A Reconfigurable Digital Beamformer Implemented on a Field-Programmable Gate Array for Real-Time and Resource-Efficient Direction-of-Arrival Estimation
Abstract
:1. Introduction
- A multi-channel digital beamformer with real-time DOA functionality based on traditional beam scanning is designed. The system allows for the reconfiguration of the number of phase shifts and the size of the weight memory according to the desired DOA estimation angular resolution.
- The specific FPGA hardware implementation of the DOA system is presented, with theoretical derivation provided. The hardware platform used is a Xilinx Kintex-7 series FPGA device, specifically the XC7K70T (XC7K70TFBV676-1).
- Simulation results on the MATLAB R2023b and VIVADO 2023.2 platforms are provided to validate the performance of the reconfigurable digital beamformer under different scanning resolutions, with comparisons made to the results from other classical DOA algorithms.
2. Theoretical Background
3. Hardware Implementation
4. Approach Validation
4.1. Beamforming Mode
4.1.1. Beamforming Pattern
4.1.2. FFT Spectrum
4.2. Angle Estimation Mode
4.2.1. DOA Results
4.2.2. Input-Output Characteristic Curve of DOA
4.2.3. RMSE Performance of Different DOA Methods
4.2.4. Comparison with Other Designs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOA | Direction of Arrival |
MIMO | Multiple Input Multiple Output |
DBF | Digital Beamforming |
ULA | Uniform Linear Array |
CORDIC | Coordinate Rotation Digital Computer |
NCO | Numerically Controlled Oscillator |
DDC | Digital Down Converter |
CIC | Cascaded Integrator-Comb Filter |
ADC | Analog-to-Digital Converter |
AF | Array Factor |
SNR | Signal-to-Noise Ratio |
SIR | Signal-to-Interference Ratio |
RMSE | Root Mean Square Error |
LMS | Least Mean Squares |
FFT | Fast Fourier Transform |
MUSIC | Multiple Signal Classification |
ESPRIT | Estimation of Signal Parameters via Rotational Invariance Techniques |
ROOTMUSIC | Root Multiple Signal Classification |
BRAM | Block RAM |
CWM | Complex Weight Multiplication |
FPGA | Field-Programmable Gate Array |
HPBW | Half-Power Beamwidth |
FNBW | First Null Beamwidth |
FSM | Finite State Machine |
RF | Radio Frequency |
IF | Intermediate Frequency |
References
- Van Veen, B.D.; Buckley, K.M. Beamforming: A Versatile Approach to Spatial Filtering. IEEE ASSP Mag. 1988, 5, 4–24. [Google Scholar] [CrossRef]
- Ali, E.; Ismail, M.; Nordin, R.; Abdulah, N.F. Beamforming Techniques for Massive MIMO Systems in 5G: Overview, Classification, and Trends for Future Research. Front. Inf. Technol. Electron. Eng. 2017, 18, 753–772. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-Wave Massive MIMO Communication for Future Wireless Systems: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 836–869. [Google Scholar] [CrossRef]
- Han, S.; Chih-Lin, I.; Xu, Z.; Rowell, C. Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G. IEEE Commun. Mag. 2015, 53, 186–194. [Google Scholar] [CrossRef]
- Lopes, F.F.; Silva, S.N.; Fernandes, M.A. FPGA Implementation of the Adaptive Digital Beamforming for Massive Array. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Jang, S.; Lu, R.; Jeong, J.; Flynn, M.P. A 1-GHz 16-Element Four-Beam True-Time-Delay Digital Beamformer. IEEE J. Solid-State Circuits 2019, 54, 1304–1314. [Google Scholar] [CrossRef]
- Porcello, J.C. Designing and Implementing Wideband Digital Beamforming for High Bandwidth Communications Using FPGAs. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–7. [Google Scholar]
- Huang, H.; Yang, J.; Huang, H.; Song, Y.; Gui, G. Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System. IEEE Trans. Veh. Technol. 2018, 67, 8549–8560. [Google Scholar] [CrossRef]
- Shu, F.; Qin, Y.; Liu, T.; Gui, L.; Zhang, Y.; Li, J.; Han, Z. Low-Complexity and High-Resolution DOA Estimation for Hybrid Analog and Digital Massive MIMO Receive Array. IEEE Trans. Commun. 2018, 66, 2487–2501. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, Y.; He, L.; Wu, J. Low-Complexity Deep-Learning-Based DOA Estimation for Hybrid Massive MIMO Systems with Uniform Circular Arrays. IEEE Wirel. Commun. Lett. 2020, 9, 83–86. [Google Scholar] [CrossRef]
