Improved Exponential and Cost-Weighted Hybrid Algorithm for Mobile Robot Path Planning
Abstract
:1. Introduction
2. Improvement of A* Algorithm
2.1. Basic Law of Traditional A* Algorithm
2.2. Ways to Improve the A* Algorithm
2.2.1. Improve the Heuristic Function
2.2.2. Improved Neighborhood Search Strategy
- As shown in Figure 2a,c, let the subnode be . If the obstacle is located at or , then , , or , , are removed;
- As shown in Figure 2b, let the subnode be or , then , , or , , are removed;
- As shown in Figure 2d, if the obstacle is located on opposite sides of the diagonal of the child node, it is not necessary to remove the child node.
2.2.3. Smoothing Curve
2.2.4. Result
2.3. Hybrid Algorithm
2.4. Processing of Sensor Noise
3. Experiment Verification
3.1. The Structure of Robot
3.2. The Selection of Slam Algorithms
3.3. Simulation Experiments
3.4. Real Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DWA | Dynamic Window Approach |
References
- Han, D.; Jung, S.; Lee, M.; Kim, J.; Park, C. Building a practical Wi-Fi-based indoor navigation system. IEEE Pervasive Comput. 2014, 13, 72–79. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, S.; Li, C. Path planning for outdoor mobile robots based on IDDQN. IEEE Access 2024, 12, 51012–51025. [Google Scholar] [CrossRef]
- Yang, F.; Fang, X.; Gao, F.; Zhou, X.; Li, H.; Jin, H.; Song, Y. Obstacle avoidance path planning for UAV based on improved RRT algorithm. Discret. Dyn. Nat. Soc. 2022, 2022, 4544499. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Gao, X.; Yan, Y.; Zhao, Y. Path planning and obstacle avoidance control of UUV based on an enhanced A* algorithm and MPC in dynamic environment. Ocean Eng. 2024, 302, 117584. [Google Scholar] [CrossRef]
- Ntakolia, C.; Moustakidis, S.; Siouras, A. Autonomous path planning with obstacle avoidance for smart assistive systems. Expert Syst. Appl. 2023, 213, 119049. [Google Scholar] [CrossRef]
- Wang, H.; Lou, S.; Jing, J.; Wang, Y.; Liu, W.; Liu, T. The EBS-A* algorithm: An improved A* algorithm for path planning. PLoS ONE 2022, 17, e0263841. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Chen, F.; Wu, Y.; Zeng, H.; Ouyang, S.; Guan, J. Research on path planning with the integration of adaptive A-star algorithm and improved dynamic window approach. Electronics 2024, 13, 455. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; Zhu, W. Global path planning of unmanned surface vehicle based on improved A-Star algorithm. Sensors 2023, 23, 6647. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Wang, X. Research on Trajectory Planning of Autonomous Vehicles in Constrained Spaces. Sensors 2024, 24, 5746. [Google Scholar] [CrossRef]
- Xu, B. Precise path planning and trajectory tracking based on improved A-star algorithm. Meas. Control 2024, 57, 1025–1037. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, J.; Yin, W.; Yang, H.; Yu, H.; Liang, Y.; Tong, J. Path planning strategies for logistics robots: Integrating enhanced A-star algorithm and DWA. Electron. Lett. 2024, 60, e70090. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zhang, Y.; Li, Y.; Wang, J. A hybrid path planning algorithm for unmanned surface vehicles in complex environment with dynamic obstacles. IEEE Access 2019, 7, 126439–126449. [Google Scholar] [CrossRef]
- Kumar, S.; Parhi, D.R.; Kashyap, A.K.; Pradhan, S.K. Static and dynamic path optimization of multiple mobile robot using hybridized fuzzy logic-whale optimization algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5718–5735. [Google Scholar] [CrossRef]
