Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures
Abstract
:1. Introduction
2. Fundamentals of Gas Sensors Based on Metal Oxide 1D Nanostructures
2.1. Fabrication and Characterization of Gas Sensors
2.2. Surface Reactions and Models for Gas Sensors
2.3. Performance Parameters
3. Modified Nanowires and Heterostructures
3.1. Modified Nanowires
3.2. Metal Oxide 1D Heterostructures
4. Novel Gas Sensors
4.1. Microarray Electronic Nose
4.2. Self-heated Gas Sensors
4.3. Optical Gas Sensing of NO2
5. Summary
Acknowledgments
References
- Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuat. B 1991, 5, 7–19. [Google Scholar]
- Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 2009, 54, 1–67. [Google Scholar]
- Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949. [Google Scholar]
- Morales, A.; Lieber, C.A. laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211. [Google Scholar]
- Comini, E.; Faglia, G.; Sberveglieri, G. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar]
- Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P.D. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 2002, 41, 2405–2408. [Google Scholar]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3657. [Google Scholar]
- Raible, I; Burghard, M; Schlecht, Yasuda, U.A.; Vossmeyer, T. V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. Sens. Actuat. B. 2005, 106, 730–735. [Google Scholar]
- Zhang, Y.; He, X.L.; Li, J.P.; Miao, Z.J.; Huang, F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuat. B. 2008, 132, 67–73. [Google Scholar]
- Wang, Y; Ramos, I.; Santiago-Aviles, J. Electrical characterization of a single electrospun porous SnO2 nanoribbon in ambient air. Nanotechnology 2007, 18, 435704–1-4. [Google Scholar]
- Wang, Y; Ramos, I.; Santiago-Aviles, J. Detection of moisture and methanol gas using a single electrospun tin oxide nanofiber. IEEE Sens. J. 2007, 7, 1347–1348. [Google Scholar]
- Wang, G.; Ji, Y.; Huang, X.R.; Yang, X.Q.; Gouma, P.I.; Dudley, M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 2006, 110, 23777–82. [Google Scholar]
- Hao, R; Yuan, J.Y; Peng, Q. Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning. Chem. Lett. 2006, 35, 1248–1249. [Google Scholar]
- Leon, N.; Figueroa, G.; Wang, Y; Ramos, I.; Furlan, R.; Pinto, N.; Santiago-Aviles, J. Electrospun tin oxide nanofibers. Nanotechnology II 2005, 5838, 21–28. [Google Scholar]
- Lau, M.; Dai, L.; Bosnick, K.; Evoy, S. Synthesis and characterization of TiOx nanowires using a novel silicon oxide support layer. Nanotechnology 2009, 20, 025602–1-7. [Google Scholar]
- Qi, Q.; Zhang, T.; Yu, Q.J.; Wang, R.; Zeng, Y.; Liu, L.; Yang, H.B. Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sens. Actuat. B. 2008, 133, 638–643. [Google Scholar]
- Hsueh, T.J.; Chen, Y.W.; Chang, S.J.; Wang, S.F.; Hsu, C.L.; Lin, Y.R.; Lin, T.S.; Chen, I.C. ZnO nanowire-based CO sensors prepared on patterned ZnO: Ga/SiO2/Si templates. Sens. Actuat. B. 2007, 125, 498–503. [Google Scholar]
- Choi, Y.J.; Hwang, I.S.; Park, J.G.; Choi, K.J.; Park, J.H.; Lee, J.H. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19, 095508–1-4. [Google Scholar]
- Hsueh, T.J.; Hsu, C.L.; Chang, S.J.; Chen, I.C. Laterally grown ZnO nanowire ethanol gas sensors. Sens. Actuat. B. 2007, 126, 473–477. [Google Scholar]
- Jung, T.H.; Kwon, S.I.; Park, J.H.; Lim, D.G.; Choi, Y.J.; Park, J.G. SnO2 nanowires bridged across trenched electrodes and their gas-sensing characteristics. Appl. Phys. A-Mater. Sci. Proc. 2008, 91, 707–710. [Google Scholar]