- Florio, A.; Avitabile, G.; Talarico, C.; Coviello, G. A Reconfigurable Full-Digital Architecture for Angle of Arrival Estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 71, 1443–1455. [Google Scholar] [CrossRef]
- Krim, H.; Viberg, M. Two Decades of Array Signal Processing Research: The Parametric Approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Rao, B.D.; Hari, K.V.S. Performance Analysis of Root-Music. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1939–1949. [Google Scholar] [CrossRef]
- Butt, U.M.; Khan, S.A.; Ullah, A.; Khaliq, A.; Reviriego, P.; Zahir, A. Towards Low Latency and Resource-Efficient FPGA Implementations of the MUSIC Algorithm for Direction of Arrival Estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3351–3362. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Pan, J.; Sun, M.; Wang, Y.; Zhang, X. An Enhanced Spatial Smoothing Technique with ESPRIT Algorithm for Direction of Arrival Estimation in Coherent Scenarios. IEEE Trans. Signal Process. 2020, 68, 3635–3643. [Google Scholar] [CrossRef]
- Jung, Y.; Jeon, H.; Lee, S.; Jung, Y. Scalable ESPRIT Processor for Direction-of-Arrival Estimation of Frequency Modulated Continuous Wave Radar. Electronics 2021, 10, 695. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Li, S.; Zhang, F.; Wang, K. Efficient FFT Based Multi Source DOA Estimation for ULA. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 22–24 October 2021; pp. 739–743. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, C.; Gu, Y.; Shi, Z. FFT-Based DOA Estimation for Coprime MIMO Radar: A Hardware-Friendly Approach. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Avitabile, G.; Florio, A.; Coviello, G. Angle of Arrival Estimation through a Full-Hardware Approach for Adaptive Beamforming. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3033–3037. [Google Scholar] [CrossRef]
- Zaharis, Z.D.; Gravas, I.P.; Lazaridis, P.I.; Yioultsis, T.V.; Antonopoulos, C.S.; Xenos, T.D. An Effective Modification of Conventional Beamforming Methods Suitable for Realistic Linear Antenna Arrays. IEEE Trans. Antennas Propag. 2020, 68, 5269–5279. [Google Scholar] [CrossRef]
- Wu, K.; Ni, W.; Su, T.; Liu, R.P.; Guo, Y.J. Robust Unambiguous Estimation of Angle-of-Arrival in Hybrid Array with Localized Analog Subarrays. IEEE Trans. Wirel. Commun. 2018, 17, 2987–3002. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Zeng, X. Unambiguous Direction-of-Arrival Estimation for Improved Scanning Efficiency in Subarray-Based Hybrid Array. IEEE Trans. Veh. Technol. 2021, 70, 7966–7979. [Google Scholar] [CrossRef]
- Molisch, A.F.; Ratnam, V.V.; Han, S.; Li, Z.; Nguyen, S.L.H.; Li, L.; Haneda, K. Hybrid Beamforming for Massive MIMO: A Survey. IEEE Commun. Mag. 2017, 55, 134–141. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, J.; Lei, T.; Du, D. 28-GHz Indoor Channel Measurements and Analysis of Propagation Characteristics. In Proceedings of the 2014 IEEE 25th International Symposium on Personal, Indoor and Mobile Radio Communications, Washington, DC, USA, 2–5 September 2014; pp. 208–212. [Google Scholar] [CrossRef]
- Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Lomayev, A.; Khoryaev, A. Statistical Channel Model for 60 GHz WLAN Systems in Conference Room Environment. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Bazzi, A.; Slock, D.T.M.; Meilhac, L. On Joint Angle and Delay Estimation in the Presence of Local Scattering. In Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 12–16. [Google Scholar] [CrossRef]
- Hashemi, M.; Koksal, C.E.; Shroff, N.B. Hybrid RF-MmWave Communications to Achieve Low Latency and High Energy Efficiency in 5G Cellular Systems. In Proceedings of the 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Paris, France, 15–19 May 2017. [Google Scholar] [CrossRef]
- Fulton, C.; Yeary, M.; Thompson, D.; Lake, J.; Mitchell, A. Digital Phased Arrays: Challenges and Opportunities. Proc. IEEE 2016, 104, 487–503. [Google Scholar] [CrossRef]
- Ortega, E.; Martínez, A.; Oliva, A.; Sanz, F.; Rodríguez, O.; Prieto, M.; Parra, P.; Silva, D.; Sánchez, S. A Digital Beamforming Receiver Architecture Implemented on a FPGA for Space Applications. Available online: https://arxiv.org/abs/2405.18992 (accessed on 19 February 2025).
