Full-Wave Simulation of a Solenoid RF Coil for Small Animal Magnetic Resonance Imaging with a Clinical Scanner
Abstract
:1. Introduction
2. Materials and Methods
2.1. FDTD Simulations
2.2. Inductance and Magnetic Field Evaluation
2.3. Sample-Induced Resistance Evaluation
2.4. MR Acquisitions with the Solenoid Prototype
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoult, D.I.; Richards, R.E. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 1976, 24, 71–85. [Google Scholar] [CrossRef]
- Giovannetti, G.; Flori, A.; Marsigli, F.; De Marchi, D.; Frijia, F.; Giannoni, M.; Kusmic, C.; Positano, V.; Aquaro, G.D.; Menichetti, L. A radiofrequency system for in vivo hyperpolarized 13C MRS experiments in mice with a 3T MRI clinical scanner. Scanning 2016, 38, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Larson, P.E.Z.; Bernard, J.M.L.; Bankson, J.A.; Bøgh, N.; Bok, R.A.; Chen, A.P.; Cunningham, C.H.; Gordon, J.W.; Hövener, J.B.; Laustsen, C.; et al. Current methods for hyperpolarized [1-13C]pyruvate MRI human studies. Magn. Reson. Med. 2024, 91, 2204–2228. [Google Scholar] [CrossRef]
- Larson, P.E.Z.; Gordon, J.W. Hyperpolarized Metabolic MRI-Acquisition, Reconstruction, and Analysis Methods. Metabolites 2021, 11, 386. [Google Scholar] [CrossRef]
- Deen, S.S.; Rooney, C.; Shinozaki, A.; McGing, J.; Grist, J.T.; Tyler, D.J.; Serrão, E.; Gallagher, F.A. Hyperpolarized Carbon 13 MRI: Clinical Applications and Future Directions in Oncology. Radiol. Imaging Cancer 2023, 5, e230005. [Google Scholar] [CrossRef]
- Stewart, N.J.; Sato, T.; Takeda, N.; Hirata, H.; Matsumoto, S. Hyperpolarized 13C Magnetic Resonance Imaging as a Tool for Imaging Tissue Redox State, Oxidative Stress, Inflammation, and Cellular Metabolism. Antioxid. Redox Signal. 2022, 36, 81–94. [Google Scholar] [CrossRef]
- Giovannetti, G.; Flori, A.; Martini, N.; Cademartiri, F.; Aquaro, G.D.; Pingitore, A.; Frijia, F. Hardware and Software Setup for Quantitative 23Na Magnetic Resonance Imaging at 3T: A Phantom Study. Sensors 2024, 24, 2716. [Google Scholar] [CrossRef]
- Mispelter, J.; Lupu, M.; Briguet, A. Nmr Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines; Imperial College Press: London, UK, 2006. [Google Scholar]
- Hartwig, V.; Giovannetti, G.; Vanello, N.; Landini, L.; Santarelli, M.F. Numerical Calculation of Peak-to-Average Specific Absorption Rate on Different Human Thorax Models for Magnetic Resonance Safety Considerations. Appl. Magn. Reson. 2010, 38, 337–348. [Google Scholar] [CrossRef]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, J.C.; Mao, W.; Liu, W.; Smith, M.B.; Collins, C.M. SAR and temperature: Simulations and comparison to regulatory limits for MRI. J. Magn. Reson. 2007, 26, 437–441. [Google Scholar] [CrossRef]
- Chen, J.; Feng, Z.; Jin, J.M. Numerical simulation of SAR and B1-field inhomogeneity of shielded RF coils loaded with the human head. IEEE Trans. Biomed. Eng. 1998, 45, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, G. Low field elliptical MR coil array designed by FDTD. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2008, 33, 32–38. [Google Scholar] [CrossRef]
- ASTM F2182-11a; Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging. American Society for Testing and Material (ASTM) Designation: West Conshohocken, PA, USA, 2004.