- Liao, L.; Lu, H.B.; Li, J.C.; He, H.; Wang, D.F.; Fu., D.J.; Liu, C. Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 2007, 111, 1900–1903. [Google Scholar]
- Chen, J.J.; Wang, K.; Hartman, L.; Zhou, W.L. H2S Detection by Vertically Aligned CuO Nanowire Array Sensors. J. Phys. Chem. C 2008, 112, 16017–16021. [Google Scholar]
- Francioso, L.; Taurino, A.M.; Forleo, A.; Siciliano, P. TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuat. B. 2008, 130, 70–76. [Google Scholar]
- Ra, Y.W.; Choi, K.S.; Kim, J.H.; Hahn, Y.B.; Im, H.Y. Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 2008, 4, 1105–1109. [Google Scholar]
- Son, J.Y.; Lim, S.J.; Cho, J.H.; Kim, H.J. Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. Appl. Phys. Lett. 2008, 93, 053109–1-3. [Google Scholar]
- Wan, Q.; Huang, J.; Xie, Z.; Wang, T.H.; Dattoli, E.N.; Lu, W. Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl. Phys. Lett. 2008, 92, 102101. [Google Scholar]
- Andrei, P.; Fields, L.L; Zheng, J.P.; Cheng, Y.; Xiong, P. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sens. Actuat. B. 2007, 128, 226–234. [Google Scholar]
- Zhang, D.H.; Li, C.; Liu, X.L.; Kasai, J.; Mozume, T.; Ishikawa, H. Doping dependent NH3 sensing of indium oxide nanowires. Appl. Phys. Lett. 2003, 83, 1845–1847. [Google Scholar]
- Xu, J.H.; Wu, N.Q.; Jiang, C.B.; Zhao, M.H.; Li, J.; Wei, Y.G.; Mao, S.X. Impedance characterization of ZnO nanobett/Pd Schottky contacts in ammonia. Small 2006, 2, 1458–1461. [Google Scholar]
- Zhang, N.; Yu, K.; Li, L.J.; Zhu, Z.Q. Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod. Appl. Surf. Sci. 2008, 254, 5736–5740. [Google Scholar]
- Kim, I.D.; Rothschild, A.; Lee, B.H.; Kim, D.Y.; Jo, S.M.; Tuller, H.L. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Lett. 2006, 6, 2009–2013. [Google Scholar]
- Ahn, M.W.; Park, K.S.; Heo, J.H.; Park, J.G.; Kim, D.W.; Choi, K.J.; Lee, J.H.; Hong, S.H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 2008, 93, 263103. [Google Scholar]
- Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by manipulating electron density inside it. Nano Lett. 2004, 4, 403–407. [Google Scholar]
- Maiti, A.; Rodriguez, J.A.; Law, M.; Kung, P.; McKinney, J.R.; Yang, P.D. SnO2 Nanoribbons as NO2 Sensors: Insights from first principles calculations. Nano Lett. 2003, 3, 1025–1028. [Google Scholar]
- Feng, P.; Wan, Q.; Wang, T.H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl. Phys. Lett. 2005, 87, 213111. [Google Scholar]
- Zhang, D.H.; Liu, Z.Q.; Li, C.; Tang, Tao; Liu, X.L.; Han, S.; Lei, B.; Zhou, C.W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924. [Google Scholar]
- Rout, C.S.; Govindaraj, A.; Rao, C.N.R. High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires. J. Mater. Chem. 2006, 16, 3936–3941. [Google Scholar]
- Li, C.; Zhang, D.H.; Liu, X.L.; Han, S.; Tang, T.; Han, J.; Zhou, C.W. In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 2003, 82, 1613–1615. [Google Scholar]
- Zhang, Y.; He, XL.; Li, J.P.; Miao, Z.J.; Huang, F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuat. B 2008, 132, 67–73. [Google Scholar]
- Meier, D.C.; Semancik, S.; Button, B.; Strelcov, E.; Kolmakova, A. Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl. Phys. Lett. 2007, 91, 63118–63120. [Google Scholar]
- Chen, Y.Q.; Cui, X.F.; Zhang, K.; Pan, D.Y.; Zhang, S.Y.; Wang, B.; Hou, J.G. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 2003, 369, 16–20. [Google Scholar]
