2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Device Fabrication
2.3. Characterization and Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMeekin, D.P.; Holzhey, P.; Fürer, S.O.; Harvey, S.P.; Schelhas, L.T.; Ball, J.M.; Mahesh, S.; Seo, S.; Hawkins, N.; Lu, J.; et al. Intermediate-Phase Engineering via Dimethylammonium Cation Additive for Stable Perovskite Solar Cells. Nat. Mater. 2023, 22, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled Growth of Perovskite Layers with Volatile Alkylammonium Chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Wang, K.; Luo, Y.; Park, J.Y.; Yang, H.; Coffey, A.H.; Ma, K.; Sun, J.; Wieghold, S.; Zhu, C.; et al. Two-Factor Phase Separations in Mixed-Halide Quasi-2D Perovskite LEDs: Dimensionality and Halide Segregations. ACS Energy Lett. 2023, 8, 3693–3701. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Yu, Z.; Chen, G.; Wang, C.; Wang, T.; Ke, W.; Fang, G. A Multifunctional Additive Strategy Enables Efficient Pure-Blue Perovskite Light-Emitting Diodes. Adv. Mater. 2023, 35, 2302161. [Google Scholar] [CrossRef]
- Zhan, Z.; Lin, D.; Cai, J.; Lu, Y.; Chen, A.; Zhang, T.; Chen, K.; Liu, P.; Wang, X.; Xie, W. A Perovskite Photodetector Crossbar Array by Vapor Deposition for Dynamic Imaging. Adv. Mater. 2022, 34, 2207106. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kim, D.H. Perovskite-Based Photodetectors: Materials and Devices. Chem. Soc. Rev. 2017, 46, 5204–5236. [Google Scholar] [CrossRef]
- Najarian, A.M.; Vafaie, M.; Johnston, A.; Zhu, T.; Wei, M.; Saidaminov, M.I.; Hou, Y.; Hoogland, S.; De Arquer, F.P.G.; Sargent, E.H. Sub-Millimetre Light Detection and Ranging Using Perovskites. Nat. Electron. 2022, 5, 511–518. [Google Scholar] [CrossRef]
- Herz, L.M. Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Lett. 2017, 2, 1539–1548. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Kim, T.; Jeong, S.; Kim, K.-H.; Shim, H.; Kim, D.; Kim, H.-J. Engineered Surface Halide Defects by Two-Dimensional Perovskite Passivation for Deformable Intelligent Photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 26004–26013. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsiao, S.-Y.; Chen, C.-Y.; Kang, H.-W.; Huang, Z.-Y.; Lin, H.-W. Optical Properties of Organometal Halide Perovskite Thin Films and General Device Structure Design Rules for Perovskite Single and Tandem Solar Cells. J. Mater. Chem. A 2015, 3, 9152–9159. [Google Scholar] [CrossRef]
- Shen, K.; Xu, H.; Li, X.; Guo, J.; Sathasivam, S.; Wang, M.; Ren, A.; Choy, K.L.; Parkin, I.P.; Guo, Z.; et al. Flexible and Self-Powered Photodetector Arrays Based on All-Inorganic CsPbBr3 Quantum Dots. Adv. Mater. 2020, 32, 2000004. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, Z.; Li, L.; Chen, Y.; Wang, C.; Wang, X.; Lu, Z.; Bai, Z.; Zhang, Q.; Huangfu, X.; et al. Zero-Dimensional Cs3BiX6 (X = Br, Cl) Single Crystal Films with Second Harmonic Generation. Nanoscale Res. Lett. 2022, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J. Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination. Nat. Photon. 2015, 9, 679–686. [Google Scholar] [CrossRef]
- Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y. Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404. [Google Scholar] [CrossRef]
- Kublitski, J.; Hofacker, A.; Boroujeni, B.K.; Benduhn, J.; Nikolis, V.C.; Kaiser, C.; Spoltore, D.; Kleemann, H.; Fischer, A.; Ellinger, F.; et al. Reverse Dark Current in Organic Photodetectors and the Major Role of Traps as Source of Noise. Nat. Commun. 2021, 12, 551. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Wang, Z.; Huang, Z.; Zhu, J.; Channa, A.I.; Cui, F.; Xu, H.; Li, X.; Zhou, L.; et al. High External Quantum Efficiency Monolayer MoS2(1−x)Se2x Phototransistor with Alloying-Induced near-Infrared Absorption. Appl. Phys. Lett. 2023, 123, 151103. [Google Scholar] [CrossRef]
- Na, W.; Zhang, J.; Cui, F.; Li, X.; Shen, K.; Wu, J.; Zou, G.; Xu, H. Novel 2D Glassy-Graphene for Photodetection and Sensing. In Proceedings of the 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 14–18 July 2024; IEEE: New York, NY, USA; pp. 1–5. [Google Scholar]