- Akay, R.; Yildirim, M.Y. Multi-strategy and self-adaptive differential sine–cosine algorithm for multi-robot path planning. Expert Syst. Appl. 2023, 232, 120849. [Google Scholar] [CrossRef]
- Sheng, W.; Li, B.; Zhong, X. Autonomous parking trajectory planning with tiny passages: A combination of multistage hybrid A-star algorithm and numerical optimal control. IEEE Access 2021, 9, 102801–102810. [Google Scholar] [CrossRef]
- Meng, T.; Yang, T.; Huang, J.; Zhang, X.; Li, H. Improved hybrid A-star algorithm for path planning in autonomous parking system based on multi-stage dynamic optimization. Int. J. Automot. Technol. 2023, 24, 459–468. [Google Scholar] [CrossRef]
- Dang, C.V.; Ahn, H.; Lee, D.S.; Kim, J. Improved analytic expansions in hybrid A-star path planning for non-holonomic robots. Appl. Sci. 2022, 12, 5999. [Google Scholar] [CrossRef]
- Noto, M.; Sato, H. A method for the shortest path search by extended Dijkstra algorithm. In Proceedings of the 2000 IEEE International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 8–11 October 2000; Part 3. pp. 2316–2320. [Google Scholar] [CrossRef]
- García, A. Greedy algorithms: A review and open problems. arXiv 2024, arXiv:2408.08935. [Google Scholar] [CrossRef]
- Palacín, J.; Rubies, E.; Bitriá, R.; Martínez, C. Path Planning of a Mobile Delivery Robot Operating in a Multi-Story Building Based on a Predefined Navigation Tree. Sensors 2023, 23, 8795. [Google Scholar] [CrossRef]
- Albert, B.; Antoine, V.; Koko, J. ECM+: An improved Evidential c-means with adaptive distance. Fuzzy Sets Syst. 2024, 498, 109168. [Google Scholar] [CrossRef]
- Fransen, K.; van Eekelen, J. Efficient path planning for automated guided vehicles using A* algorithm incorporating turning costs in search heuristic. Int. J. Prod. Res. 2023, 61, 707–725. [Google Scholar] [CrossRef]
- Lai, R.; Wu, Z.; Liu, X.; Chen, Z. Fusion algorithm of the improved A* algorithm and segmented Bezier curves for the path planning of mobile robots. Sustainability 2023, 15, 2483. [Google Scholar] [CrossRef]
- Huang, J.; Chen, C.; Shen, J.; Liu, G.; Xu, F. A self-adaptive neighborhood search A-star algorithm for mobile robots global path planning. Comput. Electr. Eng. 2025, 123, 110018. [Google Scholar] [CrossRef]
- Chung, M.A.; Lin, C.W. An improved localization of mobile robotic system based on AMCL algorithm. IEEE Sens. J. 2021, 22, 900–908. [Google Scholar] [CrossRef]
- Huo, L.; Liu, Y.; Yang, Y.; Chen, J. Research on product surface quality inspection technology based on 3D point cloud. Adv. Mech. Eng. 2023, 15, 16878132231159523. [Google Scholar] [CrossRef]
- Li, Q.; Xue, Y. Total leaf area estimation based on the total grid area measured using mobile laser scanning. Comput. Electron. Agric. 2023, 204, 107503. [Google Scholar] [CrossRef]
- Varanasi, S.D.; Tammana, M.; Megalingam, R.K. Robotic Navigation Unveiled: A Comprehensive Study of GMapping, Hector Slam, and Cartographer. In Proceedings of the 2024 3rd International Conference for Innovation in Technology (INOCON), Bangalore, India, 1–3 March 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ghazal, M.T.; Al-Ghadhanfari, M.; Waisi, N.Z. Simulation of autonomous navigation of TurtleBot robot system based on robot operating system. Bull. Electr. Eng. Inf. 2024, 13, 1238–1244. [Google Scholar] [CrossRef]
