FARVNet: A Fast and Accurate Range-View-Based Method for Semantic Segmentation of Point Clouds
Abstract
:1. Introduction
- This work develops a range-view architecture for real-time point cloud semantic segmentation that achieves competitive accuracy with hardware-efficient computation, resolving latency-sensitive precision trade-offs in resource-constrained 3D perception deployments.
- A GFVR module has been implemented to effectively address feature misalignment caused by the projection of 3D space onto a 2D plane.
- An IR module is proposed to update the zero intensity points in the intensity vanishing state, thus mitigating the loss of accuracy due to intensity vanishing.
2. Related Work
2.1. Point-Based Methods
2.2. Voxel-Based Methods
2.3. Multi-Modal Data Fusion Methods
2.4. Multi-View Fusion Methods
2.5. Range-View Methods
3. Method
3.1. Overview
3.1.1. Feature Encoding
3.1.2. Feature Extraction
3.1.3. Adaptive Multi-Scale Feature Fusion Module
4. Experiments
4.1. Datasets
4.2. Implementation Details
5. Results
5.1. Quantitative Results
5.2. Qualitative Results
5.3. Runtime and Model Parameters
5.4. Ablation Study
5.5. Failure Cases
6. Discussion
7. Considerations for Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yang, B.; Pfreundschuh, P.; Siegwart, R.; Hutter, M.; Moghadam, P.; Patil, V. TULIP: Transformer for Upsampling of LiDAR Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 15354–15364. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.; He, T.; Zhao, H.; Liu, X. Sam3d: Segment anything in 3d scenes. arXiv 2023, arXiv:2306.03908. [Google Scholar] [CrossRef]
- Fan, L.; Xiong, X.; Wang, F.; Wang, N.; Zhang, Z. Rangedet: In defense of range view for lidar-based 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2918–2927. [Google Scholar] [CrossRef]
- Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12697–12705. [Google Scholar] [CrossRef]
- Xu, X.; Kong, L.; Shuai, H.; Liu, Q. FRNet: Frustum-range networks for scalable LiDAR segmentation. arXiv 2023, arXiv:2312.04484. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Liu, Y.; Chen, R.; Ma, Y.; Zhu, X.; Li, Y.; Hou, Y.; Qiao, Y.; Liu, Z. Rethinking range view representation for lidar segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 228–240. [Google Scholar] [CrossRef]
- Bai, Y.; Fei, B.; Liu, Y.; Ma, T.; Hou, Y.; Shi, B.; Li, Y. Rangeperception: Taming lidar range view for efficient and accurate 3d object detection. Adv. Neural Inf. Process. Syst. 2023, 36, 79557–79569. [Google Scholar]
- Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9297–9307. [Google Scholar] [CrossRef]
- Fong, W.K.; Mohan, R.; Hurtado, J.V.; Zhou, L.; Caesar, H.; Beijbom, O.; Valada, A. Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation and tracking. IEEE Robot. Autom. Lett. 2022, 7, 3795–3802. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, K.; Diao, W.; Sun, X.; Lu, X.; Fu, K.; Weinmann, M. Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification. ISPRS J. Photogramm. Remote Sens. 2022, 188, 45–61. [Google Scholar] [CrossRef]
- Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. Randla-net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11108–11117. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [Google Scholar] [CrossRef]
- Uecker, M.; Fleck, T.; Pflugfelder, M.; Zöllner, J.M. Analyzing deep learning representations of point clouds for real-time in-vehicle lidar perception. arXiv 2022, arXiv:2210.14612. [Google Scholar] [CrossRef]
- Krispel, G.; Opitz, M.; Waltner, G.; Possegger, H.; Bischof, H. Fuseseg: Lidar point cloud segmentation fusing multi-modal data. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5 March 2020; pp. 1874–1883. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, R.; Li, X.; Kong, L.; Yang, Y.; Xia, Z.; Bai, Y.; Zhu, X.; Ma, Y.; Li, Y.; et al. Uniseg: A unified multi-modal lidar segmentation network and the openpcseg codebase. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 21662–21673. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-voxel cnn for efficient 3d deep learning. Adv. Neural Inf. Process. Syst. 2019, 32, 965–975. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, L.; Deng, J.; Wang, Z.; Guo, C.; Shi, J.; Wang, X.; Li, H. PV-RCNN++: Point-voxel feature set abstraction with local vector representation for 3D object detection. Int. J. Comput. Vis. 2023, 131, 531–551. [Google Scholar] [CrossRef]
