Psychophysiological and Dual-Task Effects of Biofeedback and Neurofeedback Interventions in Airforce Pilots: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Initial and Final Evaluation
2.2.2. BFB and NFB Intervention
Intervention Protocol and Materials
Training Sessions
- SMR training in Cz using the BioGraph Infiniti Multimodality Platform and the 360 Suite (Thought Technology, Montreal, QC, Canada) (boat race). Three boats and three bar graphs are shown in the pilot’s visual field. Each boat moves forward when the signal from the matching bar graph is in the ON (or success state). The goal is to not let the other two boats (theta and high beta) get ahead and the center boat (SMR)—which is tied to the reward channel—get ahead. The presence of a green light (prize) or a red light (inhibit) after a boat crosses the finish line (right edge) indicates. the winner.
- HRV preparing with BioGraph Infiniti Multimodality Stage and HRV Suite program (Thought Innovation, Montreal, QC, Canada) (archer shoots arrows at the target): Three prerequisites must be met for this screen to supply criticism: LF must be expanding (or steady), whereas VLF and HF must be dropping (or steady). The screen tracks the rate of add up to control values for VLF, LF, and HF. At this time, the animation starts to move forward, the soundtrack heightens, and focuses are accumulated. Keeping up the victory condition until the arrow hits the target is the pilot’s objective. When the condition is misplaced, the archer puts his arrow back into his quiver.
- Training for respiration using the 360 Suite and the BioGraph Infiniti Multimodality Platform (Thought Technology, Montreal, QC, Canada) 360 Suite (slow breathing): Using a screen that shows a female balancing a ball behind her back at neck height, the goal is to educate the pilot to breathe steadily and gently at a rate of four to eight breaths per minute. If the breathing rate is recognized, the animation centers the ball, the music becomes louder, and points are accumulated. The pilot may close their eyes and enjoy the music and tones, as a tone corresponding to the signal value is audible when the breathing rate increases or decreases.
- Using 360 Suite for arousal and temperature training while driving: Two graphs—one red for arousal and one blue for temperature—as well as a movie that simulates a pilot operating a vehicle are displayed on the computer screen. Each graph has a distinct but complementing piece of music. If the temperature increases and the arousal decreases, the automobile will begin to move, and the two music tracks would sound complete and complementary to one another.
2.3. Instruments, Processing, and Outcomes
2.3.1. BFB and NFB Equipment
2.3.2. Heart Rate Variability (HRV) During Flight Tests
2.3.3. Dual Tasks Equipment
2.3.4. Cognitive Anxiety, Somatic Anxiety, Self-Confidence, and State Anxiety Before the Flight
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veltman, J.A. A comparative study of psychophysiological reactions during simulator and real flight. Int. J. Aviat. Psychol. 2002, 12, 33–48. [Google Scholar] [CrossRef]
- Steinman, Y.; van den Oord, M.H.A.H.; Frings-Dresen, M.H.W.; Sluiter, J.K. Flight performance aspects during military helicopter flights. Aerosp. Med. Hum. Perform. 2019, 90, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.F. A comparison of three cardiac ambulatory recorders using flight data. Int. J. Aviat. Psychol. 2002, 12, 111–119. [Google Scholar] [CrossRef]
