A Comprehensive Review of Deep Learning in Computer Vision for Monitoring Apple Tree Growth and Fruit Production
Abstract
:Highlights
- Reviewed the use of deep learning techniques for monitoring and predicting apple pests, diseases, organ growth, yield, and defects.
- Reviewed more than 100 literatures from the past 7 years.
- Summarized the current state of the relevant literature in each part and proposed solutions to the problems.
- Provided a reference for future research and drove the development of smart orchards.
Abstract
1. Introduction
2. Computer Vision
3. Deep Learning
4. Monitoring of Apple Tree Growth and Fruit Production
4.1. Pest
4.2. Diseases
4.3. Organ
4.4. Yield
4.5. Defect
5. Discussion
6. Challenges and Future Trends
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
YOLO | You Only Look Once |
Faster R-CNN | Faster region-based convolutional network |
AlexNet | Alex network |
ResNet | Residual network |
SegNet | Segmentation network |
Mask R-CNN | Mask regional convolutional neural network |
RGB | Red-green-blue |
3D | Three-dimensional |
AI | Artificial intelligence |
CNN | Convolutional neural networks |
MLP | Multilayer perceptron |
DNN | Deep neural networks |
SVM | Support vector machines |
LRC | Logistic regression classifier |
RBF | Radial basis function |
RF | Random forest |
VGG | Visual geometry group |
MTSPPF | Multi-level spatial pyramid pooling |
SPPF | Spatial pyramid pooling fusion |
ECA | Efficient channel attention |
CARAFE | Content-aware reassembly of features |
MAP | Mean average precision |
ANN | Artificial neural network |
PMD | Pest monitoring device |
GMM-DC | Density curvature weighted Gaussian mixture model |
VIT | Vision transformer |
IOU | Intersection over union |
KNN | K-nearest neighbors |
DCGAN | Deep convolutional generative adversarial network |
DCNN | Deep convolutional neural network |
DMCNN | Dual-channel convolutional neural network |
HSV | Hue-saturation-value |
ROI | Region of interest |
CBAM | Convolutional block attention module |
C3TR | Convolution 3 transformer |
EMA | Exponential moving average |
SENet | Squeeze-and-excitation networks |
RGR | Region growth segmentation |
CA | Coordinate attention |
CROP | Central roundish object painter |
GAN | Generative adversarial network |
MS-MLP | Multi-scale multilayered perceptron |
WS | Watershed segmentation |
CHT | Circular hough transform |
PANet | Path aggregation network |
MAM | Multi-attention mechanism |
IOT | Internet of things |
DC | Direct current |
AC | Alternating current |
SIRI | Structured-illumination reflectance imaging |
MIOU | Mean intersection over union |
ASDINet | Apple surface defect detection network |
GDM | Gradient descent method |
SOTA | State-of-the-art |
NIR | Near-infrared |
PSPNet-SA | Pyramid scene parsing network self-attention |
HRNet | High-resolution network |
WIOU | Weighted intersection over union |
SPD-Conv | Space-to-depth convolution |
MSDA | Multi-scale empty attention |
CGFPN | Context-guided feature pyramid network |
RT | Ratio transformation |
PCA | Principal component analysis |
UAV | Unmanned aerial vehicle |
LSTM | Long- and short-term memory |
RNN | Recurrent neural network |
References
- De la Peña-Armada, R.; Mateos-Aparicio, I. Sustainable Approaches Using Green Technologies for Apple By-Product Valorisation as A New Perspective into the History of the Apple. Molecules 2022, 27, 6937. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, J.; Xiao, J.; Li, S.; Zhou, D. Face Recognition Based on Deep Learning. In Proceedings of the International Conference on Human Centered Computing, Phnom Penh, Cambodia, 27–29 November 2014; pp. 812–820. [Google Scholar] [CrossRef]
- Yang, D.; Li, S.; Peng, Z.; Wang, P.; Wang, J.; Yang, H. MF-CNN: Traffic Flow Prediction Using Convolutional Neural Network and Multi-Features Fusion. IEICE Trans. Inf. Syst. 2019, 102, 1526–1536. [Google Scholar] [CrossRef]