- Babur, G.; Manokhin, G.O.; Geltser, A.A.; Shibelgut, A.A. Low-Cost Digital Beamforming on Receive in Phased Array Radar. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1355–1364. [Google Scholar] [CrossRef]
- Komeylian, S.; Paolini, C. Implementation of the Digital QS-SVM-Based Beamformer on an FPGA Platform. Sensors 2023, 23, 1742. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Miao, Q.; Sun, X.; Ren, H.; Ye, L.; Song, K. An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming. Sensors 2022, 22, 2327. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y. A Correlation-Aware Sparse Bayesian Perspective for DOA Estimation with Off-Grid Sources. IEEE Trans. Antennas Propag. 2019, 67, 7661–7666. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Shi, Z.; Haardt, M. Structured Nyquist Correlation Reconstruction for DOA Estimation with Sparse Arrays. IEEE Trans. Signal Process. 2023, 71, 1849–1862. [Google Scholar] [CrossRef]
- Alam, F.; Usman, M.; Alkhammash, H.I.; Wajid, M. Improved Direction-of-Arrival Estimation of an Acoustic Source Using Support Vector Regression and Signal Correlation. Sensors 2021, 21, 2692. [Google Scholar] [CrossRef]
- Chowdary, A.; Bazzi, A.; Chafii, M. On Hybrid Radar Fusion for Integrated Sensing and Communication. IEEE Trans. Wirel. Commun. 2024, 23, 8984–9000. [Google Scholar] [CrossRef]
- Unlersen, F.M.; Yaldiz, E.; Imeci, S.T. FPGA Based Fast Bartlett DoA Estimator for ULA Antenna Using Parallel Computing. Appl. Comput. Electromagn. Soc. J. 2018, 33, 450–459. [Google Scholar]
- Hussain, A.A.; Tayem, N.; Soliman, A.-H.; Radaydeh, R.M. FPGA-Based Hardware Implementation of Computationally Efficient Multi-Source DOA Estimation Algorithms. IEEE Access 2019, 7, 88845–88858. [Google Scholar] [CrossRef]
- Kidav, J.U.; G, S.S. An FPGA-Accelerated Parallel Digital Beamforming Core for Medical Ultrasound Sector Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lv, W.; Fu, L.; Su, Y. Implementation of Wideband DBF for Large Aperture Phased Array Radar Based on FPGA. In Proceedings of the 2023 5th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), Guangzhou, China, 18–20 August 2023; pp. 113–116. [Google Scholar] [CrossRef]
SNR = 0 dB | SNR = 10 dB | SNR = 20 dB | SNR = 30 dB | |
---|---|---|---|---|
0° | −1.1° | −0.1° | 0.6° | 0° |
−30° | −29.8° | −30.5° | −30.5° | −29.8° |
60° | 64° | 59.7° | 59.9° | 59.1° |
Specifications | This Paper | [22] | [40] | [16] | [41] | |
---|---|---|---|---|---|---|
Step = 0.01° | Step = 0.1° | |||||
Algorithm | Beam Scanning | Full Hardware | Bartlett | MUSIC | Cholesky | |
RMS error | 0.25° | 0.44° | 0.26° | - | 0.49° | 0.35° |
SNR (dB) | 30 8 Kintex-7 1/2 | 31.19 | - | 4.37–30 | 0 | |
Array size | 4 | 4 | 6 | 4 | ||
Device | - | Cyclone IV | XC7Z020 | Virtex-5 | ||
Signal Source | 1 | 2 | 1 | 2 | ||
36.02 | 3.62 | - | 0.804 | 2.72 | 3.08 |
Resources | This Paper | [30] | [42] | [43] | |
---|---|---|---|---|---|
Reconfigurable | Conventional | ||||
LUTs | 18,587 | 18,059 | 64,327 | 130,057 | 394,868 |
FF | 18,633 | 18,225 | 52,978 | 157,746 | 718,801 |
BRAM | 16 | 16 | 93 | 320 | 167,490 |
DSPs | 52 | 46 | 773 | 773 | 1045 |
Channels | 8 ULA | 8 ULA | 4 ULA | 128 ULA | 8 × 24 planar |
Beams | 1 | 1 | 1 | 28 | 1 |
Center Frequency | 5.5 MHz | 5.5 MHz | 30 MHz | 2.5 MHz | - |
Clock | 100 MHz | 100 MHz | 200 MHz | 40 MHz | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, L.; Wu, T.; Ma, S. A Reconfigurable Digital Beamformer Implemented on a Field-Programmable Gate Array for Real-Time and Resource-Efficient Direction-of-Arrival Estimation. Sensors 2025, 25, 2497. https://doi.org/10.3390/s25082497
Wang Y, Zhu L, Wu T, Ma S. A Reconfigurable Digital Beamformer Implemented on a Field-Programmable Gate Array for Real-Time and Resource-Efficient Direction-of-Arrival Estimation. Sensors. 2025; 25(8):2497. https://doi.org/10.3390/s25082497
Chicago/Turabian StyleWang, Yuting, Liyuan Zhu, Tianxiang Wu, and Shunli Ma. 2025. "A Reconfigurable Digital Beamformer Implemented on a Field-Programmable Gate Array for Real-Time and Resource-Efficient Direction-of-Arrival Estimation" Sensors 25, no. 8: 2497. https://doi.org/10.3390/s25082497
APA StyleWang, Y., Zhu, L., Wu, T., & Ma, S. (2025). A Reconfigurable Digital Beamformer Implemented on a Field-Programmable Gate Array for Real-Time and Resource-Efficient Direction-of-Arrival Estimation. Sensors, 25(8), 2497. https://doi.org/10.3390/s25082497