Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation
Abstract
:1. Introduction
2. Methods
2.1. The general framework
- If σ<I1 hold, generate a reference profile with width Wprofile, and go to the profile matching algorithm;
- If σ>I1 and σ<I2 hold, generate a reference rectangular template with width w and length Lsign, and go to the template matching algorithm;
- If σ>I2 hold, go to the PATS algorithm described in Section 2.3.
- the change of the directions of two adjacent road segments is larger than predefined threshold T;
- approaching an extracted road or border of the image;
- the minimal squared sum of gray value differences between the reference template and the target template surpass T1 for the interlaced template matching, profile matching or template matching;
- compactness of PATS polygon [8] is larger than T2.
2.2. The interlaced template matching
2.3. PATS
3. Experiments and Performance Evaluation
3.1. Data collection
3.2. Evaluation criteria
3.3. Experimental results and performance evaluation
3.3. Discussion
4. Conclusions
Acknowledgments
References
- Vosselman, G.; Knecht, D.J. Road tracing by profile matching and Kalman filtering. In Automatic Extraction of Man-Made Objects from Aerial and Space Images; Gruen, A., Kuebler, O., Agouris, P., Eds.; Birkhauser Verlag: Basel: Switzerland, 1995; pp. 265–274. [Google Scholar]
- Hu, J.; Razdan, A.; Femiani, J.C.; Cui, M.; Wonka, P. Road network extraction and intersection detection from aerial images by tracking road footprints. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4144–4157. [Google Scholar]
- Jin, X.; Davis, C.H. An integrated system for automatic road mapping from high-resolution multi-spectral satellite imagery by information fusion. Inf. Fusion 2005, 6, 257–273. [Google Scholar]
- Mena, J.B. State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognit. Lett. 2003, 24, 3037–3058. [Google Scholar]
- Nevatia, R.; Babu, K.R. Linear feature extraction and description. Comput. Graph. Image Process. 1980, 13, 257–269. [Google Scholar]
- Zhang, Q.; Couloigner, I. Accurate centerline detection and line width estimation of thick lines using the radon transform. IEEE Trans. Image Process. 2007, 16, 310–316. [Google Scholar]
- Haverkamp, D. Extracting straight road structure in urban environments using IKONOS satellite imagery. Opt. Eng. 2002, 41, 2107–2110. [Google Scholar]
- Zhang, Q.; Couloigner, I. Benefit of the angular texture signature for the separation of parking lots and roads on high resolution multi-spectral imagery. Pattern Recognit. Lett. 2006, 27, 937–946. [Google Scholar]
- Zhu, C.; Shi, W.; Pesaresi, M.; Liu, L.; Chen, X.; King, B. The recognition of road network from high-resolution satellite remotely sensed data using image morphological characteristics. Int. J. Remote Sens. 2005, 26, 5493–5508. [Google Scholar]
- Amini, J.; Saradjian, M.R.; Blais, J.A.R.; Lucas, C.; Azizi, A. Automatic road-side extraction from large scale image maps. Int. J. Appl. Earth Observ. Geoinf. 2002, 4, 95–107. [Google Scholar]
- Song, M.; Civco, D. Road extraction using SVM and image segmentation. Photogramm. Eng. Remote Sen. 2004, 70, 1365–1371. [Google Scholar]
- Zebedin, L.; Klaus, A.; Gruber-Geymayer, B.; Karner, K. Toward 3D map generation from digital aerial images. ISPRS J. Photogr. Remote Sens. 2006, 60, 413–427. [Google Scholar]
- Heipke, C.; Steger, C.; Multhanmmer, R. A hierarchical approach to automatic road extraction from aerial imagery. In Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision II; McKeown, D.M., Dowman, I., Eds.; Society of Photo Optical: Bellingham, WA, 1995; pp. 222–231. [Google Scholar]
- Hinz, S.; Baumgartner, A. Automatic extraction of urban road network from multi-view aerial imagery. ISPRS J. Photogr. Remote Sens. 2003, 58, 83–98. [Google Scholar]