- Doulamis, N.; Voulodimos, A. FAST-MDL: Fast Adaptive Supervised Training of Multi-Layered Deep Learning Models for Consistent Object Tracking and Classification. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 318–323. [Google Scholar] [CrossRef]
- Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Su, W.-H. Convolutional Neural Networks in Computer Vision for Grain Crop Phenotyping: A Review. Agronomy 2022, 12, 2659. [Google Scholar] [CrossRef]
- Bonkra, A.; Noonia, A.; Kaur, A. Apple Leaf Diseases Detection System: A Review of the Different Segmentation and Deep Learning Methods. In Proceedings of the Artificial Intelligence and Data Science: First International Conference, ICAIDS 2021, Hyderabad, India, 17–18 December 2021; Revised Selected Papers. Springer Nature Switzerland: Cham, Switzerland, 2022; pp. 263–278. [Google Scholar] [CrossRef]
- Villacrés, J.; Viscaino, M.; Delpiano, J.; Vougioukas, S.; Auat Cheein, F. Apple Orchard Production Estimation Using Deep Learning Strategies: A Comparison of Tracking-by-Detection Algorithms. Comput. Electron. Agric. 2023, 204, 107513. [Google Scholar] [CrossRef]
- Zahid, A.; Mahmud, M.S.; He, L.; Heinemann, P.; Choi, D.; Schupp, J. Technological Advancements towards Developing a Robotic Pruner for Apple Trees: A Review. Comput. Electron. Agric. 2021, 189, 106383. [Google Scholar] [CrossRef]
- Behera, S.K.; Rath, A.K.; Mahapatra, A.; Sethy, P.K. Identification, Classification & Grading of Fruits Using Machine Learning & Computer Intelligence: A Review. J. Ambient. Intell. Humaniz. Comput. 2020, 15, 117. [Google Scholar] [CrossRef]
- Teixeira, A.C.; Ribeiro, J.; Morais, R.; Sousa, J.J.; Cunha, A. A Systematic Review on Automatic Insect Detection Using Deep Learning. Agriculture 2023, 13, 713. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer Vision and Artificial Intelligence in Precision Agriculture for Grain Crops: A Systematic Review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar] [CrossRef]
- Boniecki, P.; Koszela, K.; Piekarska-Boniecka, H.; Weres, J.; Zaborowicz, M.; Kujawa, S.; Majewski, A.; Raba, B. Neural Identification of Selected Apple Pests. Comput. Electron. Agric. 2015, 110, 9–16. [Google Scholar] [CrossRef]
- Boniecki, P.; Koszela, K.; Piekarska-Boniecka, H.; Nowakowski, K.; Przybył, J.; Zaborowicz, M.; Raba, B.; Dach, J. Identification of Selected Apple Pests Based on Selected Graphical Parameters. In Proceedings of the Fifth International Conference on Digital Image Processing (ICDIP 2013), Beijing, China, 19 July 2013; Volume 8878. [Google Scholar] [CrossRef]
- Zaborowicz, P.; Zaborowicz, M.; Pilarska, A.; Piekarska-Boniecka, H. Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN. Agriculture 2020, 10, 218. [Google Scholar] [CrossRef]
- Wen, C.; Wu, D.; Hu, H.; Pan, W. Pose Estimation-Dependent Identification Method for Field Moth Images Using Deep Learning Architecture. Biosyst. Eng. 2015, 136, 117–128. [Google Scholar] [CrossRef]
- Janarthan, S.; Thuseethan, S.; Rajasegarar, S.; Yearwood, J. Double Attention-Based Lightweight Network for Plant Pest Recognition. In Proceedings of the International Conference on Neural Information Processing, Virtual Conference, 22–26 November 2022; pp. 598–611. [Google Scholar] [CrossRef]
- Aghajanpoor, A.; Sorouri, M.; Sharifi, A. Detection of Powdery Mildew Pest in Apple Tree Leaves Using Deep Learning in Intelligent Sprayer Robots. In Proceedings of the 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), Helsinki-Espoo, Finland, 19–21 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Dong, Q.; Sun, L.; Han, T.; Cai, M.; Gao, C. PestLite: A Novel YOLO-Based Deep Learning Technique for Crop Pest Detection. Agriculture 2024, 14, 228. [Google Scholar] [CrossRef]
- Albanese, A.; Nardello, M.; Brunelli, D. Automated Pest Detection with DNN on the Edge for Precision Agriculture. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 458–467. [Google Scholar] [CrossRef]
