability. Chem. Commun. 2021, 57, 4894–4897. [Google Scholar] [CrossRef]
- Lewis, O.; Thorpe, S. Authenticating motor insurance documents using QR codes. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–7. [Google Scholar]
- Lim, K.T.; Liu, H.; Liu, Y.; Yang, J.K. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 2019, 10, 25. [Google Scholar] [CrossRef]
- Yaroslavsky, L.; Astola, J. Introduction to Digital Holography. In Digital Signal Processing in Experimental Research; Bentham E-Book Series; Bentham Sciences Publishers: Sharjah, United Arab Emirates, 2009. [Google Scholar]
- Dallas, W.J. Computer-generated holograms. In Digital Holography and Three-Dimensional Display: Principles and Applications; Springer: Boston, MA, USA, 2006; pp. 1–49. [Google Scholar]
- Lee, W.H. Holographic optical head for compact disk applications. Opt. Eng. 1989, 28, 650–653. [Google Scholar] [CrossRef]
- van Renesse, R.L. Ordering the order: A survey of optical document security features. In Proceedings of the Practical Holography IX, SPIE, San Jose, CA, USA, 5–10 February 1995; Volume 2406, pp. 268–275. [Google Scholar]
- Van Renesse, R.L.; Fournier, J. A review of holograms and other microstructures as security features. In The First 50 Years Springer Series in Optical Sciences; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2003; Volume 78. [Google Scholar]
- Stole, S.; Soukup, D.; Huber-Mörk, R. Invariant characterization of dovid security features using a photometric descriptor. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3422–3426. [Google Scholar]
- Van Renesse, R.L. Optical Document Security; Artech House Publishers: Norwood, MA, USA, 2005. [Google Scholar]
- Bullema, J.E.; van Krieken, A.H.; van den Hurk, M.; Meuwissen, M.; Schuurman, A. Direct-write method to create DOVIDs in metal surfaces. In Proceedings of the Optical Security and Counterfeit Deterrence Techniques IV, SPIE, San Jose, CA, USA, 19–25 January 2002; Volume 4677, pp. 175–181. [Google Scholar]
- Miyamoto, O.; Yamaguchi, T.; Yoshikawa, H. The volume hologram printer to record the wavefront of a 3D object. In Proceedings of the Practical Holography XXVI: Materials and Applications, SPIE, San Francisco, CA, USA, 21–26 January 2012; Volume 8281, pp. 153–162. [Google Scholar]
- Zlokazov, E.Y.; Kolyuchkin, V.V.; Lushnikov, D.S.; Smirnov, A.V. Computer-Generated Holograms Application in Security Printing. Appl. Sci. 2022, 12, 3289. [Google Scholar] [CrossRef]
- Trentler, T.; Ihas, B.; Cole, M.; Askham, F.; Schnoes, M.; Quirin, S.; Michaels, D.; Carter, J.; Wilson, W.; Hill, A.; et al. Blue-sensitive rewriteable holographic media. In Proceedings of the Optical Data Storage 2004, SPIE, Monterey, CA, USA, 18–21 April 2004; Volume 5380, pp. 439–447. [Google Scholar]
- Nishii, W.; Matsushima, K. A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms. In Proceedings of the Practical Holography XXVIII: Materials and Applications, SPIE, San Francisco, MA, USA, 1–6 February 2014; Volume 9006, pp. 323–330. [Google Scholar]
- Zamkotsian, F.; Pariani, G.; Lanzoni, P.; Oggioni, L.; Bertarelli, C.; Bianco, A. New Fourier CGH coding using DMD generated masks. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications XII, SPIE, San Francisco, CA, USA, 1–6 February 2020; Volume 11294, pp. 59–71. [Google Scholar]
- Lian, S.; Sun, J.; Wang, Z. Security analysis of a chaos-based image encryption algorithm. Phys. A Stat. Mech. Its Appl. 2005, 351, 645–661. [Google Scholar] [CrossRef]
- Essaid, M.; Akharraz, I.; Saaidi, A.; Mouhib, A. Image encryption scheme based on a new secure variant of Hill cipher and 1D chaotic maps. J. Inf. Secur. Appl. 2019, 47, 173–187. [Google Scholar] [CrossRef]
- Song, W.; Fu, C.; Zheng, Y.; Zhang, Y.; Chen, J.; Wang, P. Batch image encryption using cross image permutation and diffusion. J. Inf. Secur. Appl. 2024, 80, 103686. [Google Scholar] [CrossRef]
- Gerchberg, R.; Saxton, W. A practical algorithm for the determination of phase from image and diffraction plane pictures. SPIE Milest. Ser. MS 1994, 94, 646. [Google Scholar]
- Abdelazeem, R.M.; Agour, M. Color holographic visualization of an abnormal retina: A training guide. In Proceedings of the 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 22–24 October 2022; pp. 186–189. [Google Scholar]
- Poon, T.C.; Liu, J.P. Introduction to Modern Digital Holography: With MATLAB; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Abdelazeem, R.M.; Ghareab Abdelsalam Ibrahim, D. Discrimination between normal and cancer white blood cells using holographic projection technique. PLoS ONE 2022, 17, e0276239. [Google Scholar] [CrossRef] [PubMed]
- Yaras, F.; Kovachev, M.; Ilieva, R.; Agour, M.; Onural, L. Holographic reconstructions using phase-only spatial light modulators. In Proceedings of the 2008 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, Istanbul, Turkey, 28–30 May 2008; pp. PD-1–PD-4. [Google Scholar]
- Migukin, A.; Agour, M.; Katkovnik, V. Phase retrieval in 4f optical system: Background compensation and sparse regularization of object with binary amplitude. Appl. Opt. 2013, 52, A269–A280. [Google Scholar] [CrossRef] [PubMed]
- Agour, M.; Falldorf, C.; Bergmann, R.B. Spatial multiplexing and autofocus in holographic contouring for inspection of micro-parts. Opt. Express 2018, 26, 28576–28588. [Google Scholar] [CrossRef]
- Thales Group. Digital Documents. Available online: https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/driving-licence/digital-driver-license (accessed on 20 August 2024).