- Yin, Z.; Chen, Y.; Zhang, Y.; Yuan, Y.; Yang, Q.; Zhong, Y.; Gao, X.; Xiao, J.; Wang, Z.; Xu, J.; et al. Probing into Reverse Bias Dark Current in Perovskite Photodiodes: Critical Role of Surface Defects. Adv. Funct. Mater. 2023, 33, 2302199. [Google Scholar] [CrossRef]
- Shen, L.; Fang, Y.; Wang, D.; Bai, Y.; Deng, Y.; Wang, M.; Lu, Y.; Huang, J. A Self-Powered, Sub-Nanosecond-Response Solution-Processed Hybrid Perovskite Photodetector for Time-Resolved Photoluminescence-Lifetime Detection. Adv. Mater. 2016, 28, 10794–10800. [Google Scholar] [CrossRef]
- Ahmadi, M.; Wu, T.; Hu, B. A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Adv. Mater. 2017, 29, 1605242. [Google Scholar] [CrossRef]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low Trap-State Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Huang, J. Resolving Weak Light of Sub-picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction. Adv. Mater. 2015, 27, 2804–2810. [Google Scholar] [CrossRef] [PubMed]
- Ollearo, R.; Wang, J.; Dyson, M.J.; Weijtens, C.H.L.; Fattori, M.; Van Gorkom, B.T.; Van Breemen, A.J.J.M.; Meskers, S.C.J.; Janssen, R.A.J.; Gelinck, G.H. Ultralow Dark Current in Near-Infrared Perovskite Photodiodes by Reducing Charge Injection and Interfacial Charge Generation. Nat. Commun. 2021, 12, 7277. [Google Scholar] [CrossRef]
- Wang, M.; Cao, F.; Wang, M.; Deng, K.; Li, L. Intermediate-Adduct-Assisted Growth of Stable CsPbI2 Br Inorganic Perovskite Films for High-Efficiency Semitransparent Solar Cells. Adv. Mater. 2021, 33, 2006745. [Google Scholar] [CrossRef] [PubMed]
- Tabi, G.D.; Pham, H.T.; Zhan, H.; Walter, D.; Mayon, A.O.; Peng, J.; Duong, T.; Shehata, M.M.; Shen, H.; Duan, L.; et al. LiI Doping of Mixed-Cation Mixed-Halide Perovskite Solar Cells: Defect Passivation, Controlled Crystallization and Transient Ionic Response. Mater. Today Phys. 2022, 27, 100822. [Google Scholar] [CrossRef]
- Byranvand, M.M.; Kodalle, T.; Zuo, W.; Friedlmeier, T.M.; Abdelsamie, M.; Hong, K.; Zia, W.; Perween, S.; Clemens, O.; Sutter-Fella, C.M.; et al. One-Step Thermal Gradient- and Antisolvent-Free Crystallization of All-Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells. Adv. Sci. 2022, 9, 2202441. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Jiang, J.; Wang, B.; Shen, L. Sensitive and Stable Tin–Lead Hybrid Perovskite Photodetectors Enabled by Double-Sided Surface Passivation for Infrared Upconversion Detection. Small 2020, 16, 2001534. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiao, S.; Liu, S.; Jin, Y.; Yang, S.; Wang, X.; Liu, T.; Jin, H.; Wang, D.; Gao, S.; et al. Surface Passivation of CsPbBr3 Films by Interface Engineering in Efficient and Stable Self-Powered Perovskite Photodetector. J. Alloy. Compd. 2023, 965, 171434. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface Passivation of Perovskite Film for Efficient Solar Cells. Nat. Photon. 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Sun, Z.; Amrillah, T. Potential Application of Bismuth Oxyiodide (BiOI) When It Meets Light. Nanoscale 2024, 16, 5079–5106. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, P.; Li, L. Multidimensional Perovskite Solar Cells. Fundam. Res. 2022, 2, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Wu, S.; Lu, J.; Li, G.; Li, S.; Tian, W.; Li, L. Self-Powered Wide-Narrow Bandgap-Laminated Perovskite Photodetector with Bipolar Photoresponse for Secure Optical Communication. Adv. Mater. 2024, 36, 2307534. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, I.; Sidhik, S.; Zhang, H.; Agrawal, A.; Persaud, J.; Hou, J.; Even, J.; Mohite, A.D. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem. Rev. 2023, 123, 9565–9652. [Google Scholar] [CrossRef]
- Chen, R.; Shen, L.; Zheng, L.; Zhu, T.; Liu, Y.; Liu, L.; Zheng, J.; Gong, X. Two-/Three-Dimensional Perovskite Bilayer Thin Films Post-Treated with Solvent Vapor for High-Performance Perovskite Photovoltaics. ACS Appl. Mater. Interfaces 2021, 13, 49104–49113. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Liu, G.; Zhou, Y.; He, X.; Ma, Y. Modulating Dimensionality of 2D Perovskite Layers for Efficient and Stable 2D/3D Perovskite Photodetectors. ACS Appl. Mater. Interfaces 2024, 16, 19849–19857. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Gong, C.; Zhang, D.; Zhang, H.; Zhuang, Q.; Yu, X.; Gong, S.; Chen, X.; Yang, J.; et al. 2D/3D Heterojunction Engineering at the Buried Interface towards High-Performance Inverted Methylammonium-Free Perovskite Solar Cells. Nat. Energy 2023, 8, 946–955. [Google Scholar] [CrossRef]