- Dahlstrom, N.; Nahlinder, S. Mental workload in aircraft and simulator during basic civil aviation training. Int. J. Aviat. Psychol. 2009, 19, 309–325. [Google Scholar] [CrossRef]
- Wilson, G.F. An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 2002, 12, 3–18. [Google Scholar] [CrossRef]
- Villafaina, S.; Fuentes-García, J.P.; Gusi, N.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Psychophysiological response of military pilots in different combat flight maneuvers in a flight simulator. Physiol. Behav. 2021, 238, 113483. [Google Scholar] [CrossRef]
- Bustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological response to disorientation training in different aircraft pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247. [Google Scholar] [CrossRef]
- Hormeño-Holgado, A.J.; Clemente-Suárez, V.J. Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots. Physiol. Behav. 2019, 208, 112559. [Google Scholar] [CrossRef]
- Fuentes-García, J.P.; Clemente-Suárez, V.J.; Marazuela-Martínez, M.Á.; Tornero-Aguilera, J.F.; Villafaina, S. Impact of real and simulated flights on psychophysiological response of military pilots. Int. J. Environ. Res. Public Health 2021, 18, 787. [Google Scholar] [CrossRef]
- Sauvet, F.; Jouanin, J.C.; Langrume, C.; Van Beers, P.; Papelier, Y.; Dussault, C. Heart rate variability in novice pilots during and after a multi-leg cross-country flight. Aviat. Space Environ. Med. 2009, 80, 862–869. [Google Scholar] [CrossRef]
- dos Santos Pinheiro, A.C.; de Sá, G.B.; de Oliveira, R.V.F.; Matsuura, C.; Bouskela, E.; Farinatti, P.; dos Santos Junior, G.C. Metabolic flexibility associated with flight time among combat pilots of the Brazilian air force. Metabolomics 2024, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; MacNaughton, P.; Cadet, L.R.; Cedeno-Laurent, J.G.; Flanigan, S.; Vallarino, J.; Donnelly-McLay, D.; Christiani, D.C.; Spengler, J.D.; Allen, J.G. Heart rate variability and performance of commercial airline pilots during flight simulations. Int. J. Environ. Res. Public Health 2019, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Kloudova, G.; Stehlik, M. The Enhancement of Training of Military Pilots Using Psychophysiological Methods. Int. J. Psychol. Behav. Sci. 2017, 11, 2600–2607. [Google Scholar]
- Uenking, M. Pilot biofeedback training in the cognitive awareness training study (CATS). In Proceedings of the Modeling and Simulation Technologies Conference, Denver, CO, USA, 14–17 August 2000; p. 4074. [Google Scholar]
- Thomas, M.L.; Russo, M.B. Neurocognitive monitors: Toward the prevention of cognitive performance decrements and catastrophic failures in the operational environment. Aviat. Space Environ. Med. 2007, 78, B144–B152. [Google Scholar]
- Vernon, D.; Egner, T.; Cooper, N.; Compton, T.; Neilands, C.; Sheri, A.; Gruzelier, J. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 2003, 47, 75–85. [Google Scholar] [CrossRef]
- Hammond, D.C. Neurofeedback with anxiety and affective disorders. Child Adolesc. Psychiatr. Clin. 2005, 14, 105–123. [Google Scholar] [CrossRef]
- Justo, A.; González, A. El Mapeo Cerebral Paso a Paso: Interpretando los Datos a Través de la Línea Base y el MiniQ; Amazon Italia Logistica: Torrazza Piamonte, Italy, 2022. [Google Scholar]
- Nagy, B.F.; Pucsok, J.M.; Balogh, L. The Investigation of Biofeedback and N eurofeedback Training on Athletic Performance-systematic Review. J. Sport Psychol./Rev. Psicol. Deporte 2024, 33, 212–217. [Google Scholar]