- Chen, P.C.; Shen, G.Z.; Zhou, C.W. Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures. IEEE Trans. Nanotech. 2008, 7, 668–682. [Google Scholar]
- Sysoev, V.V.; Button, B.K.; Wepsiec, K.; Dmitriev, S.; Kolmakov, A. Toward the Nanoscopic “Electronic Nose”: Hydrogen vs Carbon Monoxide Discrimination with an Array of Individual Metal Oxide Nano- and Mesowire Sensors. Nano Lett. 2006, 6, 1584–1588. [Google Scholar]
- Hernandez-Ramirez, F.; Barth, S.; Tarancon, A.; Casals, O.; Pellicer, E.; Rodriguez, J.; Rodriguez, A.R.; Morante, J.R.; Mathur, S. Water vapor detection with individual tin oxide nanowires. Nanotechnology 2007, 18, 424016. [Google Scholar]
- Ying, Z.; Wan, Q.; Song, Z.T. SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 2004, 15, 1682–1684. [Google Scholar]
- Wang, B.; Zhu, L.F.; Yang, Y.H. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 2008, 112, 6643–6647. [Google Scholar]
- Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S.; Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 2008, 112, 6643–6647. [Google Scholar]
- Huang, H.; Lee, Y.C.; Tan, O.K. High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 2009, 20, 115501. [Google Scholar]
- Kuang, Q.; Lao, C.S.; Wang, Z.L.; Xie, Z.X.; Zheng, L.S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071. [Google Scholar]
- Chu, X.F.; Wang, C.H.; Jiang, D.L.; Chen, M.Z. Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem. Phys. Lett. 2004, 399, 461–464. [Google Scholar]
- Kaur, M.; Jain, N.; Sharma, K.; Bhattacharya, S.; Roy, M.; Tyagi, A.K.; Gupta, S.K.; Yakhmi, J.V. Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sens. Actuat. B. 2008, 133, 456–461. [Google Scholar]
- Xu, P.C.; Cheng, Z.X.; Pan, Q.Y.; Xu, J.Q.; Xiang, Q.; Yu, W.J.; Chu, Y.L. High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties. Sens. Actuat. B. 2008, 130, 802–808. [Google Scholar]
- Zeng, Z.M.; Wang, K.; Zhang, Z.X.; Chen, J.J.; Zhou, W.L. The detection of H2S at room temperature by using individual indium oxide nanowire transistors. Nanotechnology 2009, 20, 045503. [Google Scholar]
- Xu, J.Q.; Chen, Y.P.; Shen, J.N. Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater. Lett. 2008, 62, 1363–1365. [Google Scholar]
- Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J.S. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 2005, 86, 243503. [Google Scholar]
- Wang, C.H.; Chu, X.F.; Wu, M.W. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens. Actuat. B. 2006, 113, 320–323. [Google Scholar]
- Yang, Z.; Li, L.M.; Wan, Q. High-performance ethanol sensing based on an aligned assembly of ZnO nanorods. Sens. Actuators B 2008, 135, 57–60. [Google Scholar]
- Cao, Y.L.; Hu, P.F.; Pan, W.Y.; Huang, Y.D.; Jia, D.Z. Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction. Sens. Actuat. B 2008, 134, 462–466. [Google Scholar]
- Ge, C.Q.; Bai, Z.K.; Hu, M.L. Preparation and gas-sensing property of ZnO nanorod-bundle thin films. Mater. Lett. 2008, 62, 2307–2310. [Google Scholar]
- Lupan, O.; Chai, G; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectr. Eng. 2008, 85, 2220–2225. [Google Scholar]
- Rout, C.S.; Hegde, M.; Rao, C.N.R. H2S sensors based on tungsten oxide nanostructures. Sens. Actuat. B 2008, 128, 488–493. [Google Scholar]
- Zhao, Y.M.; Zhu, Y.Q. Room temperature ammonia sensing properties of W18O49 nanowires. Sens. Actuat. B 2009, 137, 27–31. [Google Scholar]
