Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Measurement Setup
3. Results and Discussions
3.1. Reproducibility Test of the Developed ZnO Nanotube and Nanorod pH Sensors
3.2. Repeatability Test of the Developed ZnO Nanotube and Nanorod pH Sensors
3.3. Comparison of the ZnO Nanotube pH Sensor and ZnO Nanorod pH Sensor
4. Conclusions
Acknowledgments
References and Notes
- Wadeasa, A.; Nur, O.; Willander, M. The effect of the interlayer design on the electroluminescence and electrical properties of n-ZnO nanorod/p-type blended polymer hybrid light emitting diodes. Nanotechnology 2009, 20, 065710. [Google Scholar]
- Willander, M.; Lozovik, Y.E.; Zhao, Q.X.; Nur, O.; Hu, Q.H.; Klason, P. Excitonic effects in ZnO nanowires and hollow nanotubes. Proc. SPIE 2007, 6486, 648614. [Google Scholar]
- Riaz, M.; Fulati, A.; Zhao, Q.X.; Nur, O.; Willander, M.; Klason, P. Buckling and mechanical instability of ZnO nanorods grown on different substrates under uniaxial compression. Nanotechnology 2008, 19, 415708. [Google Scholar]
- Riaz, M.; Fulati, A.; Yang, L.L.; Nur, O.; Willander, M.; Klason, P. Bending flexibility, kinking, and buckling characterization of ZnO nanorods/nanowires grown on different substrates by high and low temperature methods. J. Appl. Phys. 2008, 104, 104306. [Google Scholar]
- Liu, J.P.; Guo, C.X.; Li, C.M.; Li, Y.Y.; Chi, Q.B.; Huang, X.T.; Liao, L.; Yu, T. Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun. 2009, 11, 202–205. [Google Scholar]
- Lupan, O.; Chai, G.; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectro. Eng. 2008, 85, 2220–2225. [Google Scholar]
- Umar, A.; Rahman, M.M.; Al-Hajry, A.; Hahn, Y.-B. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 2009, 78, 284–289. [Google Scholar]
- Umar, A.; Rahman, M.M.; Vaseem, Mohammad.; Hahn, Y.-B. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun. 2009, 11, 118–121. [Google Scholar]
- Umar, A.; Rahman, M.M.; Hahn, Y.-B. ZnO nanorods based hydrazine sensors. J. Nanosci. Nanotechnol. 2009, 9, 4686–4691. [Google Scholar]
- Umar, A.; Rahman, M.M.; Hahn, Y.-B. Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires. Talanta 2009, 77, 1376–1380. [Google Scholar]
- Umar, A.; Rahman, M.M.; Kim, S.H.; Hahn, Y.-B. Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem. Commun. 2008, 166–168. [Google Scholar]
- Bai, X.D.; Gao, P.X.; Wang, Z.L.; Wang, E.G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806. [Google Scholar]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on Zinc oxide nanowire arrays. Science 2007, 312, 242–246. [Google Scholar]
- Zhao, Q.X.; Klason, P.; Willander, M.; Bergman, P.J.; Jiang, W.L.; Yang, J.H. Synthesis and characterization of ZnO nanostructures grown on Si substrates. Phys. Scr. 2006, T126, 131–134. [Google Scholar]
- Lupan, O.; Chow, L.; Chai, G.; Roldan, B.; Naitabdi, A.; Schulte, A.; Heinrich, H. Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater. Sci. Eng. B. 2007, 145, 57–66. [Google Scholar]
- Zhao, Q.X.; Klason, P.; Willander, M. Growth of ZnO nanostructures by vapor-liquid-solid method. Appl. Phys. A: Mat. Sci. Process. 2007, 88, 27–30. [Google Scholar]
- Kitamura, K.; Yatsui, T.; Ohtsu, M. Optical and Structural Properties of ZnO Nanorods Grown on Polyimide Films. Appl. Phys. Express 2008, 1, 081202. [Google Scholar]
- Batista, P.D.; Mulato, M. ZnO extended-gate field-effect transistors as pH sensors. Appl. Phys. Lett. 2005, 87, 143508. [Google Scholar]
- Kang, B.S.; Ren, F.; Heo, Y.W.; Tien, L.C.; Norton, D.P.; Pearton, S.J. pH measurements with single ZnO nanorods integrated with a microchannel. Appl. Phys. Lett. 2005, 86, 112105. [Google Scholar]