- Fuentes-García, J.P.; Villafaina, S. Psychophysiological and Performance Effects of Biofeedback and Neurofeedback Interventions in a Top 100 Female Chess Player. Behav. Sci. 2024, 14, 1044. [Google Scholar] [CrossRef]
- Damasio, A.R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1996, 351, 1413–1420. [Google Scholar]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef]
- Brinza, C.; Floria, M.; Covic, A.; Burlacu, A. Measuring heart rate variability in patients admitted with st-elevation myocardial infarction for the prediction of subsequent cardiovascular events: A systematic review. Medicina 2021, 57, 1021. [Google Scholar] [CrossRef] [PubMed]
- Oyelade, T.; Canciani, G.; Carbone, G.; Alqahtani, J.S.; Moore, K.; Mani, A.R. Heart rate variability in patients with cirrhosis: A systematic review and meta-analysis. Physiol. Meas. 2021, 42, 055003. [Google Scholar] [CrossRef] [PubMed]
- Howell, B.C.; Hamilton, D.A. Baseline heart rate variability (HRV) and performance during a set-shifting visuospatial learning task: The moderating effect of trait negative affectivity (NA) on behavioral flexibility. Physiol. Behav. 2022, 243, 113647. [Google Scholar] [CrossRef]
- Luque-Casado, A.; Zabala, M.; Morales, E.; Mateo-March, M.; Sanabria, D. Cognitive performance and heart rate variability: The influence of fitness level. PLoS ONE 2013, 8, e56935. [Google Scholar] [CrossRef] [PubMed]
- Mansikka, H.; Simola, P.; Virtanen, K.; Harris, D.; Oksama, L. Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics 2016, 59, 1344–1352. [Google Scholar] [CrossRef]
- Dalecki, M.; Bock, O.; Guardiera, S. Simulated flight path control of fighter pilots and novice subjects at+ 3 Gz in a human centrifuge. Aviat. Space Environ. Med. 2010, 81, 484–488. [Google Scholar] [CrossRef]
- Tosti, B.; Corrado, S.; Mancone, S.; Di Libero, T.; Carissimo, C.; Cerro, G.; Rodio, A.; da Silva, V.F.; Coimbra, D.R.; Andrade, A. Neurofeedback Training Protocols in Sports: A Systematic Review of Recent Advances in Performance, Anxiety, and Emotional Regulation. Brain Sci. 2024, 14, 1036. [Google Scholar] [CrossRef]
- Shaw, L. Setting the Balance: Assessment of a Biofeedback Intervention for Improving Competitive Performance with a Division I Gymnastics Beam Team. Ph.D. Thesis, Boston University, Boston, MA, USA, 2010. [Google Scholar]
- Ferreira, D.M.; de Sá, P.M.; Ferreira, D.B. The Feeling of Fatigue Scale for Brazilian Fighter Pilots. Aerosp. Med. Hum. Perform. 2025, 96, 39–44. [Google Scholar] [CrossRef]
- Thought Technology. 360 BioGraph Infiniti Reference Manual; Thought Technology Ltd.: Montreal, QC, Canada, 2022. [Google Scholar]
- McElroy, R.D. Mental Math for Pilots, 3rd ed.; Publisher: Newcastle, WA, USA, 2023. [Google Scholar]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Fielenbach, S.; Donkers, F.C.L.; Spreen, M.; Smit, A.; Bogaerts, S. Theta/SMR neurofeedback training works well for some forensic psychiatric patients, but not for others: A sham-controlled clinical case series. Int. J. Offender Ther. Comp. Criminol. 2019, 63, 2422–2439. [Google Scholar] [CrossRef]
- Hosseini, F.; Norouzi, E. Effect of neurofeedback training on self-talk and performance in elite and non-elite volleyball players. Med. Sport 2017, 70, 344–353. [Google Scholar] [CrossRef]
- Morales-Sánchez, V.; Falcó, C.; Hernández-Mendo, A.; Reigal, R.E. Efficacy of Electromyographic biofeedback in muscle recovery after meniscectomy in soccer players. Sensors 2022, 22, 4024. [Google Scholar] [CrossRef]