- Segalla, A.; Fiacco, G.; Tramarin, L.; Nardello, M.; Brunelli, D. Neural Networks for Pest Detection in Precision Agriculture. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4 November 2020; pp. 7–12. [Google Scholar] [CrossRef]
- Brunelli, D.; Albanese, A.; d’Acunto, D.; Nardello, M. Energy Neutral Machine Learning Based IoT Device for Pest Detection in Precision Agriculture. IEEE Internet Things Mag. 2019, 2, 10–13. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Aghabara, A.; Davari, M.; Maja, J.M. Feasibility of Using Computer Vision and Artificial Intelligence Techniques in Detection of Some Apple Pests and Diseases. Appl. Sci. 2022, 12, 906. [Google Scholar] [CrossRef]
- Suárez, A.; Molina, R.S.; Ramponi, G.; Petrino, R.; Bollati, L.; Sequeiros, D. Pest Detection and Classification to Reduce Pesticide Use in Fruit Crops Based on Deep Neural Networks and Image Processing. In Proceedings of the 2021 XIX Workshop on Information Processing and Control (RPIC), San Juan, Argentina, 3–5 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Čirjak, D.; Aleksi, I.; Miklečić, I.; Antolković, A.M.; Vrtodušić, R.; Viduka, A.; Lemic, D.; Kos, T.; Pajač Živković, I. Monitoring System for Leucoptera malifoliella (O. Costa, 1836) and Its Damage Based on Artificial Neural Networks. Agriculture 2022, 13, 67. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Ren, Z.; Ma, B.; Mu, J.; Sun, L.; Zhang, H.; Wang, J. Clustering and Segmentation of Adhesive Pests in Apple Orchards Based on GMM-DC. Agronomy 2023, 13, 2806. [Google Scholar] [CrossRef]
- Xiao-bo, Z.; Jie-wen, Z.; Yanxiao, L.; Holmes, M. In-Line Detection of Apple Defects Using Three Color Cameras System. Comput. Electron. Agric. 2010, 70, 129–134. [Google Scholar] [CrossRef]
- Sharma, M.R. Recognition of Anthracnose Injuries on Apple Surfaces Using YOLOV 3-Dense. Int. J. New Pract. Manag. Eng. 2015, 4, 8–14. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Detection of Apple Lesions in Orchards Based on Deep Learning Methods of CycleGAN and YOLOV3-Dense. J. Sens. 2019, 2019, 7630926. [Google Scholar] [CrossRef]
- Gu, Y.H.; Yin, H.; Jin, D.; Zheng, R.; Yoo, S.J. Improved Multi-Plant Disease Recognition Method Using Deep Convolutional Neural Networks in Six Diseases of Apples and Pears. Agriculture 2022, 12, 300. [Google Scholar] [CrossRef]
- Ayaz, H.; Rodríguez-Esparza, E.; Ahmad, M.; Oliva, D.; Pérez-Cisneros, M.; Sarkar, R. Classification of Apple Disease Based on Non-Linear Deep Features. Appl. Sci. 2021, 11, 6422. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, G.; Chen, A.; Hu, Y. Deep Multi-Scale Dual-Channel Convolutional Neural Network for Internet of Things Apple Disease Detection. Comput. Electron. Agric. 2022, 194, 106749. [Google Scholar] [CrossRef]
- Yu, H.-J.; Son, C.-H. Apple Leaf Disease Identification through Region-of-Interest-Aware Deep Convolutional Neural Network. J. Imaging Sci. Technol. 2020, 64, jist0704. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, I.; Gupta, S.; Koundal, D.; Mahajan, S.; Pandit, A. Deep Learning Based Automated Detection of Diseases from Apple Leaf Images. Comput. Mater. Contin. 2021, 71, 1849–1866. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, M. Research on Deep Learning in Apple Leaf Disease Recognition. Comput. Electron. Agric. 2020, 168, 105146. [Google Scholar] [CrossRef]
- Liu, S.; Qiao, Y.; Li, J.; Zhang, H.; Zhang, M.; Wang, M. An Improved Lightweight Network for Real-Time Detection of Apple Leaf Diseases in Natural Scenes. Agronomy 2022, 12, 2363. [Google Scholar] [CrossRef]
- Lv, M.; Su, W.-H. YOLOV5-CBAM-C3TR: An Optimized Model Based on Transformer Module and Attention Mechanism for Apple Leaf Disease Detection. Front. Plant Sci. 2024, 14, 1323301. [Google Scholar] [CrossRef]
- Fu, X.; Ma, Q.; Yang, F.; Zhang, C.; Zhao, X.; Chang, F.; Han, L. Crop Pest Image Recognition Based on the Improved ViT Method. Inf. Process. Agric. 2023, 11, 249–259. [Google Scholar] [CrossRef]