- Liong, V.E.; Nguyen, T.N.T.; Widjaja, S.; Sharma, D.; Chong, Z.J. Amvnet: Assertion-based multi-view fusion network for lidar semantic segmentation. arXiv 2020, arXiv:2012.04934. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Wang, B.; Hu, Y.; Yin, B. Center Focusing Network for Real-Time LiDAR Panoptic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 13425–13434. [Google Scholar] [CrossRef]
- Yan, X.; Gao, J.; Zheng, C.; Zheng, C.; Zhang, R.; Cui, S.; Li, Z. 2dpass: 2d priors assisted semantic segmentation on lidar point clouds. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 20 October 2022; Springer: Cham, Switzerland, 2022; pp. 677–695. [Google Scholar]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, B.; Meng, G.; Lu, J.; Xiang, S.; Pan, C. Densepoint: Learning densely contextual representation for efficient point cloud processing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5239–5248. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, H.; Liu, S.; Shen, X.; Fu, C.W.; Jia, J. Hierarchical point-edge interaction network for point cloud semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10433–10441. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, Z.; Sheng, Z.; Li, Y.; Ouyang, W.; Li, X.; Tao, Y.; Yang, Z.; Cui, B. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 14 August 2022; pp. 4560–4570. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, W.; Neumann, U. Recurrent slice networks for 3d segmentation of point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2626–2635. [Google Scholar] [CrossRef]
- Simonovsky, M.; Komodakis, N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3693–3702. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 146. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, M.; Deng, L.; Wang, C.; Wang, B. Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8152–8158. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, J.; Peng, B. Point clouds learning with attention-based graph convolution networks. Neurocomputing 2020, 402, 245–255. [Google Scholar] [CrossRef]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar] [CrossRef]
- Riegler, G.; Osman Ulusoy, A.; Geiger, A. Octnet: Learning deep 3d representations at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3577–3586. [Google Scholar] [CrossRef]
- Le, T.; Duan, Y. Pointgrid: A deep network for 3d shape understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9204–9214. [Google Scholar] [CrossRef]
- Maiti, A.; Elberink, S.O.; Vosselman, G. TransFusion: Multi-modal fusion network for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–23 June 2023; pp. 6537–6547. [Google Scholar] [CrossRef]
- Eskandar, G.; Sudarsan, S.; Guirguis, K.; Palaniswamy, J.; Somashekar, B.; Yang, B. Hals: A height-aware lidar super-resolution framework for autonomous driving. arXiv 2022, arXiv:2202.03901. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Yang, Z.; Yamakawa, S.; Shimada, K.; Kara, L.B. Data-driven upsampling of point clouds. Comput.-Aided Des. 2019, 112, 1–13. [Google Scholar] [CrossRef]
- Yu, L.; Li, X.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. Pu-net: Point cloud upsampling network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2790–2799. [Google Scholar] [CrossRef]
- Li, R.; Li, S.; Chen, X.; Ma, T.; Gall, J.; Liang, J. Tfnet: Exploiting temporal cues for fast and accurate lidar semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–18 June 2024; pp. 4547–4556. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, L.; Huang, X. Fidnet: Lidar point cloud semantic segmentation with fully interpolation decoding. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4453–4458. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, X.; Zhong, Z.; Jiang, J.; Gao, W.; Li, G.; Ji, X. Self-supervised arbitrary-scale point clouds upsampling via implicit neural representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1999–2007. [Google Scholar] [CrossRef]
- Ye, S.; Chen, D.; Han, S.; Wan, Z.; Liao, J. Meta-PU: An arbitrary-scale upsampling network for point cloud. IEEE Trans. Vis. Comput. Graph. 2021, 28, 3206–3218. [Google Scholar] [CrossRef]
- Menze, M.; Geiger, A. Object Scene Flow for Autonomous Vehicles. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Chen, L.; Fu, Y.; Gu, L.; Yan, C.; Harada, T.; Huang, G. Frequency-aware feature fusion for dense image prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10763–10780. [Google Scholar] [CrossRef]
- MMDetection3D: OpenMMLab Next-Generation Platform for General 3D Object Detection. 2020. Available online: https://github.com/open-mmlab/mmdetection3d (accessed on 1 May 2024).