- Chen, H. Development of Teaching Material for Robot Operating System (ROS): Creation and Control of Robots. Master’s Thesis, Aalto University, Espoo, Finland, 2022. [Google Scholar]
- Nocito, M. URDF Studio: Tools for the Visualization and Verification of Universal Robot Description Format. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2024. [Google Scholar]
- Schneider, D.; Kastner, L.; Schick, B.; Rohde, F. fROS: A Generic Fieldbus Framework for ROS. IEEE Trans. Intell. Veh. 2024, 9, 1–12. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Zhuang, Y.; Tang, J. Deep sensor fusion between 2D laser scanner and IMU for mobile robot localization. IEEE Sens. J. 2019, 21, 8501–8509. [Google Scholar] [CrossRef]
- Dong, D.; Dong, S.; Zhang, L.; Cai, Y. Path Planning Based on A-Star and Dynamic Window Approach Algorithm for Wild Environment. J. Shanghai Jiaotong Univ. 2024, 29, 725–736. [Google Scholar] [CrossRef]
Map | Algorithm | Nodes | Costs | Turning Points | Time |
---|---|---|---|---|---|
Grid 1 | Traditional A-star | 821 | 1341 | 435 | 5.32 |
Improved A-star | 634 | 1034 | 386 | 4.23 | |
Grid 2 | Traditional A-star | 756 | 1165 | 378 | 5.76 |
Improved A-star | 687 | 1067 | 329 | 4.17 | |
Grid 3 | Traditional A-star | 823 | 1234 | 398 | 5.10 |
Improved A-star | 712 | 1123 | 319 | 3.67 |
Grid Map | Algorithm | Path Length | Operation Time | Searching Nodes | Path Cost | Turning Points |
---|---|---|---|---|---|---|
10% obstacles | Traditional A-star | 213.13 | 4.67 | 265 | 376 | 156 |
Reference | 209.31 | 4.17 | 256 | 357 | 143 | |
Ours | 201.35 | 3.65 | 234 | 315 | 125 | |
20% obstacles | Traditional A-star | 246.49 | 6.85 | 376 | 487 | 256 |
Reference | 235.67 | 6.19 | 356 | 416 | 242 | |
Ours | 213.95 | 5.43 | 315 | 375 | 216 | |
30% obstacles | Traditional A-star | 258.31 | 7.86 | 467 | 534 | 276 |
Reference | 245.67 | 7.25 | 446 | 517 | 257 | |
Ours | 223.57 | 6.56 | 418 | 478 | 227 |
Platform | Parameter | Value |
---|---|---|
Hardware | CPU | Intel(R)CoreTM i3-12100F 3.30 GHz (Intel, Mountain View, CA, USA) |
GPU | Nvidia GeForce RTX 4060 (Nvidia, Santa Clara, CA, USA) | |
RAM | 16 GB | |
Software | OS | Ubuntu 20.04 |
ROS | Noetic | |
Gazebo | 11.11 |
Environment Map | Algorithm | Search Time/s | Number of Nodes | Turning Points | Turning Angle/° | Path Length/cm |
---|---|---|---|---|---|---|
Road | A* | 42.47 | 31 | 11 | 178 | 45.12 |
Ours | 37.83 | 21 | 7 | 116 | 35.17 |
Map | Algorithm | Length | Angle | Turning Points | Time | Avoid Dynamic Obstacle |
---|---|---|---|---|---|---|
30 × 30 | Reference | 36.78 | 178° | 66 | 196.99 s | failure |
Ours | 28.67 | 148° | 47 | 169.46 s | success |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Jiang, S.; Zhou, K.; Cao, X.; Li, C. Improved Exponential and Cost-Weighted Hybrid Algorithm for Mobile Robot Path Planning. Sensors 2025, 25, 2579. https://doi.org/10.3390/s25082579
Hu M, Jiang S, Zhou K, Cao X, Li C. Improved Exponential and Cost-Weighted Hybrid Algorithm for Mobile Robot Path Planning. Sensors. 2025; 25(8):2579. https://doi.org/10.3390/s25082579
Chicago/Turabian StyleHu, Ming, Shuhai Jiang, Kangqian Zhou, Xunan Cao, and Cun Li. 2025. "Improved Exponential and Cost-Weighted Hybrid Algorithm for Mobile Robot Path Planning" Sensors 25, no. 8: 2579. https://doi.org/10.3390/s25082579
APA StyleHu, M., Jiang, S., Zhou, K., Cao, X., & Li, C. (2025). Improved Exponential and Cost-Weighted Hybrid Algorithm for Mobile Robot Path Planning. Sensors, 25(8), 2579. https://doi.org/10.3390/s25082579