- Duan, Y.; Ibrahim, T.S.; Peterson, B.S.; Liu, F.; Kangarlu, A. Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil. Int. J. Antennas Propag. 2008, 2008, 563196. [Google Scholar] [CrossRef]
- Medhurst, R.G. HF resistance and self capacitance of single layer solenoids—Part1. Wirel. Eng. 1947, 24, 35–43. [Google Scholar]
- Medhurst, R.G. HF resistance and self capacitance of single layer solenoids—Part2. Wirel. Eng. 1947, 24, 80–92. [Google Scholar]
- Giovannetti, G.; Viti, V.; Liu, Y.; Yu, W.; Mittra, R.; Landini, L.; Benassi, A. An accurate simulator for magnetic resonance coil sensitivity estimation. Conc. Magn. Reson. Part B Magn. Reson. Eng. 2008, 33, 209–215. [Google Scholar] [CrossRef]
- Hartwig, V.; Vanello, N.; Giovannetti, G.; De Marchi, D.; Lombardi, M.; Landini, L.; Santarelli, M.F. B1+/actual flip angle and reception sensitivity mapping methods: Simulation and comparison. Magn. Reson. Imaging 2011, 29, 717–722. [Google Scholar] [CrossRef]
- Rosset, A.; Spadola, L.; Ratib, O. OsiriX: An open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 2004, 17, 205–216. [Google Scholar] [CrossRef]
- Giovannetti, G.; Frijia, F. Inductance Calculation in Magnetic Resonance Solenoid Coils with Strip and Wire Conductors. Appl. Magn. Reason. 2020, 51, 703–710. [Google Scholar] [CrossRef]
- Jakob, P. Small Animal Magnetic Resonance Imaging: Basic Principles, Instrumentation and Practical Issue. In Small Animal Imaging; Kiessling, F., Pichler, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Herrmann, K.H.; Schmidt, S.; Kretz, A.; Haenold, R.; Krumbein, I.; Metzler, M.; Gaser, C.; Witte, O.W.; Reichenbach, J.R. Possibilities and limitations for high resolution small animal MRI on a clinical whole-body 3T scanner. MAGMA 2012, 25, 233–244. [Google Scholar] [CrossRef]
- Brockmann, M.A.; Kemmling, A.; Groden, C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 2007, 43, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Guzman, R.; Lövblad, K.O.; Meyer, M.; Spenger, C.; Schroth, G.; Widmer, H.R. Imaging the rat brain on a 1.5 T clinical MR-scanner. J. Neurosci. Methods 2000, 97, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, F.; Ersland, L.; Nordli, H.; Enger, P.O.; Huszthy, P.C.; Lundervold, A.; Standnes, T.; Bjerkvig, R.; Lund-Johansen, M. Imaging of experimental rat gliomas using a clinical MR scanner. J. Neurooncol. 2003, 63, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Pfefferbaum, A.; Adalsteinsson, E.; Sullivan, E.V. In vivo structural imaging of the rat brain with a 3-T clinical human scanner. J. Magn. Reson. Imaging 2004, 20, 779–785. [Google Scholar] [CrossRef]
- Pillai, D.R.; Heidemann, R.M.; Kumar, P.; Shanbhag, N.; Lanz, T.; Dittmar, M.S.; Sandner, B.; Beier, C.P.; Weidner, N.; Greenlee, M.W.; et al. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies. PLoS ONE 2011, 6, e16091. [Google Scholar] [CrossRef]
- Rad, A.M.; Gao, X.; Deeb, D.; Gautam, S.C.; Arbab, A.S. Imaging Mouse Prostate Gland by 3 Tesla Clinical MRI System. Open Magn. Reson. Rev. 2008, 1, 60–63. [Google Scholar] [CrossRef]
- Haase, A.; Odoj, F.; von Kienlin, M.; Warnking, J.; Fidler, F.; Weisser, A.; Nittka, M.; Rommel, E.; Lanz, T.; Kalusche, B.; et al. NMR probeheads for in vivo applications. Concepts Magn. Res. 2000, 12, 361–388. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Kim, Y.C.; Choi, I.C.; Kim, H.D. Recent Progress in Birdcage RF Coil Technology for MRI System. Diagnostics 2020, 10, 1017. [Google Scholar] [CrossRef]