- de Rezende Barbosa, M.P.d.C.; Silva, N.T.d.; de Azevedo, F.M.; Pastre, C.M.; Vanderlei, L.C.M. Comparison of P olar® RS 800G3™ heart rate monitor with P olar® S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 2016, 36, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Cox, R.H.; Martens, M.P.; Russell, W.D. Measuring anxiety in athletics: The revised competitive state anxiety inventory–2. J. Sport Exerc. Psychol. 2003, 25, 519–533. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gonzalez-Reigosa, F.; Martinez-Urrutia, A.; Natalicio, L.F.S.; Natalicio, D.S. The state-trait anxiety inventory. Rev. Interam. Psicol./Interam. J. Psychol. 1971, 5, 145–158. [Google Scholar]
- Fernández-Blázquez, M.A.; Ávila-Villanueva, M.; López-Pina, J.A.; Zea-Sevilla, M.A.; Frades-Payo, B. Propiedades psicométricas de una nueva versión abreviada del State-Trait Anxiety Inventory (STAI) para valorar el nivel de ansiedad en personas mayores. Neurología 2015, 30, 352–358. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Lipponen, J.A.; Tarvainen, M.P. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J. Med. Eng. Technol. 2019, 43, 173–181. [Google Scholar] [CrossRef]
- Coolican, H. Research Methods and Statistics in Psychology; Psychology Press: East Sussex, UK, 2017. [Google Scholar]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Dessy, E.; Van Puyvelde, M.; Mairesse, O.; Neyt, X.; Pattyn, N. Cognitive performance enhancement: Do biofeedback and neurofeedback work? J. Cogn. Enhanc. 2018, 2, 12–42. [Google Scholar] [CrossRef]
- Lomo, T. Frequency Potentiation of Excitatory Synaptic Activity in Dentate Area of Hippocampal Formation; Blackwell Science Ltd.: Oxford, UK, 1966; p. 128. [Google Scholar]
- Dousset, C.; Wyckmans, F.; Monseigne, T.; Fourdin, L.; Boulanger, R.; Sistiaga, S.; Ingels, A.; Kajosch, H.; Noël, X.; Kornreich, C. Sensori-motor neurofeedback improves inhibitory control and induces neural changes: A placebo-controlled, double-blind, event-related potentials study. Int. J. Clin. Health Psychol. 2024, 24, 100501. [Google Scholar] [CrossRef]
- Kayıran, S.; Dursun, E.; Dursun, N.; Ermutlu, N.; Karamürsel, S. Neurofeedback intervention in fibromyalgia syndrome; a randomized, controlled, rater blind clinical trial. Appl. Psychophysiol. Biofeedback 2010, 35, 293–302. [Google Scholar] [CrossRef]
- Sabaghypour, S.; Navi, F.F.T.; Basiri, N.; Shakibaei, F.; Zirak, N. Differential roles of brain oscillations in numerical processing: Evidence from resting-state EEG and mental number line. Front. Hum. Neurosci. 2024, 18, 1357900. [Google Scholar] [CrossRef]
- Ziółkowski, A.; Gorkovenko, A.; Pasek, M.; Włodarczyk, P.; Zarańska, B.; Dornowski, M.; Graczyk, M. EEG correlates of attention concentration in successful amateur boxers. Neurophysiology 2014, 46, 422–427. [Google Scholar] [CrossRef]
- Alba, G.; Terrasa, J.L.; Vila, J.; Montoya, P.; Munoz, M.A. EEG-heart rate connectivity changes after sensorimotor rhythm neurofeedback training: Ancillary study. Neurophysiol. Clin. 2022, 52, 58–68. [Google Scholar] [CrossRef]
- Boulay, C.B.; Sarnacki, W.A.; Wolpaw, J.R.; McFarland, D.J. Trained modulation of sensorimotor rhythms can affect reaction time. Clin. Neurophysiol. 2011, 122, 1820–1826. [Google Scholar] [CrossRef]