- Özden, C. Apple Leaf Disease Detection and Classification Based on Transfer Learning. Turk. J. Agric. For. 2021, 45, 775–783. [Google Scholar] [CrossRef]
- Bansal, P.; Kumar, R.; Kumar, S. Disease Detection in Apple Leaves Using Deep Convolutional Neural Network. Agriculture 2021, 11, 617. [Google Scholar] [CrossRef]
- Upadhyay, N.; Gupta, N. Diagnosis of Fungi Affected Apple Crop Disease Using Improved ResNeXt Deep Learning Model. Multimed. Tools Appl. 2024, 83, 64879–64898. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Gupta, M.; Obaid, A.J. Deep Learning-Based Web Application for Real-Time Apple Leaf Disease Detection and Classification. In Proceedings of the 2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), Bhubaneswar, India, 27 January 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, G.; Sang, W.; Xu, F.; Gao, Y.; Han, Y.; Liu, Q. An Enhanced Lightweight Model for Apple Leaf Disease Detection in Complex Orchard Environments. Front. Plant Sci. 2025, 16, 1545875. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.-J.; Liu, B.-Y.; Su, W.-H.; Peng, Y. Semi-Supervised Deep Learning Framework Based on Modified Pyramid Scene Parsing Network for Multi-Label Fine-Grained Classification and Diagnosis of Apple Leaf Diseases. Engineering Applications of Artificial Intelligence 2025, 151, 110743. [Google Scholar] [CrossRef]
- Hang, J.; Zhang, D.; Chen, P.; Zhang, J.; Wang, B. Identification of Apple Tree Trunk Diseases Based on Improved Convolutional Neural Network with Fused Loss Functions. In Proceedings of the Intelligent Computing Theories and Application, Nanchang, Cina, 3–6 August 2019; Volume 11643, pp. 274–283, ISBN 978-3-030-26762-9. [Google Scholar] [CrossRef]
- Guan, L.; Zhang, J.; Geng, C. Diagnosis of Fruit Tree Diseases and Pests Based on Agricultural Knowledge Graph. J. Phys. Conf. Ser. 2021, 1865, 042052. [Google Scholar] [CrossRef]
- Chao, X.; Hu, X.; Feng, J.; Zhang, Z.; Wang, M.; He, D. Construction of Apple Leaf Diseases Identification Networks Based on Xception Fused by SE Module. Appl. Sci. 2021, 11, 4614. [Google Scholar] [CrossRef]
- Khan, A.I.; Quadri, S.M.K.; Banday, S.; Latief Shah, J. Deep Diagnosis: A Real-Time Apple Leaf Disease Detection System Based on Deep Learning. Comput. Electron. Agric. 2022, 198, 107093. [Google Scholar] [CrossRef]
- Hočevar, M.; Širok, B.; Godeša, T.; Stopar, M. Flowering Estimation in Apple Orchards by Image Analysis. Precis. Agric. 2014, 15, 466–478. [Google Scholar] [CrossRef]
- Dias, P.A.; Tabb, A.; Medeiros, H. Apple Flower Detection Using Deep Convolutional Networks. Comput. Ind. 2018, 99, 17–28. [Google Scholar] [CrossRef]
- Dias, P.; Tabb, A.; Medeiros, H. Multispecies Fruit Flower Detection Using a Refined Semantic Segmentation Network. IEEE Robot. Autom. Lett. 2018, 3, 3003–3010. [Google Scholar] [CrossRef]
- Bhattarai, U.; Bhusal, S.; Majeed, Y.; Karkee, M. Automatic Blossom Detection in Apple Trees Using Deep Learning. IFAC-PapersOnLine 2020, 53, 15810–15815. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Wa, S.; Zong, Z.; Liu, Y. Using Generative Module and Pruning Inference for the Fast and Accurate Detection of Apple Flower in Natural Environments. Information 2021, 12, 495. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, X.; Jiao, Y.; Wang, Z.; Hua, Z.; Song, H. Using Lightweight Deep Learning Algorithm for Real-Time Detection of Apple Flowers in Natural Environments. Comput. Electron. Agric. 2023, 207, 107765. [Google Scholar] [CrossRef]
- Chen, J.; Ma, B.; Ji, C.; Zhang, J.; Feng, Q.; Liu, X.; Li, Y. Apple Inflorescence Recognition of Phenology Stage in Complex Background Based on Improved YOLOv7. Comput. Electron. Agric. 2023, 211, 108048. [Google Scholar] [CrossRef]
- Majeed, Y.; Zhang, J.; Zhang, X.; Fu, L.; Karkee, M.; Zhang, Q.; Whiting, M.D. Apple Tree Trunk and Branch Segmentation for Automatic Trellis Training Using Convolutional Neural Network Based Semantic Segmentation. IFAC-PapersOnLine 2018, 51, 75–80. [Google Scholar] [CrossRef]