- Harvey, W.; McGlone, J.; MaKeown, D.; Irvine, J. User-centric evaluation of semi-automatic road network extraction. Photogramm. Eng. Remote Sen. 2004, 70, 1353–1364. [Google Scholar]
- Wang, F.J.; Newkirkr, R. A knowledge-based system for highway network extraction. IEEE Trans. Geosci. Remote Sens. 1988, 26, 525–531. [Google Scholar]
- Barzohar, M.; Cooper, D.B. Automatic finding main roads in aerial images by using geometric-stochastic models and estimation. IEEE Trans. Geosci. Remote Sens. 1996, 18, 707–720. [Google Scholar]
- Geman, D.; Jedynak, B. An active testing model for tracking roads in satellite images. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 1–14. [Google Scholar]
- Tupin, F.; Maitre, H.; Mangin, J.F.; Nicolas, J.M.; Pechersky, E. Detection of linear features in sar images: Application to road network extraction. IEEE Trans. Geosci. Remote Sens. 1998, 36, 434–453. [Google Scholar]
- Stoica, R.; Descombes, X.; Zerubia, J. A Gibbs point process for road extraction from remotely sensed images. Int. J. Comput. Vision 2004, 57, 121–136. [Google Scholar]
- Baltsavias, E.P. Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems. ISPRS J. Photogr. Remote Sens. 2004, 58, 131–151. [Google Scholar]
- Hu, X.; Tao, C.V. A reliable and fast road detector using profile analysis and model-based verification. Int. J. Remote Sens. 2005, 26, 887–902. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogr. Remote Sens. 2004, 58, 239–258. [Google Scholar]
- Peng, T.; Jermyn, I.H.; Prinet, V.; Zerubia, J. Incorporating generic and specific prior knowledge in a multiscale phase field model for road extraction from VHR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 139–146. [Google Scholar]
- Baumgartner, A.; Hinz, S.; Wiedemann, C. Efficient methods and interfaces for road tracking. Int. Arch. Photogramm. Remote Sens. 2002, 34, 28–31. [Google Scholar]
- Gruen, A.; Li, H. Road extraction from aerial and satellite images by dynamic programming. ISPRS J. Photogr. Remote Sens. 1995, 50, 11–20. [Google Scholar]
- Gruen, A.; Li, H. Semi-automatic linear feature extraction by dynamic programming and LSB-Snakes. Photogramm. Eng. Remote Sens. 1997, 63, 985–995. [Google Scholar]
- Lin, X.G.; Zhang, J.X.; Liu, Z.J.; Shen, J. Semi-automatic extraction of ribbon roads form high resolution remotely sensed imagery by cooperation between angular texture signature and template matching. Int. Arch. Photogramm. Remote Sens. 2008, 34, 309–312. [Google Scholar]
- Shen, J.; Lin, X.; Shi, Y.; Wong, C. Knowledge-based Road Extraction from High Resolution Remotely Sensed Imagery. Congress on Image and Signal Processing 2008, Sanya, China; 2008; 4, pp. 608–612. [Google Scholar]
- Shukla, V.; Chandrakanth, R.; Ramachandran, R. Semi-automatic road extraction algorithm for high resolution images using path following approach. In ICVGIP02; Ahmadabad, 2002; Volume 6, pp. 231–236. [Google Scholar]
- Mckeown, D.M.; Denlinger, J.L. Cooperative methods for road tracing in aerial imagery. Proceedings of the IEEE Conference in Computer Vision and Pattern Recognition, Michigan; IEEE Computer Society, 1988; pp. 662–672. [Google Scholar]
- Zhou, J.; Bischof, W.F.; Caelli, T. Road tracking in aerial images based on human-computer interaction and Bayesian filtering. ISPRS J. Photogr. Remote Sens. 2006, 61, 108–124. [Google Scholar]
- Kim, T.; Park, S.R.; Kim, M.G.; Jeong, S.; Kim, K.O. Tracking road centerlines from high resolution remote sensing images by least squares correlation matching. Photogramm. Eng. Remote Sens. 2004, 70, 1417–1422. [Google Scholar]
- Zhao, H.; Kumagai, J.; Nakagawa, M.; Shibasaki, R. Semi-automatic road extraction from high resolution satellite images. ISPRS Photogrammet. Comput. Vision, Graz, Ustrailia, September, 2002; p. A-406.