- Brito, M.A.d.; Fernandes, J.R.; Esteves, N.S.A.; Müller, V.T.; Alexandria, D.B.; Pérez, D.I.V.; Slimani, M.; Brito, C.J.; Bragazzi, N.L.; Miarka, B. The effect of neurofeedback on the reaction time and cognitive performance of athletes: A systematic review and meta-analysis. Front. Hum. Neurosci. 2022, 16, 868450. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Wang, K.-P.; Hung, C.-L.; Tu, Y.-L.; Huang, C.-J.; Koester, D.; Schack, T.; Hung, T.-M. Higher power of sensorimotor rhythm is associated with better performance in skilled air-pistol shooters. Psychol. Sport Exerc. 2017, 32, 47–53. [Google Scholar] [CrossRef]
- Kober, S.E.; Witte, M.; Stangl, M.; Väljamäe, A.; Neuper, C.; Wood, G. Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clin. Neurophysiol. 2015, 126, 82–95. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Perna, G.; Riva, A.; Defillo, A.; Sangiorgio, E.; Nobile, M.; Caldirola, D. Heart rate variability: Can it serve as a marker of mental health resilience?: Special Section on “Translational and Neuroscience Studies in Affective Disorders” Section Editor, Maria Nobile MD, PhD. J. Affect. Disord. 2020, 263, 754–761. [Google Scholar] [CrossRef]
- Kolken, Y.; Bouny, P.; Arns, M. Effects of SMR neurofeedback on cognitive functions in an adult population with sleep problems: A tele-neurofeedback study. Appl. Psychophysiol. Biofeedback 2023, 48, 27–33. [Google Scholar] [CrossRef]
- Ferguson, K.N.; Hall, C. Sport biofeedback: Exploring implications and limitations of its use. Sport Psychol. 2020, 34, 232–241. [Google Scholar] [CrossRef]
- Pusenjak, N.; Grad, A.; Tusak, M.; Leskovsek, M.; Schwarzlin, R. Can biofeedback training of psychophysiological responses enhance athletes’ sport performance? A practitioner’s perspective. Physician Sportsmed. 2015, 43, 287–299. [Google Scholar] [CrossRef]
- Mirifar, A.; Beckmann, J.; Ehrlenspiel, F. Neurofeedback as supplementary training for optimizing athletes’ performance: A systematic review with implications for future research. Neurosci. Biobehav. Rev. 2017, 75, 419–432. [Google Scholar] [CrossRef]
- Farraj, N.; Reiner, M. Applications of Alpha Neurofeedback Processes for Enhanced Mental Manipulation of Unfamiliar Molecular and Spatial Structures. Appl. Psychophysiol. Biofeedback 2024, 49, 365–382. [Google Scholar] [CrossRef]
- Moreira, P.E.D.; Dieguez, G.T.d.O.; Bredt, S.d.G.T.; Praça, G.M. The acute and chronic effects of dual-task on the motor and cognitive performances in athletes: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 1732. [Google Scholar] [CrossRef]
- Mohan, A.; Simonovic, B.; Vione, K.C.; Stupple, E. Examining flight time, cognitive reflection, workload, stress and metacognition on decision making performance for pilots during flight simulation. Ergonomics 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rydzik, Ł.; Wąsacz, W.; Ambroży, T.; Javdaneh, N.; Brydak, K.; Kopańska, M. The use of neurofeedback in sports training: Systematic review. Brain Sci. 2023, 13, 660. [Google Scholar] [CrossRef]
- Kim, H.; Tobisawa, S.; Park, H.; Kim, J.; Lee, J.; Shin, D. Aging-induced degradation in tracking performance in three-dimensional movement. SICE J. Control Meas. Syst. Integr. 2024, 17, 239–246. [Google Scholar] [CrossRef]
Phase A Exercises (45 min) | Phase B Exercises (45 min) |
---|---|
|
|
Participants | Control Group Mean (SD) | Experimental Group Mean (SD) | p-Value |
---|---|---|---|
Age (years) | 22.33 (0.52) | 23.33 (1.03) | 0.132 |
Flying experience | 2 | 2 | 1 |
Height (cm) | 180 (4.29) | 179.33 (5.82) | 0.937 |