- Majeed, Y.; Zhang, J.; Zhang, X.; Fu, L.; Karkee, M.; Zhang, Q.; Whiting, M.D. Deep Learning Based Segmentation for Automated Training of Apple Trees on Trellis Wires. Comput. Electron. Agric. 2020, 170, 105277. [Google Scholar] [CrossRef]
- Chen, Z.; Ting, D.; Newbury, R.; Chen, C. Semantic Segmentation for Partially Occluded Apple Trees Based on Deep Learning. Comput. Electron. Agric. 2020, 181, 105952. [Google Scholar] [CrossRef]
- Zhang, X.; Karkee, M.; Zhang, Q.; Whiting, M.D. Computer Vision-based Tree Trunk and Branch Identification and Shaking Points Detection in Dense-Foliage Canopy for Automated Harvesting of Apples. J. Field Robot. 2021, 38, 476–493. [Google Scholar] [CrossRef]
- Su, F.; Zhao, Y.; Shi, Y.; Zhao, D.; Wang, G.; Yan, Y.; Zu, L.; Chang, S. Tree Trunk and Obstacle Detection in Apple Orchard Based on Improved YOLOv5s Model. Agronomy 2022, 12, 2427. [Google Scholar] [CrossRef]
- Risdin, F.; Mondal, P.K.; Hassan, K.M. Convolutional Neural Networks (CNN) for Detecting Fruit Information Using Machine Learning Techniques. IOSR J. Comput. Eng. 2020, 22, 1–13. [Google Scholar]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple Detection during Different Growth Stages in Orchards Using the Improved YOLO-V3 Model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Fukuda, M.; Okuno, T.; Yuki, S. Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images. Sensors 2021, 21, 6999. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Song, H.; Xiong, H.; Liu, C.; He, D. Deep Learning Approach for Apple Edge Detection to Remotely Monitor Apple Growth in Orchards. IEEE Access 2020, 8, 26911–26925. [Google Scholar] [CrossRef]
- Sekharamantry, P.K.; Melgani, F.; Malacarne, J. Deep Learning-Based Apple Detection with Attention Module and Improved Loss Function in YOLO. Remote Sens. 2023, 15, 1516. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Zhao, H. Research on Apple Recognition Algorithm in Complex Orchard Environment Based on Deep Learning. Sensors 2023, 23, 5425. [Google Scholar] [CrossRef] [PubMed]
- Bargoti, S.; Underwood, J.P. Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards: Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards. J. Field Robot. 2017, 34, 1039–1060. [Google Scholar] [CrossRef]
- Wang, Q.; Nuske, S.; Bergerman, M.; Singh, S. Automated Crop Yield Estimation for Apple Orchards. In Experimental Robotics; Desai, J.P., Dudek, G., Khatib, O., Kumar, V., Eds.; Springer Tracts in Advanced Robotics; Springer International Publishing: Berlin/Heidelberg, Germany, 2013; Volume 88, pp. 745–758. ISBN 978-3-319-00064-0. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Liang, Q.; Gao, S. Yield and Maturity Estimation of Apples in Orchards Using a 3-Step Deep Learning-Based Method. Qual. Assur. Saf. Crops Foods 2022, 14, 101–111. [Google Scholar] [CrossRef]
- Häni, N.; Roy, P.; Isler, V. A Comparative Study of Fruit Detection and Counting Methods for Yield Mapping in Apple Orchards. J. Field Robot. 2020, 37, 263–282. [Google Scholar] [CrossRef]
- Rao, K.R.; Swapna Kumari, M.; Eklarker, R.; Shaker Reddy, P.C.; Muley, K.; Burugari, V.K. An Adaptive Deep Learning Framework for Prediction of Agricultural Yield. In Proceedings of the 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 23–24 February 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, J.; Fan, C.; Wang, Z.; Ruan, J.; Wu, S. Fruit Detection and Counting in Apple Orchards Based on Improved Yolov7 and Multi-Object Tracking Methods. Sensors 2023, 23, 5903. [Google Scholar] [CrossRef]
- Sekharamantry, P.K.; Melgani, F.; Malacarne, J.; Ricci, R.; de Almeida Silva, R.; Marcato Junior, J. A Seamless Deep Learning Approach for Apple Detection, Depth Estimation, and Tracking Using YOLO Models Enhanced by Multi-Head Attention Mechanism. Computers 2024, 13, 83. [Google Scholar] [CrossRef]
- Tan, S.; Kuang, Z.; Jin, B. AppleYOLO: Apple Yield Estimation Method Using Improved YOLOv8 Based on Deep OC-SORT. Expert Syst. Appl. 2025, 272, 126764. [Google Scholar] [CrossRef]