- Chen, H.; Teale, S.; Chen, B.; Hou, Y.; Grater, L.; Zhu, T.; Bertens, K.; Park, S.M.; Atapattu, H.R.; Gao, Y.; et al. Quantum-Size-Tuned Heterostructures Enable Efficient and Stable Inverted Perovskite Solar Cells. Nat. Photon. 2022, 16, 352–358. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, Y.; Cai, C.; Zhang, Z.; Xu, J.; Yuan, Z.; Gao, P. Dually-Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angew. Chem. 2021, 133, 8384–8393. [Google Scholar] [CrossRef]
- Wang, X.; Rakstys, K.; Jack, K.; Jin, H.; Lai, J.; Li, H.; Ranasinghe, C.S.K.; Saghaei, J.; Zhang, G.; Burn, P.L.; et al. Engineering Fluorinated-Cation Containing Inverted Perovskite Solar Cells with an Efficiency of >21% and Improved Stability towards Humidity. Nat. Commun. 2021, 12, 52. [Google Scholar] [CrossRef]
- Zhu, H.; Ren, Y.; Pan, L.; Ouellette, O.; Eickemeyer, F.T.; Wu, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X.; et al. Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. J. Am. Chem. Soc. 2021, 143, 3231–3237. [Google Scholar] [CrossRef]
- Qiu, Y.; Liang, J.; Zhang, Z.; Deng, Z.; Xu, H.; He, M.; Wang, J.; Yang, Y.; Kong, L.; Chen, C.-C. Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. J. Phys. Chem. C 2021, 125, 1256–1268. [Google Scholar] [CrossRef]
- Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A.S.; Liu, J.; Harrison, G.T.; Nugraha, M.I.; Eswaran, M.K.; Babics, M.; et al. Damp Heat–Stable Perovskite Solar Cells with Tailored-Dimensionality 2D/3D Heterojunctions. Science 2022, 376, 73–77. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H.C.; Ramadan, A.J.; Mahesh, S.; Liu, J.; Oliver, R.D.J.; Lim, J.; et al. A Piperidinium Salt Stabilizes Efficient Metal-Halide Perovskite Solar Cells. Science 2020, 369, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xiao, X.; Gu, H.; Huang, J. Iodine Reduction for Reproducible and High-Performance Perovskite Solar Cells and Modules. Sci. Adv. 2021, 7, eabe8130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; et al. Managing Grains and Interfaces via Ligand Anchoring Enables 22.3%-Efficiency Inverted Perovskite Solar Cells. Nat. Energy 2020, 5, 131–140. [Google Scholar] [CrossRef]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.-W.; et al. Planar Perovskite Solar Cells with Long-Term Stability Using Ionic Liquid Additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef]
- Blancon, J.-C.; Even, J.; Stoumpos, C.C.; Kanatzidis, M.G.; Mohite, A.D. Semiconductor Physics of Organic–Inorganic 2D Halide Perovskites. Nat. Nanotechnol. 2020, 15, 969–985. [Google Scholar] [CrossRef]
- Quan, L.N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E.M.; Hoogland, S.; Buin, A.; Kirmani, A.R.; Zhao, K.; Amassian, A.; et al. Ligand-Stabilized Reduced-Dimensionality Perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Xu, C.; Yang, K.; Zhao, F.; Wang, K.; Zhang, X.; Zhang, F. Photomultiplication Type Broad Response Organic Photodetectors with One Absorber Layer and One Multiplication Layer. J. Phys. Chem. Lett. 2020, 11, 366–373. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huangfu, X.; Chen, J.; Ge, G.; Li, J.; Zhang, J.; Lin, Q.; Xu, H.; Wang, S.M. 2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes. Sensors 2025, 25, 2740. https://doi.org/10.3390/s25092740
Huangfu X, Chen J, Ge G, Li J, Zhang J, Lin Q, Xu H, Wang SM. 2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes. Sensors. 2025; 25(9):2740. https://doi.org/10.3390/s25092740
Chicago/Turabian StyleHuangfu, Xuefeng, Junyu Chen, Gaohui Ge, Jianyu Li, Jiazhen Zhang, Qinhao Lin, Hao Xu, and Shu Min Wang. 2025. "2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes" Sensors 25, no. 9: 2740. https://doi.org/10.3390/s25092740
APA StyleHuangfu, X., Chen, J., Ge, G., Li, J., Zhang, J., Lin, Q., Xu, H., & Wang, S. M. (2025). 2D/3D Perovskite Surface Passivation-Enabled High-Detectivity Near-Infrared Photodiodes. Sensors, 25(9), 2740. https://doi.org/10.3390/s25092740