Weight (kg) | 80.33 (4.72) | 76 (7.24) | 0.310 |
BMI (kg/m2) | 24.78 (0.64) | 23.60 (1.44) | 0.180 |
Variables | Within Group Comparison | Between Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Z | p-Value | Effect Size | Z | p-Value | Effect Size | ||
Skin conductance (μS) | NFB and BFB | 3.70 (2.37) | 2.18 (1.11) | −1.992 | 0.046 * | 0.813 | −1.278 | 0.201 | 0.369 |
Control | 2.37 (1.48) | 2 (0.86) | −1.214 | 0.225 | 0.496 | ||||
Respiration rate (breaths per minute) | NFB and BFB | 12.32 (2.59) | 6.05 (0.53) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.580 |
Control | 12.59 (3.18) | 11.26 (2.03) | −0.674 | 0.500 | 0.275 | ||||
Temperature (°C) | NFB and BFB | 32.12 (2.07) | 32.53 (2.55) | −1.572 | 0.116 | 0.642 | −1.095 | 0.273 | 0.316 |
Control | 30.64 (3.27) | 30.68 (3.84) | −0.135 | 0.893 | 0.055 | ||||
Heart rate (beats/min) | NFB and BFB | 65.28 (6.97) | 62.65 (5.48) | −1.153 | 0.249 | 0.062 | −1.461 | 0.144 | 0.422 |
Control | 63.77 (9.42) | 68.43 (9.04) | −0.944 | 0.345 | 0.385 | ||||
SDNN (ms) | NFB and BFB | 93.68 (18.90) | 150.17 (54.12) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.236 |
Control | 102.67 (39.84) | 99.11 (33.45) | −0.674 | 0.500 | 0.275 | ||||
LF/HF | NFB and BFB | 4.41 (2.42) | 18.10 (8.28) | −2.201 | 0.028 * | 0.900 | −2.739 | 0.006 * | 0.791 |
Control | 2.33 (3.17) | 1.42 (0.44) | −0.135 | 0.893 | 0.055 | ||||
pNN 50 (%) | NFB and BFB | 24.12 (6.98) | 31.88 (4.82) | −2.201 | 0.028 * | 0.900 | −0.365 | 0.715 | 0.105 |
Control | 21.22 (8.94) | 23.22 (10.83) | −0.405 | 0.686 | 0.165 | ||||
Theta/SMR (uV) | NFB and BFB | 2.32 (0.41) | 1.95 (0.54) | −2.207 | 0.027 * | 0.901 | −2.379 | 0.017 * | 0.687 |
Control | 2.27 (0.33) | 2.36 (0.29) | −1.214 | 0.225 | 0.496 |
Variables | Within-Group Comparison | Between-Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Z | p-Value | Effect Size | Z | p-Value | Effect Size | ||
Skin conductance (μS) | NFB and BFB | 4.62 (3.08) | 2.82 (1.75) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.580 |
Control | 2.85 (1.97) | 2.92 (2.18) | −0.271 | 0.786 | 0.111 | ||||
Respiration rate (breaths per minute) | NFB and BFB | 12.57 (3.27) | 6.76 (132) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.580 |
Control | 13.85 (2.03) | 12.78 (2.48) | −1.214 | 0.225 | 0.496 | ||||
Temperature (°C) | NFB and BFB | 32.56 (1.26) | 33.04 (1.84) | −0.365 | 0.715 | 0.149 | −0.245 | 0.806 | 0.071 |
Control | 30.58 (2.82) | 30.58 (3.73) | −0.405 | 0.686 | 0.165 | ||||
Heart rate (beats/min) | NFB and BFB | 73.69 (4.61) | 69.54 (2.85) | −2.201 | 0.028 * | 0.900 | −1.643 | 0.100 | 0.474 |
Control | 69.45 (6.63) | 72.58 (8.71) | −0.674 | 0.500 | 0.275 | ||||
SDNN (ms) | NFB and BFB | 79.99 (35.48) | 125.63 (40.98) | −2.201 | 0.028 * | 0.900 | −2.191 | 0.028 * | 0.632 |
Control | 84.57 (27.98) | 79.83 (16.74) | −1.214 | 0.225 | 0.496 | ||||
LF/HF | NFB and BFB | 3.28 (1.33) | 7.39 (3.18) | −2.201 | 0.028 * | 0.900 | −2.191 | 0.028 * | 0.632 |
Control | 1.41 (089) | 2.30 (2.06) | −0.944 | 0.345 | 0.385 | ||||
pNN 50 (%) | NFB and BFB | 13.60 (10.68) | 16.62 (9.12) | −0.943 | 0.249 | 0.385 | −0.548 | 0.584 | 0.159 |
Control | 17.45 (8.07) | 18.74 (7.03) | −0.674 | 0.500 | 0.275 | ||||
Theta/SMR (uV) | NFB and BFB | 2.56 (0.39) | 2.18 (0.39) | −2.201 | 0.028 * | 0.900 | −1.461 | 0.144 | 0.422 |
Control | 2.46 (0.38) | 2.25 (0.46) | −0.552 | 0.581 | 0.225 |
Variables | Within-Group Comparison | Between-Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Z | p-Value | Effect Size | Z | p-Value | Effect Size | ||