- Bargoti, S.; Underwood, J. Deep Fruit Detection in Orchards. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3626–3633. [Google Scholar] [CrossRef]
- Yang, M.; Kumar, P.; Bhola, J.; Shabaz, M. Development of Image Recognition Software Based on Artificial Intelligence Algorithm for the Efficient Sorting of Apple Fruit. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 322–330. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Gong, L.; Li, J.; Zhao, C.; Liu, C.; Huang, D. Computer Vision Detection of Defective Apples Using Automatic Lightness Correction and Weighted RVM Classifier. J. Food Eng. 2015, 146, 143–151. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms. Trans. ASABE 2018, 61, 1831–1842. [Google Scholar] [CrossRef]
- Siddiqi, R. Automated Apple Defect Detection Using State-of-the-Art Object Detection Techniques. SN Appl. Sci. 2019, 1, 1345. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Liu, Y.; Han, X. Apple Quality Identification and Classification by Image Processing Based on Convolutional Neural Networks. Sci. Rep. 2021, 11, 16618. [Google Scholar] [CrossRef]
- Stasenko, N.; Chernova, E.; Shadrin, D.; Ovchinnikov, G.; Krivolapov, I.; Pukalchik, M. Deep Learning for Improving the Storage Process: Accurate and Automatic Segmentation of Spoiled Areas on Apples. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Yin, J.; Geng, L.; Guo, Y.; Huang, Y.; Song, Y.; Zhao, H. Apple Appearance Quality Classification Method Based on Double Branch Feature Fusion Network. Cogn. Comput. Syst. 2022, 4, 284–293. [Google Scholar] [CrossRef]
- Hu, X.; Hu, Y.; Cai, W.; Xu, Z.; Zhao, P.; Liu, X.; She, Q.; Hu, Y.; Li, J. Automatic Detection of Small Sample Apple Surface Defects Using ASDINet. Foods 2023, 12, 1352. [Google Scholar] [CrossRef]
- Ünal, Z.; Kızıldeniz, T.; Özden, M.; Aktaş, H.; Karagöz, Ö. Detection of Bruises on Red Apples Using Deep Learning Models. Sci. Hortic. 2024, 329, 113021. [Google Scholar] [CrossRef]
- Gao, X.; Li, S.; Su, X.; Li, Y.; Huang, L.; Tang, W.; Zhang, Y.; Dong, M. Application of Advanced Deep Learning Models for Efficient Apple Defect Detection and Quality Grading in Agricultural Production. Agriculture 2024, 14, 1098. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Xiao, J.; Wang, Q.; Sheng, S.; Peng, C.; Zhang, T. Research on Apple Surface Defect Detection Based on Improved YOLOv8. In Proceedings of the 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 15–17 March 2024; Volume 7, pp. 1129–1133. [Google Scholar] [CrossRef]
- Shan, W.; Yue, Y. Apple Defect Detection in Complex Environments. Electronics 2024, 13, 4844. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Shi, R.; Li, J. Detection of Bruised Apples Using Structured Light Stripe Combination Image and Stem/Calyx Feature Enhancement Strategy Coupled with Deep Learning Models. Agric. Commun. 2025, 3, 100074. [Google Scholar] [CrossRef]
- Yogesh; Dubey, A.K.; Arora, R.R.; Mathur, A. Fruit Defect Prediction Model (FDPM) Based on Three-Level Validation. J. Nondestruct. Eval. 2021, 40, 45. [Google Scholar] [CrossRef]
- Tempelaere, A.; Van Doorselaer, L.; He, J.; Verboven, P.; Tuytelaars, T.; Nicolai, B. Deep Learning for Apple Fruit Quality Inspection Using X-Ray Imaging. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Paris, France, 2–6 October 2023; pp. 552–560. [Google Scholar] [CrossRef]
- Valdez, P. Apple Defect Detection Using Deep Learning Based Object Detection for Better Post Harvest Handling. arXiv 2020. [Google Scholar] [CrossRef]
- Khosrokhani, M.; Nasr, A.H. Applications of the Remote Sensing Technology to Detect and Monitor the Rust Disease in the Wheat—A Literature Review. Geocarto Int. 2022, 37, 13268–13290. [Google Scholar] [CrossRef]
- Yang, B.; Xu, Y. Applications of Deep-Learning Approaches in Horticultural Research: A Review. Hortic. Res. 2021, 8, 123. [Google Scholar] [CrossRef]