- Al-Hilli, S.M.; Öst, A.; Strålfors, P.; Willander, M. ZnO nanorods as an intracellular sensor for pH measurements. J. Appl. Phys. 2007, 102, 187–200. [Google Scholar]
- Wang, J.X.; Sun, X.W.; Huang, H.; Lee, Y.C.; Tan, O.K.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Appl. Phys. A 2007, 88, 611–615. [Google Scholar]
- Hsueh, T.J; Chang, S.J.; Hsu, C.L.; Lin, Y.R.; Chen, I.C. ZnO nanotube ethanol gas sensors. J. Electrochem. Soc. 2008, 155, K152–K155. [Google Scholar]
- Kong, T.; Chen, Y.; Ye, Y.P.; Zhang, K.; Wang, Z.X.; Wang, X.P. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensor. Actuator. B 2009, 138, 344–350. [Google Scholar]
- Greene, L.E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J.C.; Zhang, Y.; Saykally, R.J.; Yang, P. Low-temperature wafer-scale production of zno nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034. [Google Scholar]
- Vayssieres, L.; Keis, K.; Lindquist, S.E.; Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 2001, 105, 3350–3352. [Google Scholar]
- Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T.J.; Chang, R.P.H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. 2005, 17, 1001–1006. [Google Scholar]
- Al-Hilli, S.M.; Al-Mofarji, R.T.; Klason, P.; Willander, M.; Gutman, N.; Sa'ar, A. Zinc oxide nanorods grown on two-dimensional macroporous periodic structures and plane Si as a pH sensor. J. Appl. Phys. 2008, 103, 014302. [Google Scholar]
- Elias, J.; Tena-Zaera, R.; Wang, G.Y.S.; Levy-Clement, C. Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions. Chem. Mater. 2008, 20, 6633–6637. [Google Scholar]
- Noguera, C. Polar oxide surfaces. J. Phys. Condens. Matter. 2000, 12, R367–R410. [Google Scholar]
- Meyer, B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B. 2003, 67, 035403. [Google Scholar]
- Zhou, J.; Xu, N.S.; Wang, Z.L. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advan. Mater. 2006, 18, 2432–2435. [Google Scholar]
- Qiu, Y.F.; Yang, S.H. Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity. Nanotechnology 2008, 19, 265606. [Google Scholar]
- Zhang, G.Q.; Adachi, M.; Ganjil, S.; Nakamura, A.; Temmyo, J.; Matsui, Y. Vertically aligned single-crystal ZnO nanotubes grown on γ-LiAlO2(100) substrate by metalorganic chemical vapor deposition. Japan. J. Appl. Phys. 2007, 46, L730–L732. [Google Scholar]
- Asif, M.H.; Fulati, A.; Nur, O.; Willander, M.; Brännmark, C.; Strålfors, P.; Börjesson, S.I.; Elinder, F. Functionalized zinc oxide nanorod with ionopHore-membrane coating as an intracellular Ca2+ selective sensor. Appl. Phys. Lett. 2009, 95, 023703. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fulati, A.; Usman Ali, S.M.; Riaz, M.; Amin, G.; Nur, O.; Willander, M. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods. Sensors 2009, 9, 8911-8923. https://doi.org/10.3390/s91108911
Fulati A, Usman Ali SM, Riaz M, Amin G, Nur O, Willander M. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods. Sensors. 2009; 9(11):8911-8923. https://doi.org/10.3390/s91108911
Chicago/Turabian StyleFulati, Alimujiang, Syed M. Usman Ali, Muhammad Riaz, Gul Amin, Omer Nur, and Magnus Willander. 2009. "Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods" Sensors 9, no. 11: 8911-8923. https://doi.org/10.3390/s91108911
APA StyleFulati, A., Usman Ali, S. M., Riaz, M., Amin, G., Nur, O., & Willander, M. (2009). Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods. Sensors, 9(11), 8911-8923. https://doi.org/10.3390/s91108911