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017. [Google Scholar] [CrossRef]
- Smith, L.N.; Topin, N. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Bellingham, WA, USA, 10 May 2019. [Google Scholar] [CrossRef]
- Fusaro, D.; Mosco, S.; Menegatti, E.; Pretto, A. Exploiting Local Features and Range Images for Small Data Real-Time Point Cloud Semantic Segmentation. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; pp. 4980–4987. [Google Scholar] [CrossRef]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate lidar semantic segmentation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4213–4220. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382. [Google Scholar] [CrossRef]
- Xu, C.; Wu, B.; Wang, Z.; Zhan, W.; Vajda, P.; Keutzer, K.; Tomizuka, M. Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXVIII 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–19. [Google Scholar] [CrossRef]
- Aksoy, E.E.; Baci, S.; Cavdar, S. Salsanet: Fast road and vehicle segmentation in lidar point clouds for autonomous driving. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 926–932. [Google Scholar] [CrossRef]
- Choy, C.; Gwak, J.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Z.; Zhao, S.; Lin, Y.; Lin, J.; Wang, H.; Han, S. Searching efficient 3d architectures with sparse point-voxel convolution. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 20 October 2022; Springer: Cham, Switerland, 2022; pp. 685–702. [Google Scholar]
- Zhou, H.; Zhu, X.; Song, X.; Ma, Y.; Wang, Z.; Li, H.; Lin, D. Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation. arXiv 2020, arXiv:2008.01550. [Google Scholar] [CrossRef]
- Zhuang, Z.; Li, R.; Jia, K.; Wang, Q.; Li, Y.; Tan, M. Perception-aware multi-sensor fusion for 3d lidar semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 16280–16290. [Google Scholar] [CrossRef]
- Ando, A.; Gidaris, S.; Bursuc, A.; Puy, G.; Boulch, A.; Marlet, R. Rangevit: Towards vision transformers for 3d semantic segmentation in autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 5240–5250. [Google Scholar] [CrossRef]
- Cheng, H.X.; Han, X.F.; Xiao, G.Q. Cenet: Toward concise and efficient lidar semantic segmentation for autonomous driving. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Lai, X.; Chen, Y.; Lu, F.; Liu, J.; Jia, J. Spherical transformer for lidar-based 3d recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 July 2022; pp. 17545–17555. [Google Scholar] [CrossRef]
- Puy, G.; Boulch, A.; Marlet, R. Using a waffle iron for automotive point cloud semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 3379–3389. [Google Scholar] [CrossRef]
- Cheng, R.; Razani, R.; Taghavi, E.; Li, E.; Liu, B. (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12547–12556. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; Foroosh, H. Polarnet: An improved grid representation for online lidar point clouds semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9601–9610. [Google Scholar] [CrossRef]
- Park, J.; Kim, C.; Kim, S.; Jo, K. PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network. Expert Syst. Appl. 2023, 212, 118815. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, S.; Liu, L.; Ming, D.; Tao, W. SVASeg: Sparse voxel-based attention for 3D LiDAR point cloud semantic segmentation. Remote Sens. 2022, 14, 4471. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, R.; Dou, J.; Zhu, Y.; Sun, J.; Pu, S. Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 16024–16033. [Google Scholar] [CrossRef]