- Storey, G.; Meng, Q.; Li, B. Leaf Disease Segmentation and Detection in Apple Orchards for Precise Smart Spraying in Sustainable Agriculture. Sustainability 2022, 14, 1458. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, F.; Cao, R. Research on Recognition Method of Leaf Diseases of Woody Fruit Plants Based on Transfer Learning. Sci. Rep. 2022, 12, 15385. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Smirnov, I.; Kutyrev, A.; Kiktev, N. Neural Network for Identifying Apple Fruits on the Crown of a Tree. E3S Web Conf. 2021, 270, 01021. [Google Scholar] [CrossRef]
- Chen, L.; Penney, D.; Jiménez, D. AI for Computer Architecture: Principles, Practice, and Prospects. Synth. Lect. Comput. Archit. 2020, 15, 1–142. [Google Scholar] [CrossRef]
- Bennedsen, D.L.B.S.; Peterson, A.T. Identifying Apple Surface Defects Using Principal Components Analysis and Artificial Neural Networks. Trans. ASABE 2007, 50, 2257–2265. [Google Scholar] [CrossRef]
- Bakshi, A.P.; Shandilya, D.V.K. GSDISC: Design of a GAN-Based Segmentation Model for Efficient Disease Identification and Severity Estimation in Apple Crops. Adv. Eng. Sci. 2022, 54, 3809–3828. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of Hyperspectral Imaging for Plant Disease Detection and Plant Protection: A Technical Perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Chen, X.; Wen, S.; Zhang, L.; Lan, Y.; Ge, Y.; Hu, Y.; Luo, S. A Calculation Method for Cotton Phenotypic Traits Based on Unmanned Aerial Vehicle LiDAR Combined with a Three-Dimensional Deep Neural Network. Comput. Electron. Agric. 2025, 230, 109857. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Jain, A.; Zamir, A.R.; Savarese, S.; Saxena, A. Structural-RNN: Deep Learning on Spatio-Temporal Graphs. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5308–5317. [Google Scholar] [CrossRef]
- Ren, C.; Kim, D.K.; Jeong, D. A Survey of Deep Learning in Agriculture: Techniques and Their Applications. J. Inf. Process. Syst. 2020, 16, 1015–1033. [Google Scholar] [CrossRef]
- Liang, X.; Jia, X.; Huang, W. Real-Time Grading of Defect Apples Using Semantic Segmentation Combination with a Pruned YOLO V4 Network. Foods 2022, 11, 3150. [Google Scholar] [CrossRef]
- Goel, A.; Tung, C.; Lu, Y.-H.; Thiruvathukal, G.K. A Survey of Methods for Low-Power Deep Learning and Computer Vision. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
Pests | Image Type | Number of Images | Model | Accuracy | References |
---|---|---|---|---|---|
Codling moth and general insect | RGB | 4400 | Improved LeNet | 98.50% | [22] |
Codling moth and general insects | RGB | 1300 | Improved VGG16 | 94.38% | [24] |
Codling moth | RGB | 1200 | LeNet VGG16 | 98.30% 88.20% | [23] |
Cydia pomonella | RGB | 5869 545 500 | Double attention-based MobileNetv2 | 96.61% 99.08% 91.60% | [19] |
Leucoptera malifoliella | RGB | 4700 | EfficientDet | 98.00% | [27] |
Moth, Pheromone lure, Carpocapsa | RGB | 18,300 | DNN | 94.80% | [26] |
Pests | RGB | 4440 | AlexNet | 99.53% | [20] |
Nine pests | RGB | 6626 | PestLite based on YOLOV5 | 90.70% | [21] |
Adhesive pests | RGB | 1080 | GMM-DC and the improved Mask-RCNN | 96.75% | [28] |
Location of Diseases | Image Type | Name of Diseases | Number of Images | Model | Accuracy | References |
---|---|---|---|---|---|---|
Fruit | RGB, HSV | Apple ring rot | 5010 | DMCNN | 99.50% | [34] |
RGB | Anthracnose | 640 | YOLOV3 | IOU = 91.70% at a dataset of 700 images | [31] | |
RGB | Marssonia blotch, Alternaria leaf spot, Anthracnose | 2945 | CNN | 99.78% | [32] | |
RGB | Rot, Scab, Blotch | 319 | DCNN | 99.99% | [33] | |
Leaf | RGB | Cedar apple rust, Apple scab, Multiple diseases | 3642 | An ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent | 96.25% | [42] |
RGB | Rust, Scab, Blotch | 6268 | YOLOX-ASSANano | MAP = 91.08% | [38] | |
RGB | General scab, Serious scab, Grey spot, Rust, Serious cedar rust | 2462 | Densenet-121 DNN with regression, Densenet-121 DNN with multi-label classification, Densenet-121 DNN with focal loss function | 93.51%, 93.31% 93.71% | [37] | |