- Liu, Z.F.; Yamazaki, T.; Shen, Y. Room temperature gas sensing of p-type TeO2 nanowires. Appl. Phys. Lett. 2007, 90, 173119. [Google Scholar]
- Kim, Y.S.; Hwang, I.S.; Kim, S.J. CuO nanowire gas sensors for air quality control in automotive cabin. Sens. Actuat. B 2008, 135, 298–303. [Google Scholar]
- Gou, X.L.; Wang, G.X.; Yang, J.S.; Park, J.; Wexler, D. Chemical synthesis. characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 2008, 18, 965–969. [Google Scholar]
- Guo, Z.; Li, M.L.; Liu, J.H. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology 2008, 19, 245611. [Google Scholar]
- Zhang, Y.; Xu, J.Q.; Xiang, Q.; Li, H.; Pan, Q.Y.; Xu, P.C. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 2009, 113, 3430–3435. [Google Scholar]
- Zhang, N.; Yu, K.; Li, Q.; Wan, Q. Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance. J. Appl. Phys. 2008, 103, 104305. [Google Scholar]
- Li, C.C.; Du, Z.F.; Li, L.M.; Yu, H.C.; Wan, Q.; Wang, T.H. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl. Phys. Lett. 2007, 91, 032101. [Google Scholar]
- Ramírez, F.H.; Tarancón, A.; Casals, O.; Arbiol, AJ.; Rodríguez, R.; Morante, J.R. High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens. Actuat. B. 2007, 121, 3–17. [Google Scholar]
- Arbiol, J.; Cirera, A.; Peiró, F.; Cornet, A.; Morante, J.R.; Delgado, J.J.; Calvino, J.J. Optimization of tin oxide nanosticks faceting for the improvement of palladium nanoclusters epitaxy. Appl. Phys.Lett. 2002, 80, 329–331. [Google Scholar]
- Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673. [Google Scholar]
- Shen, Y.B.; Yamazaki, T.; Liu, Z.F.; Meng, D.; Kikuta, T.; Nakatani, N.; Saito, M.; Mori, M. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sens. Actuat. B. 2009, 135, 524–529. [Google Scholar]
- Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J.S. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 2005, 86, 243503. [Google Scholar]
- Chang, S.J.; Hsueh, T.J.; Chen, I.C.; Hsieh, S.F.; Chang, S.P.; Hsu, C.L.; Lin, Y.R.; Huang, B.R. Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption. IEEE Trans. Nanotechnol 2008, 7, 754–759. [Google Scholar]
- Hsueh, T.J.; Chang, S.J.; Hsu, C.L.; Lin, Y.R.; Chen, I.C. Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. Appl. Phys. Lett. 2007, 91, 053111. [Google Scholar]
- Chang, S.J.; Hsueh, T.J.; Chen, I.C.; Huang, B.R. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology 2008, 19, 175502. [Google Scholar]
- Shen, Y.B.; Yamazaki, T.; Liu, Z.F.; Meng, D.; Kikuta, T.; Nakatani, N.; Saito, M.; Mori, M. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sens. Actuat. B 2009, 135, 524–529. [Google Scholar]
- Liao, L.; Mai, H.X.; Yuan, Q.; Lu, H.B.; Li, J.C.; Liu, C.; Yan, C.H.; Shen, Z.X.; Yu, T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C 2008, 112, 9061–9065. [Google Scholar]
- Ramgir, N.S.; Mulla, I.S.; Vijayamohanan, K.P. A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuat. B 2005, 107, 708–715. [Google Scholar]
- Wan, Q.; Wang, T.H. Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem. Commun. 2005, 30, 3841–3843. [Google Scholar]
- Xue, X.Y.; Xing, L.L.; Chen, Y.J.; Shi, S.L.; Wang, Y.G.; Wang, T.H. Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J. Phys. Chem. C 2008, 112, 12157–12160. [Google Scholar]
- Chen, Y.J.; Zhu, C.L.; Wang, T.H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 2006, 17, 3012–3017. [Google Scholar]