- XOR Encryption. XOR Cipher. Available online: https://www.geeksforgeeks.org/xor-cipher/ (accessed on 20 August 2024).
- Alghamdi, Y.; Munir, A.; Ahmad, J. A Lightweight Image Encryption Algorithm Based on Chaotic Map and Random Substitution. Entropy 2022, 24, 1344. [Google Scholar] [CrossRef]
- Ostu, N. A threshold selection method from gray-level histograms. IEEE Trans. SMC 1979, 9, 62. [Google Scholar]
- Liu, D.; Yu, J. Otsu method and K-means. In Proceedings of the 2009 Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, 12–14 August 2009; Volume 1, pp. 344–349. [Google Scholar]
- Goh, T.Y.; Basah, S.N.; Yazid, H.; Safar, M.J.A.; Saad, F.S.A. Performance analysis of image thresholding: Otsu technique. Measurement 2018, 114, 298–307. [Google Scholar] [CrossRef]
- Ahmed, Z.E.; Abdelhamid, M.; Abdel-Salam, Z.A.; Palleschi, V.; Abdel-Harith, M. Laser-induced breakdown spectroscopy and chemometric analysis of black toners for forensic applications. J. Chemom. 2021, 35, e3334. [Google Scholar] [CrossRef]
- Lee, B.; Kim, D.; Lee, S.; Chen, C.; Lee, B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Sci. Rep. 2022, 12, 2811. [Google Scholar] [CrossRef]
- Masuda, K.; Saita, Y.; Toritani, R.; Xia, P.; Nitta, K.; Matoba, O. Improvement of image quality of 3D display by using optimized binary phase modulation and intensity accumulation. J. Disp. Technol. 2016, 12, 472–477. [Google Scholar] [CrossRef]
- Chen, W. Computer-generated hologram using binary phase with an aperture. Appl. Opt. 2017, 56, 9126–9131. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, N.; Saita, Y.; Nomura, T. Binary computer-generated-hologram-based holographic data storage. Appl. Opt. 2019, 58, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Falldorf, C.; Agour, M.; von Kopylow, C.; Bergmann, R.B. Design of an optical system for phase retrieval based on a spatial light modulator. AIP Conf. Proc. 2010, 1236, 259–264. [Google Scholar]
Matrix of binary CGH image | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
Encryption key | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
Cipher matrix | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
Decryption key | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
Plain matrix | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
Metric | Original Image | Encrypted Image 1 | Encrypted Image 2 |
---|---|---|---|
Entropy | 1.0000 | 1.0000 | 1.0000 |
Horizontal correlation | 0.3579 | −0.0012 | 0.0010 |
NPCR (number of pixels change rate) % | - | 50.0338 | 50.0338 |
UACI (unified average changing intensity) % | - | 50.0338 | 50.0338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, Z.E.; Abdelazeem, R.M.; Attia, Y.A.; Khattab, T.A.; Falldorf, C.; Bergmann, R.B.; Agour, M. A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram. Sensors 2025, 25, 2410. https://doi.org/10.3390/s25082410
Ahmed ZE, Abdelazeem RM, Attia YA, Khattab TA, Falldorf C, Bergmann RB, Agour M. A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram. Sensors. 2025; 25(8):2410. https://doi.org/10.3390/s25082410
Chicago/Turabian StyleAhmed, Zakaria E., Rania M. Abdelazeem, Yasser A. Attia, Tawfik A. Khattab, Claas Falldorf, Ralf B. Bergmann, and Mostafa Agour. 2025. "A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram" Sensors 25, no. 8: 2410. https://doi.org/10.3390/s25082410
APA StyleAhmed, Z. E., Abdelazeem, R. M., Attia, Y. A., Khattab, T. A., Falldorf, C., Bergmann, R. B., & Agour, M. (2025). A Complementary Approach for Securing and Anti-Counterfeiting of Valuable Documents Based on Encryption of Computer-Generated Hologram. Sensors, 25(8), 2410. https://doi.org/10.3390/s25082410