- Lin, X.G.; Zhang, J.X.; Liu, Z.J.; Shen, J. Integration method of profile matching and template matching for road extraction from high resolution remotely sensed imagery. IEEE International Workshop on Earth Observation and Remote Sensing Applications 2008, Beijing; 2008; pp. 1–6. [Google Scholar]
- Liu, J.G. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar]
Sensors | Road type | National highway | Intrastate highway | Railroad | Avenue | Lane |
---|---|---|---|---|---|---|
SPOT5 | Contrast | low | low | low | low | - |
Average length | long | long | long | mean | - | |
Average curvature | mean | mean | mean | low | - | |
Noises | j | j | j | b, j | - | |
IKONOS | Contrast | high | mean | low | low | - |
Average length | long | long | long | mean | - | |
Average curvature | mean | mean | mean | low | - | |
Noises | v, j | v, j | n | v, b, c, j | - | |
QuickBird | Contrast | high | high | mean | mean | low |
Average length | long | long | long | mean | short | |
Average curvature | mean | mean | mean | low | low | |
Noises | v, j | v, j | n | v, b, c, j | v, c, j | |
SAR | Contrast | - | high | - | mean | - |
Average length | - | long | - | mean | - | |
Average curvature | - | low | - | low | - | |
Noises | - | j, s | - | j, s | - | |
DMC | Contrast | - | mean | mean | mean | mean |
Average length | - | long | long | short | short | |
Average curvature | - | mean | mean | low | high | |
Noises | - | v, c, j | j | v, b, c, j | v, b, c, j |
Sensors | Methods | Profile Matching | Template Matching | PATS | Interlaced Template matching | Combination | Manual |
---|---|---|---|---|---|---|---|
SPOT5 | Length (pixels) | 11045 | 28531 | 16780 | - | 29332 | 47793 |
Time (seconds) | 502 | 733 | 641 | - | 702 | 1444 | |
Completeness (%) | 23.11 | 59.70 | 35.11 | - | 61.37 | 100.00 | |
Efficiency (%) | -11.65 | 8.94 | -9.28 | - | 12.76 | ||
RMSE(pixels) | 2.5 | 1.8 | 2.1 | - | 1.9 | 0.0 | |
Road Type | 1,2 | 1,2,4 | 1,2,4 | - | 1,2,4 | 1,2,3,4 | |
IKONOS | Length (pixels) | 4019 | 55996 | 57332 | 20350 | 70300 | 108846 |
Time (seconds) | 782 | 1196 | 1650 | 312 | 1756 | 3360 | |
Completeness (%) | 36.93 | 51.45 | 52.67 | 18.70 | 66.26 | 100.00 | |
Efficiency (%) | 13.66 | 15.86 | 3.56 | 9.41 | 14.00 | - | |
RMSE(pixels) | 1.0 | 1.1 | 1.5 | 0.2 | 1.2 | 0.0 | |
Road Type | 1,2,4 | 1,2,3,4 | 1,2,3,4 | 1,2 | 1,2,3,4 | 1,2,3,4 | |
QuickBird | Length (pixels) | 42767 | 155056 | 16500 | 70579 | 171811 | 194022 |
Time (seconds) | 300 | 2077 | 2475 | 806 | 1695 | 3058 | |
Completeness (%) | 22.04 | 79.92 | 85.05 | 36.38 | 88.56 | 100.00 | |
Efficiency (%) | 12.23 | 11.20 | 4.11 | 10.02 | 33.13 | - | |
RMSE(pixels) | 0.8 | 1.2 | 1.4 | 0.4 | 0.9 | 0.0 | |
Road Type | 1,2 | 1,2,3,4 | 1,2,3,4 | 1,2 | 1,2,3,4 | 1,2,3,4 | |
SAR | Length (pixels) | - | 51198 | 98135 | 24498 | - | 110150 |
Time (seconds) | - | 966 | 1265 | 195 | - | 280 | |
Completeness (%) | - | 46.48 | 89.09 | 22.24 | - | 100.00 | |
Efficiency (%) | - | -299.52 | -366.70 | -4.74 | - | - | |
RMSE(pixels) | - | 1.5 | 1.3 | 1.4 | - | 0.0 | |
Road Type | - | 2,4 | 2,4 | 2 | - | 2,4 | |
DMC | Length (pixels) | - | - | 123877 | 81241 | 168989 | 195261 |
Time (seconds) | - | - | 2352 | 820 | 2106 | 3202 | |
Completeness (%) | - | - | 63.44 | 41.61 | 86.54 | 100.00 | |
Efficiency (%) | - | - | -10.01 | 16.01 | 20.77 | - | |
RMSE(pixels) | - | - | 0.4 | 0.8 | 1.1 | 0.0 | |
Road Type | - | - | 1.2,3,4,5 | 1.2,3,4 | 1.2,3,4,5 | 1.2,3,4,5 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lin, X.; Liu, Z.; Zhang, J.; Shen, J. Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation. Sensors 2009, 9, 1237-1258. https://doi.org/10.3390/s90201237
Lin X, Liu Z, Zhang J, Shen J. Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation. Sensors. 2009; 9(2):1237-1258. https://doi.org/10.3390/s90201237
Chicago/Turabian StyleLin, Xiangguo, Zhengjun Liu, Jixian Zhang, and Jing Shen. 2009. "Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation" Sensors 9, no. 2: 1237-1258. https://doi.org/10.3390/s90201237
APA StyleLin, X., Liu, Z., Zhang, J., & Shen, J. (2009). Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation. Sensors, 9(2), 1237-1258. https://doi.org/10.3390/s90201237