- Chen, Y.J.; Zhu, C.L.; Wang, L.J.; Gao, P.; Cao, M.S.; Shi, X.L. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods. Nanotechnology 2009, 20, 045502. [Google Scholar]
- Si, S.F.; Li, C.H.; Wang, X.; Peng, Q.; Li, Y.D. Fe2O3/ZnO core-shell nanorods for gas sensors. Sens. Actuat. B 2006, 119, 52–56. [Google Scholar]
- Wang, J.X.; Sun, X.W.; Xie, S.S.; Yang, Y.; Chen, H.Y.; Lo, G.Q.; Kwong, D.L. Preferential growth of SnO2 triangular nanoparticles on ZnO nanobelts. J. Phys. Chem. C 2007, 111, 7671–7675. [Google Scholar]
- Van, N.H.; Kim, H.R; Ju, B.K.; Lee, J.H. Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens. Actuat. B 2008, 133, 228–234. [Google Scholar]
- Chen, P.C.; Ishikawa, F.N.; Chang, H.K.; Ryu, K.; Zhou, C.W. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 2009, 20, 125503. [Google Scholar]
- Goschni, J. An electronic nose for intelligent consumer products based on a gas analytical gradient microarray. Microelectron. Engineer. 2001, 57-58, 693–704. [Google Scholar]
- Sysoev, V.V.; Goschnick, J.; Schneider, T. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 2007, 7, 3182–3188. [Google Scholar]
- Strelcov, E; Dmitriev, S.; Button, B.; Cothren, J.; Sysoev, V.; Kolmakov, A. Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors. Nanotechnology 2008, 19, 355502. [Google Scholar]
- Prades, J.D.; Jimenez, R.D.; Hernandez, F.R.; Barth, S.; Cirera, A.; Rodriguez, A.R.; Mathur, S.; Morante, J.R. Ultralow power consumption gas sensors based on self-heated individual nanowires. Appl. Phys. Lett. 2008, 93, 123110. [Google Scholar]
- Faglia, G.; Baratto, C.; Sberveglieri, G.; Zha, M.; Zappettini, A. Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett. 2005, 86, 011923. [Google Scholar]
- Lettieri, S.; Bismuto, A.; Maddalena, P.; Baratto, C.; Comini, E.; Faglia, G.; Sberveglieri, G.; Zanotti, L. Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. J. Non-Cryst. Solids 2006, 352, 1457–1460. [Google Scholar]
- Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Sberveglieri, G. Single crystal ZnO nanowires as optical and conductometric chemical sensor. J. Phys. D 2007, 40, 7255–7259. [Google Scholar]
- Setaro, A.; Bismuto, A.; Lettieri, S.; Maddalena, P.; Comini, E.; Bianchi, S.; Baratto, C.; Sberveglieri, G. Optical sensing of NO2 in tin oxide nanowires at sub-ppm level. Sens. Actuat. B 2008, 130, 391–395. [Google Scholar]
- Zhang, X.J.; Wang, G.F.; Zhang, W.; Hu, N.J.; Wu, H.Q.; Fang, B. Seed-mediated growth method for epitaxial array of CuO nanowires on surface of Cu nanostructures and its application as a glucose sensor. J. Phys. Chem. C 2008, 112, 8856–8862. [Google Scholar]
- Ansari, S.G.; Wahab, R.; Ansari, Z.A.; Kim, Y.S.; Khang, G.; Hajry, A.A.; Shin, H.S. Effect of nanostructure on the urea sensing properties of sol–gel synthesized ZnO. Sens. Actuat. B 2009, 137, 566–573. [Google Scholar]
- Zhang, X.J.; Wang, G.F.; Wang, Q.; Zhao, L.J.; Wang, M.; Fang, B. Cupreous oxide nanobelts as detector for determination of l-Tyrosine. Mater. Sci. Eng. B 2009, 156, 6–9. [Google Scholar]
- Fenster, C.; Smith, A.J.; Abts, A.; Milenkovic, S.; Hassel, A.W. Single tungsten nanowires as pH sensitive electrodes. Electro. Commun. 2008, 10, 1125–1128. [Google Scholar]
Materials | Target Gas | Lowest Detection Concentration | Response/Recovery | Ref. | |
---|---|---|---|---|---|
SnO2 | Nano-whiskers | Ethanol | 50 ppm (300 °C, S = 23) | N/A*/10 min | [46] |
H2 | 10 ppm (300, S = 0.4) | N/A | [47] | ||
Single nanowire | H2 | 100 ppm (2, S∼13) | N/A | [47] | |