RGB | Marssonia blotch, Alternaria | 404 | ROI-based DCNN | 84.30% | [35] | |
RGB | Marsonina coronaria, Scab | 20,000 | CNN | 99.20% | [36] | |
RGB | Rust, Scab, Multiple diseases | 3651 | TFLite | 91.00% | [41] | |
RGB | Scab, Black rot, Rust | 4562 | Improved VIT | MAP = 84.00% | [40] | |
RGB | Alternaria blotch, Grey spot, Rust | 3900 | YOLOV5-CBAM-C3TR | MAP = 73.40% | [39] | |
RGB | Rust, Scab, Grey spot, Frog eye leaf spot, Powdery mildew, Alternaria blotch | 14550 | ELM-YOLOV8n | MAP = 96.70% | [45] | |
RGB | Rot, Rust, Scab | 9395 | Improved ResNeXt model | 98.94% | [43] | |
RGB | Alternaria blotch, Brown spot, Grey spot, Mosaic, Rust | 2644 | PSPNet-SA | MIOU=97.50% at 1/2 annotated data, MIOU=97.40% at 1/4 annotated data, MIOU=96.50% at 1/8 annotated data | [46] | |
Trunk | RGB | Round sickness, Rot | 3035 | VGG19 | 94.50% | [47] |
RGB | Ring rot, Apple scab | 5390 | CNNDNN-BiLSTM | 88.00% | [48] |
Organ | Image Type | Number of Images | Model | Accuracy | References |
---|---|---|---|---|---|
Flower | RGB | 147 | CNN | 92.70% | [52] |
RGB | 205 | Mask-RCNN | 86.00% | [54] | |
RGB | 100 18 24 18 | DeepLab-ResNet | IOU = 71.40% IOU = 63.00% IOU = 59.00% IOU = 75.40% | [53] | |
RGB | 37,890 | GM-EfficientDet-D5 | 90.01% | [55] | |
RGB | 3005 | YOLOV5s-ShuffleNetv2-Ghost | 91.80% | [56] | |
RGB | 2200 | Improved YOLOV7 | 80.10% | [57] | |
Branch | RGB, Point Cloud | 300 | SegNet | IOU = 67.00% | [58] |
RGB | 509 | SegNet | 94.00% | [59] | |
RGB, Depth images | 521 | U-Net, DeepLabv3, Pix2Pix Generator | IOU = 83.00% IOU = 83.70% IOU = 80.20% | [60] | |
Fruit | RGB | 172 | CROP based on U-Net | 97.50% at 0.5 IOU | [65] |
RGB | 4800 | Improved YOLOV3 | 81.70% at F1 score | [64] | |
RGB | 2403 | CNN | 99.89% | [63] | |
RGB | 20,000 | YOLOV5 | 97.00% | [67] | |
RGB | 4000 | YOLOV5 | 96.30% | [68] |
Image Type | Number Of Images | Model | Accuracy | References |
---|---|---|---|---|
RGB | 958 | CNN | 95.56% for Dataset1 97.81% for Dataset2 97.83% for Dataset3 | [72] |
RGB | 2268 | Tiled Faster R-CNN | 90.00% | [77] |
RGB | 10GB of video | YOLOV7 + MAM | 92.00% | [75] |
RGB | 6700 | CNN-SVM | 99.70% | [73] |
RGB | 4246 | YoloV7-CA | 91.30% | [74] |
RGB | 2071 | AppleYOLO | MAP = 98.50% | [76] |
Image Type | Number of Images | Model | Accuracy | References |
---|---|---|---|---|
RGB | 36,000 | CNN | 99.00% | [82] |
RGB | 11,020 | OB-Net based on a dual-branch structure | 95.64% | [84] |
RGB | 452 | YOLOV3 | MAP = 74.00% | [93] |
RGB | 224 | SSD | MAP = 87.80% | [81] |
RGB | 651 | U-Net based on CNN, Deeplab based on CNN | mIOU = 99.71%, mIOU = 99.99% | [83] |
AC, DC | 568 | CNN | 98.00% | [78] |
RGB | 500 | ASDINet | 98.80% | [85] |
RGB, NIR | 2000 | AlexNet, Inception V3, VGG16 | RGB:74.66%, 79.33%, 86.00% NIR:99.33%,100.00%, 100.00% | [86] |
RGB | 5000 | Improved model based on deep learning | 93.00% | [87] |
RGB | 2400 | SMC-YOLOV8n | mAP = 91.40% | [89] |
RGB, AC, DC, RT | 8000 | YOLOV8n | 99.12% | [90] |
RGB | 800 | Improved YOLOV8 model | MAP = 95.30% | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, M.; Xu, Y.-X.; Miao, Y.-H.; Su, W.-H. A Comprehensive Review of Deep Learning in Computer Vision for Monitoring Apple Tree Growth and Fruit Production. Sensors 2025, 25, 2433. https://doi.org/10.3390/s25082433
Lv M, Xu Y-X, Miao Y-H, Su W-H. A Comprehensive Review of Deep Learning in Computer Vision for Monitoring Apple Tree Growth and Fruit Production. Sensors. 2025; 25(8):2433. https://doi.org/10.3390/s25082433
Chicago/Turabian StyleLv, Meng, Yi-Xiao Xu, Yu-Hang Miao, and Wen-Hao Su. 2025. "A Comprehensive Review of Deep Learning in Computer Vision for Monitoring Apple Tree Growth and Fruit Production" Sensors 25, no. 8: 2433. https://doi.org/10.3390/s25082433
APA StyleLv, M., Xu, Y.-X., Miao, Y.-H., & Su, W.-H. (2025). A Comprehensive Review of Deep Learning in Computer Vision for Monitoring Apple Tree Growth and Fruit Production. Sensors, 25(8), 2433. https://doi.org/10.3390/s25082433