- Lu, H.; Liu, W.; Ye, Z.; Fu, H.; Liu, Y.; Cao, Z. SAPA: Similarity-aware point affiliation for feature upsampling. Adv. Neural Inf. Process. Syst. 2022, 35, 20889–20901. [Google Scholar] [CrossRef]
Based | Input | Representative |
---|---|---|
Raw Point | Point | PointNet [12], RandLA-Net [13] |
Voxel | Point | PVCNN [20], PVRCNN++ [21] |
Multi-Modal | Point+Image | FuseSeg [17], Uniseg [18] |
Multi-View | Point | AMVNet [22], CFNet [23], MVCNN [25] |
Range-View | Point | RangeFormer [6], FRNet [5], RangePerception [7] |
Method | mIoU | Car | Bicycle | Motorcycle | Truck | Other-vehicle | Person | Bicyclist | Motorcyclist | Road | Parking | Sidewalk | Other-ground | Building | Fence | Vegetation | Trunk | Terrain | Pole | Traffic-sign |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RandLA-Net [13] | ||||||||||||||||||||
RangeNet++ [51] | ||||||||||||||||||||
SequeezeSegV2 [52] | ||||||||||||||||||||
SequeezeSegV3 [53] | ||||||||||||||||||||
SalasNet [54] | ||||||||||||||||||||
MinkowskiNet [55] | ||||||||||||||||||||
SPVNAS [56] | ||||||||||||||||||||
Cylinder3D [57] | ||||||||||||||||||||
PMF [58] | ||||||||||||||||||||
rangvit [59] | ||||||||||||||||||||
CENet [60] | ||||||||||||||||||||
RangeFormer [6] | ||||||||||||||||||||
SphereFormer [61] | ||||||||||||||||||||
FRNet [5] | ||||||||||||||||||||
waffleIron [62] | ||||||||||||||||||||
FARVNet |
Method | mIoU | Barrier | Bicycle | Bus | Car | Construction-vehicle | Motorcycle | Pedestrian | Traffic-cone | Trailer | Truck | Driveable-surface | Other-ground | Sidewalk | Terrain | Manmade | Vegetation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AF2S3Net [63] | |||||||||||||||||
RangeNet++ [51] | |||||||||||||||||
PolarNet [64] | |||||||||||||||||
PCSCNet [65] | |||||||||||||||||
SalsaNext [54] | |||||||||||||||||
SVASeg [66] | |||||||||||||||||
RangeViT [59] | |||||||||||||||||
Cylinder3D [57] | |||||||||||||||||
AMVNet [22] | |||||||||||||||||
RPVNet [67] | |||||||||||||||||
WaffleIron [62] | |||||||||||||||||
RangeFormer [6] | |||||||||||||||||
SphereFormer [61] | |||||||||||||||||
WaffleAndRange [50] | |||||||||||||||||
FARVNet |
BL | MSFF | GFVR | IR | TTA | SemKITTI | nuScenes | ||
---|---|---|---|---|---|---|---|---|
mIoU | mAcc | mIoU | mAcc | |||||
√ | √ | |||||||
√ | √ | √ | ||||||
√ | √ | √ | √ | |||||
√ | √ | √ | √ | √ |
Mean | Max | Min |
---|---|---|
+0.8 | +0.1 | +0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhao, L.; Guo, W.; Yuan, X.; Tan, S.; Hu, J.; Yang, Z.; Wang, S.; Ge, W. FARVNet: A Fast and Accurate Range-View-Based Method for Semantic Segmentation of Point Clouds. Sensors 2025, 25, 2697. https://doi.org/10.3390/s25092697
Chen C, Zhao L, Guo W, Yuan X, Tan S, Hu J, Yang Z, Wang S, Ge W. FARVNet: A Fast and Accurate Range-View-Based Method for Semantic Segmentation of Point Clouds. Sensors. 2025; 25(9):2697. https://doi.org/10.3390/s25092697
Chicago/Turabian StyleChen, Chuang, Lulu Zhao, Wenwu Guo, Xia Yuan, Shihan Tan, Jing Hu, Zhenyuan Yang, Shengjie Wang, and Wenyi Ge. 2025. "FARVNet: A Fast and Accurate Range-View-Based Method for Semantic Segmentation of Point Clouds" Sensors 25, no. 9: 2697. https://doi.org/10.3390/s25092697
APA StyleChen, C., Zhao, L., Guo, W., Yuan, X., Tan, S., Hu, J., Yang, Z., Wang, S., & Ge, W. (2025). FARVNet: A Fast and Accurate Range-View-Based Method for Semantic Segmentation of Point Clouds. Sensors, 25(9), 2697. https://doi.org/10.3390/s25092697