humidity | RH: 30% (30 °C, S∼1.25) | 120-170 s/20-60 s | [48] | ||
nanorods | H2 | 100 ppm (150 °C) | N/A | [49] | |
In2O3 | nanowires | Ethanol | 100 ppm (370 °C, S∼2) | 10 s/∼20 s | [50] |
NO2 | 1 ppm (250 °C, S∼2.57) | N/A | [51] | ||
H2S | 200 ppb (RT*) | 2–3 min/N/A | [52] | ||
Ethanol | 5 ppm (330 °C, S∼1.84) | 6 s/11 s | [53] | ||
Single NW* | H2S | 1 ppm (120 °C) | 48 s/56 s | [54] | |
ZnO | nanorods | H2 | 500 ppm (25 °C) | 10min/N/A | [55] |
H2S | 50 ppb (RT, S∼1.7) | N/A | [56] | ||
Ethanol | 1 ppb (300 °C, S∼10) | N/A | [57] | ||
Methanol | 50 ppm (300, S∼3.2) | N/A | [58] | ||
Ethanol | 100 ppm (325 °C, S∼20) | N/A | [59] | ||
Single NW | H2 | 200 ppm (RT, S∼0.04) | 30 s/50–90 s | [60] | |
WO3 nanowires | H2S | 1ppm (250 °C, S = 48) | N/A | [61] | |
NH3 | 10 ppb (room temperature) | N/A | [62] | ||
TeO2 nanowires | NO2 | 10 ppm (26 °C) | 10 min | [63] | |
NH3 | 10 ppm (26 °C) | >30 min | |||
H2S | 50 ppm (26 °C) | N/A | |||
CuO | nanowires | CO | 30 ppm (300 °C, S∼0.07) | N/A | [64] |
NO2 | 2 ppm (300 °C, S∼0.15) | N/A | |||
nanoribbons | Methanol | 5 ppm (S∼1.4) | 2–4 s/3–7 s | [65] | |
Ethanol | 5 ppm (200 °C, S∼1.2) | 3–6 s/4–9 s | |||
CdO nanowires | NO2 | 1 ppm (100 °C, S∼0.27) | N/A | [66] |
Material | Gas species | Sensitivity | Response/recovery time | Reference |
---|---|---|---|---|
ZnO brushes | Ethanol | 3 (5 ppm) | <10 s/<10 s (10 ppm) | [67] |
SnO2 brushes | Ethanol | 2.3 (0.5 ppm) | 4 s | [26] |
ZnO dendrites | H2S | 3.3 (10 ppm) | 15–20 s/30–50 s | [68] |
ZnO nano-flowers | Ethanol | 4.1 (1 ppm) | 1–2 s/1–2 s | [69] |
Target species | Lowest detection concentration Working temperature | Materials | Reference |
---|---|---|---|
CO | 100 ppb, 300 °C | SnO2 single nanowire | [70] |
NO2 | 1 ppb (estimated, confidence level 3) | V2O5 nanofibers | [31] |
NH3 | 100 ppb, 300 °C | SnO2 single nanowire | [40] |
Ethanol | 100 ppb, 330 °C | SnO2 nanofibers | [9] |
H2 | 10 ppm (S∼0.4), 300 °C | SnO2 nanowires | [45] |
H2S | 50 ppb | ZnO nanorods | [53] |
Material | Gas Species | Sensitivity | Response/Recovery Time | Ref. |
---|---|---|---|---|
CuO-SnO2 core/shell PN-junction | H2S | 9.4 × 106 (10 ppm, 60 °C) | N/A | [82] |
carbon nanotubes/SnO2 core/shell nanostructures | Ethanol | 24.5 (50 ppm, room temperature) | 1 s/10 s | [83] |
α-Fe2O3/SnO2 core-shell nanorods | Ethanol | 19.6 (10 ppm, 220 °C) | <30 s/<30 s | [84] |
La2O3 functionalized SnO2 nanowires | Ethanol | 57.3 (100 ppm, 400 °C) | 1 s/110 s | [85] |
Acetone | 34.9 (100 ppm, 400 °C) | |||
Fe2O3/ZnO core-shell nanorods | 90# petroleum | 2.73 (5 ppm, 320 °C) | <20 s/<20 s | [86] |
Cyclohexane | 1.5 (5 ppm, 320 °C) | |||
Ethanol | 4.01(5 ppm, 200 °C) | |||
Acetone | 3.53 (5 ppm, 200 °C) | |||
SnO2 functionalized ZnO nanowires | CO | 4.6 (300 ppm, 350 °C) | 52 s/550 s | [87] |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, J.; Wan, Q. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures. Sensors 2009, 9, 9903-9924. https://doi.org/10.3390/s91209903
Huang J, Wan Q. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures. Sensors. 2009; 9(12):9903-9924. https://doi.org/10.3390/s91209903
Chicago/Turabian StyleHuang, Jin, and Qing Wan. 2009. "Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures" Sensors 9, no. 12: 9903-9924. https://doi.org/10.3390/s91209903
APA StyleHuang, J., & Wan, Q. (2009). Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures. Sensors, 9(12), 9903-9924. https://doi.org/10.3390/s91209903