Skin conductance (μS) | NFB and BFB | 5.69 (3.44) | 3.09 (1.40) | −2.201 | 0.028 * | 0.900 | −2.191 | 0.028 * | 0.632 |
Control | 3.98 (231) | 4.28 (2.63) | −0.135 | 0.893 | 0.055 | ||||
Respiration rate (breaths per minute) | NFB and BFB | 13.41 (1.67) | 10.19 (1.75) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.580 |
Control | 13.68 (1.99) | 12.92 (1.86) | −0.674 | 0.500 | 0.275 | ||||
Temperature (°C) | NFB and BFB | 32.51 (1.19) | 33.30 (1.55) | −1.826 | 0.068 | 0.745 | −1.470 | 0.142 | 0.424 |
Control | 30.67 (1.95) | 30.24 (3.36) | −0.944 | 0.345 | 0.385 | ||||
Heart rate (beats/min) | NFB and BFB | 80.42 (9.80) | 72.55 (2.94) | −1.992 | 0.046 * | 0.813 | −1.095 | 0.273 | 0.316 |
Control | 76.34 (13.75) | 76.77 (9.88) | −0.405 | 0.686 | 0.165 | ||||
SDNN (ms) | NFB and BFB | 68.98 (17.31) | 95.21 (23.77) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.580 |
Control | 77.85 (18.92) | 83.50 (7.20) | −0.944 | 0.345 | 0.385 | ||||
LF/HF | NFB and BFB | 2.10 (1.33) | 3.67 (4.54) | −0.314 | 0.753 | 0.128 | −0.183 | 0.855 | 0.053 |
Control | 1.47 (0.77) | 1.88 (1.42) | −0.674 | 0.500 | 0.275 | ||||
pNN 50 (%) | NFB and BFB | 10.59 (3.70) | 12.83 (5.54) | −1.363 | 0.173 | 0.556 | −1.095 | 0.273 | 0.316 |
Control | 13.02 (1.57) | 12.83 (2.96) | −0.135 | 0.893 | 0.005 | ||||
Theta/SMR (uV) | NFB and BFB | 2.78 (0.62) | 2.29 (0.58) | −2.201 | 0.028 * | 0.900 | −2.008 | 0.045 * | 0.580 |
Control | 2.78 (0.39) | 2.67 (0.41) | −0.135 | 0.893 | 0.005 | ||||
Number of correct operations | NFB and BFB | 32.67 (7.97) | 48.67 (12.86) | −2.207 | 0.027 * | 0.901 | −2.562 | 0.010 * | 0.740 |
Control | 30.50 (7.01) | 34 (6.74) | −1.095 | 0.273 | 0.447 | ||||
% of incorrect operations | NFB and BFB | 10.88 (6.86) | 3.33 (3.08) | −2.023 | 0.043 * | 0.826 | −2.287 | 0.022 * | 0.660 |
Control | 9.14 (8.46) | 9.44 (6.90) | −0.365 | 0.715 | 0.149 |
Variables | Within Group Comparison | Between Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Z | p-Value | Effect Size | Z | p-Value | Effect Size | ||
Number of taps | NFB and BFB | 36.67 (4.68) | 38.17 (3.43) | −1.063 | 0.288 | 0.434 | −0.275 | 0.783 | 0.079 |
Control | 30.67 (6.65) | 28.800 (11.69) | −0.730 | 0.465 | 0.298 | ||||
Reaction time (ms) | NFB and BFB | 668.46 (97.98) | 521.87 (54.79) | −2.201 | 0.028 * | 0.899 | −0.548 | 0.584 | 0.158 |
Control | 873.53 (290.46) | 1039.53 (817.73) | −0.730 | 0.465 | 0.298 | ||||
Ratio tap/reaction time (ms) | NFB and BFB | 0.06 (0.02) | 0.07 (0.01) | −2.201 | 0.028 * | 0.899 | −0.730 | 0.465 | 0.211 |
Control | 0.04 (0.02) | 0.04 (0.03) | 0 | 1 | 0 |
Variables | Within-Group Comparison | Between-Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Z | p-Value | Effect Size | Z | p-Value | Effect Size | ||
Cognitive anxiety | NFB and BFB | 2.13 (0.10) | 1.60 (0.25) | −2.214 | 0.027 * | 0.904 | −0.746 | 0.456 | 0.215 |
Control | 2.33 (056) | 1.84 (0.65) | −1.219 | 0.223 | 0.498 | ||||
Somatic anxiety | NFB and BFB | 1.93 (0.33) | 1.52 (0.53) | −1.997 | 0.046 * | 0.815 | −2.216 | 0.027 * | 0.640 |
Control | 1.57 (0.43) | 1.86 (0.66) | −1.342 | 0.180 | 0.548 | ||||
Self-confidence | NFB and BFB | 3.23 (0.41) | 3.83 (0.32) | −2.032 | 0.042 * | 0.830 | −1.878 | 0.060 | 0.542 |
Control | 3.27 (0.59) | 3.54 (0.46) | −0.447 | 0.665 | 0.182 | ||||
State anxiety | NFB and BFB | 22.17 (3.97) | 10.83 (8.38) | −2.201 | 0.028 * | 0.899 | −1.742 | 0.081 | 0.503 |
Control | 16.17 (5.78) | 16 (11.98) | −0.406 | 0.684 | 0.166 |