- Stara, R.; Tiberi, G.; Gabrieli, M.; Buonincontri, G.; Fontana, N.; Monorchio, A.; Costagli, M.; Symms, M.R.; Retico, A.; Tosetti, M. Quadrature birdcage coil with distributed capacitors for 7.0 T magnetic resonance data acquisition of small animals. Concepts Magn. Reson. 2015, 44, 83–88. [Google Scholar] [CrossRef]
- Ibrahim, T.S.; Mitchell, C.; Schmalbrock, P.; Lee, R.; Chakeres, D.W. Electromagnetic perspective on the operation of RF coils at 1.5–11.7 Tesla. Magn. Reson. Med. 2005, 54, 683–690. [Google Scholar] [CrossRef]
- Seo, J.H.; Ryu, Y.; Han, S.D.; Song, H.; Kim, H.K.; Kim, K.N. Influence of biological subject, shielding cage, and resonance frequency on radio wave propagation in a birdcage coil. Electron. Lett. 2016, 52, 801–803. [Google Scholar] [CrossRef]
- Seo, J.H.; Chung, J.Y. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T. Sensors 2022, 22, 1512. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, K.-N.; Hernandez, D. Simulation Design of Incremental Leg Tapered Birdcage Coil for Head Imaging at 4.7 T MRI. Appl. Sci. 2021, 11, 2064. [Google Scholar] [CrossRef]
- Wang, S.; Duyn, J.H. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging. Phys. Med. Biol. 2008, 53, 2677. [Google Scholar] [CrossRef]
- Li, B.K.; Liu, F.; Weber, E.; Crozier, S. Hybrid numerical techniques for the modelling of radiofrequency coils in MRI. NMR Biomed. 2009, 22, 937–951. [Google Scholar] [CrossRef]
- Xin, X.; Wang, D.; Han, J.; Feng, Y.; Feng, Q.; Chen, W. Numerical optimization of a three-channel radiofrequency coil for open, vertical-field, MR-guided, focused ultrasound surgery using the hybrid method of moment/finite difference time domain method. NMR Biomed. 2012, 25, 909–916. [Google Scholar] [CrossRef]
- Yang, L.; Qiuliang, W.; Feng, L. A hybrid FDTD/MoM algorithm with a non-uniform grid for MRI RF coil design. Magn. Reson. Imaging 2023, 96, 75–84. [Google Scholar] [CrossRef]
- Hartwig, V.; Tassano, S.; Mattii, A.; Vanello, N.; Positano, V.; Santarelli, M.F.; Landini, L.; Giovannetti, G. Computational Analysis of a Radiofrequency Knee Coil for Low-Field MRI Using FDTD. Appl. Magn. Reson. 2013, 44, 389–400. [Google Scholar] [CrossRef]
- Giovannetti, G.; Hartwig, V.; Landini, L.; Santarelli, M.F. Sample-induced resistance estimation in Magnetic Resonance experiments: Simulation and comparison of two methods. Appl. Magn. Reson. 2011, 40, 351–361. [Google Scholar] [CrossRef]
- Jin, J. Electromagnetic Analysis and Design in Magnetic Resonance Imaging; CRC: Boca Raton, FL, USA, 1999. [Google Scholar]
Profile | Simulated Magnetic Field Homogeneity (%) | Measured B1 Field Homogeneity (%) |
---|---|---|
X | 98.25 | 99.16 |
Y | 98.50 | 98.25 |
Z | 76.15 | 76.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannetti, G.; Frijia, F.; Flori, A.; Positano, V. Full-Wave Simulation of a Solenoid RF Coil for Small Animal Magnetic Resonance Imaging with a Clinical Scanner. Sensors 2025, 25, 2673. https://doi.org/10.3390/s25092673
Giovannetti G, Frijia F, Flori A, Positano V. Full-Wave Simulation of a Solenoid RF Coil for Small Animal Magnetic Resonance Imaging with a Clinical Scanner. Sensors. 2025; 25(9):2673. https://doi.org/10.3390/s25092673
Chicago/Turabian StyleGiovannetti, Giulio, Francesca Frijia, Alessandra Flori, and Vincenzo Positano. 2025. "Full-Wave Simulation of a Solenoid RF Coil for Small Animal Magnetic Resonance Imaging with a Clinical Scanner" Sensors 25, no. 9: 2673. https://doi.org/10.3390/s25092673
APA StyleGiovannetti, G., Frijia, F., Flori, A., & Positano, V. (2025). Full-Wave Simulation of a Solenoid RF Coil for Small Animal Magnetic Resonance Imaging with a Clinical Scanner. Sensors, 25(9), 2673. https://doi.org/10.3390/s25092673