Variables | Within-Group Comparison | Between-Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Z | p-Value | Effect Size | Z | p-Value | Effect Size | ||
Mean HR | NFB and BFB | 120.46 (20.42) | 111.80 (15.35) | −0.365 | 0.715 | 0.182 | −0.577 | 0.686 | 0.204 |
Control | 101.93 (14.15) | 115.08 (12.09) | −1.826 | 0.068 | 0.913 | ||||
Mean RR | NFB and BFB | 526.30 (89.01) | 563.54 (77.70) | −0.730 | 0.435 | 0.365 | −1.155 | 0.248 | 0.408 |
Control | 616.68 (91.48) | 533.39 (57.28) | −1.826 | 0.068 | 0.913 | ||||
SDNN | NFB and BFB | 40.11 (16.21) | 70.61 (47.93) | −1.461 | 0.144 | 0.730 | −2.021 | 0.043 * | 0.714 |
Control | 73.75 (39.78) | 43.51 (14.01) | −1.826 | 0.068 | 0.913 | ||||
RMSSD | NFB and BFB | 14.10 (7.32) | 28.21 (20.40) | −1.461 | 0.144 | 0.730 | −1.443 | 0.149 | 0.510 |
Control | 33.91 (21.68) | 16.22 (8.87) | −1.826 | 0.068 | 0.913 | ||||
pNN50 | NFB and BFB | 2.14 (2.25) | 7.99 (7.87) | −1.461 | 0.144 | 0.730 | −1.732 | 0.083 | 0.612 |
Control | 11.46 (9.77) | 3.44 (4.97) | −1.826 | 0.068 | 0.913 | ||||
pVLF | NFB and BFB | 5.53 (0.93) | 6.44 (1.56) | −0.365 | 0.715 | 0.182 | −0.189 | 0.773 | 0.067 |
Control | 4.90 (1.44) | 5.02 (2.07) | −0.365 | 0.715 | 0.182 | ||||
pLF | NFB and BFB | 74.29 (2.39) | 69.95 (6.92) | −0.730 | 0.435 | 0.365 | −1.443 | 0.149 | 0.404 |
Control | 71.69 (7.86) | 73.95 (5.77) | −1.461 | 0.144 | 0.730 | ||||
pHF | NFB and BFB | 20.19 (2.30) | 23.60 (7.24) | −0.730 | 0.465 | 0.365 | −1.443 | 0.149 | 0.404 |
Control | 23.40 (6.99) | 21.02 (6.69) | −1.461 | 0.144 | 0.730 | ||||
LF/HF | NFB and BFB | 4.53 (0.81) | 4.12 (1.21) | <0.001 | 1 | <0.001 | −0.866 | 0.386 | 0.306 |
Control | 4.01 (0.98) | 4.57 (1.41) | −1.826 | 0.068 | 0.913 | ||||
SD1 | NFB and BFB | 9.97 (5.18) | 19.95 (14.43) | −1.461 | 0.144 | 0.730 | −1.443 | 0.149 | 0.404 |
Control | 23.40 (6.99) | 11.47 (6.27) | −1.826 | 0.068 | 0.913 | ||||
SD2 | NFB and BFB | 55.79 (22.33) | 97.60 (66.14) | −1.461 | 0.144 | 0.730 | −2.021 | 0.043 * | 0.714 |
Control | 101.33 (54.17) | 60.29 (18.95) | −1.826 | 0.068 | 0.913 | ||||
SampEn | NFB and BFB | 0.80 (0.12) | 0.86 (0.24) | −0.730 | 0.465 | 0.365 | −0.577 | 0.564 | 0.204 |
Control | 1.01 (0.17) | 0.79 (0.13) | −1.604 | 0.109 | 0.802 | ||||
DFA | NFB and BFB | 1.12 (0.07) | 1.09 (0.10) | −0.730 | 0.465 | 0.365 | −1.155 | 0.248 | 0.408 |
Control | 1.01 (0.08) | 1.08 (0.09) | −1.069 | 0.285 | 0.534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-García, J.P.; Leon-Llamas, J.L.; Villafaina, S. Psychophysiological and Dual-Task Effects of Biofeedback and Neurofeedback Interventions in Airforce Pilots: A Pilot Study. Sensors 2025, 25, 2580. https://doi.org/10.3390/s25082580
Fuentes-García JP, Leon-Llamas JL, Villafaina S. Psychophysiological and Dual-Task Effects of Biofeedback and Neurofeedback Interventions in Airforce Pilots: A Pilot Study. Sensors. 2025; 25(8):2580. https://doi.org/10.3390/s25082580
Chicago/Turabian StyleFuentes-García, Juan Pedro, Juan Luis Leon-Llamas, and Santos Villafaina. 2025. "Psychophysiological and Dual-Task Effects of Biofeedback and Neurofeedback Interventions in Airforce Pilots: A Pilot Study" Sensors 25, no. 8: 2580. https://doi.org/10.3390/s25082580
APA StyleFuentes-García, J. P., Leon-Llamas, J. L., & Villafaina, S. (2025). Psychophysiological and Dual-Task Effects of Biofeedback and Neurofeedback Interventions in Airforce Pilots: A Pilot Study. Sensors, 25(8), 2580. https://doi.org/10.3390/s25082580