Inflammation and Depression: A Nervous Plea for Psychiatry to Not Become Immune to Interpretation
Abstract
:1. An Introduction to Immunopsychiatry
1.1. Medical Conditions, Inflammation and Mood
1.2. Immunopsychiatry and Psychoneuroimmunology
2. Inflammation and Stress as Accommodating “Umbrella” Concepts
2.1. Inflammation
2.2. Stress, Depression and Inflammation
2.3. Experimental Psychological Stress and Neuroinflammation?
3. Attempts to Mark Inflammation and Depression
4. Antidepressants and Anti-Inflammatory Drugs May not be “Surgical” Intervention Tools
5. Thinking Fast Regarding Inflammation and Depression
5.1. Insufficiently-Met Criteria-Based Inferences
5.2. Reverse Inferences
5.3. Potential Insufficiently-Met Criteria-Based and Reverse Inferences in Immunopsychiatry
6. Conclusions
Funding
Conflicts of Interest
References
- Bullmore, E.T.; Lynall, M.E. Immunologic therapeutics and psychotic disorders. Biol. Psychiatry 2014. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M. Psychoneuroimmunology or immunopsychiatry? Lancet Psychiatry 2015. [Google Scholar] [CrossRef]
- Jankovic, B.D. From immunoneurology to immunopsychiatry: Neuromodulating activity of anti-brain antibodies. Int. Rev. Neurobiol. 1985, 26, 249–314. [Google Scholar] [PubMed]
- Steiner, I.; Abramsky, O. Autoimmune diseases of the neuroimmune system and mental disease. Immunol. Ser. 1989, 45, 491–511. [Google Scholar] [PubMed]
- Antar, L.N.; Hollander, E. Immunopsychiatry. Pyschiatry Ann. 2012, 42, 314–315. [Google Scholar] [CrossRef]
- Leboyer, M.; Oliveira, J.; Tamouza, R.; Groc, L. Is it time for immunopsychiatry in psychotic disorders? Psychopharmacology 2016. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Dantzer, R.; Jones, P.B. Immunopsychiatry: Important facts. Psychol. Med. 2017. [Google Scholar] [CrossRef]
- Hart, B.L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 1988, 12, 123–137. [Google Scholar] [CrossRef]
- Murray, M.J.; Murray, A.B. Anorexia of infection as a mechanism of host defense. Am. J. Clin. Nutr. 1979, 32, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res. 1996, 711, 163–174. [Google Scholar] [CrossRef]
- Smith, R.S. The immune system is a key factor in the etiology of psychosocial disease. Med. Hypotheses 1991, 34, 49–57. [Google Scholar] [CrossRef]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 2010. [Google Scholar] [CrossRef] [PubMed]
- Capuron, L.; Miller, A.H. Cytokines and psychopathology: Lessons from interferon-α. Biol. Psychiatry 2004. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression. Nat. Rev. Neurosci. 2008. [Google Scholar] [CrossRef] [PubMed]
- Potochnik, A. Explanatory independence and epistemic interdependence: A case study of the optimality approach. Br. J. Philos. Sci. 2010. [Google Scholar] [CrossRef]
- De Ridder, J. Epistemic dependence and collective scientific knowledge. Synthese 2014. [Google Scholar] [CrossRef]
- Medzhitov, R. Inflammation 2010: New Adventures of an Old Flame. Cell 2010. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today 1994, 15, 74–80. [Google Scholar] [CrossRef]
- Bone, R.C.; Alan Fein, C.M.; Robert Balk, F.A.; WiUiam Knaus, F.A.; Cerra, F.B.; HSchein, R.M.; PhiUip Dellinger, R.; William Sibbald, F. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest 1992. [Google Scholar] [CrossRef]
- Balk, R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence 2014. [Google Scholar] [CrossRef] [PubMed]
- Konsman, J.P.; Parnet, P.; Dantzer, R. Cytokine-induced sickness behaviour: Mechanisms and implications. Trends Neurosci. 2002, 25, 154–159. [Google Scholar] [CrossRef]
- Tracy, R.P. The five cardinal signs of inflammation: Calor, dolor, rubor, tumor... and penuria (apologies to Aulus Cornelius Celsus, de medicina, c. A.D. 25). J. Gerontol Ser. A Biol. Sci. Med. Sci. 2006. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008. [Google Scholar] [CrossRef]
- Laurent, P.; Jolivel, V.; Manicki, P.; Chiu, L.; Contin-Bordes, C.; Truchetet, M.E.; Pradeu, T. Immune-mediated repair: A matter of plasticity. Front. Immunol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Andersson, P.B.; Perry, V.H.; Gordon, S. The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 1992, 48, 169–186. [Google Scholar] [CrossRef]
- Estes, M.L.; McAllister, A.K. Alterations in immune cells and mediators in the brain: It’s Not always neuroinflammation! Brain Pathol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.; Goodwin, F.; Chrousos, G. Clinical and biochemical manifestations of depression: Relation of the neurobiology of stress: Part II. N. Engl. J. Med. 1998. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.W.; Machado-Vieira, R.; Pavlatou, M.G. Clinical and biochemical manifestations of depression: Relation to the neurobiology of stress. Neural Plast. 2015. [Google Scholar] [CrossRef] [PubMed]
- Willner, P.; Muscat, R.; Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci. Biobehav. Rev. 1992. [Google Scholar] [CrossRef]
- Kronfol, Z.; Turner, R.; Nasrallah, H.; Winokur, G. Leukocyte regulation in depression and schizophrenia. Psychiatry Res. 1984. [Google Scholar] [CrossRef]
- Maes, M.; Lambrechts, J.; Bosmans, E.; Jacobs, J.; Suy, E.; Vandervorst, C.; De Jonckheere, C.; Minner, B.; Raus, J. Evidence for a systemic immune activation during depression: Results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol. Med. 1992, 22, 45–53. [Google Scholar] [CrossRef]
- Herbert, T.B.; Cohen, S. Depression and Immunity: A Meta-Analytic Review. Psychol. Bull. 1993. [Google Scholar] [CrossRef]
- Kronfol, Z.; Silva, J.; Greden, J.; Dembinski, S.; Gardner, R.; Carroll, B. Impaired lymphocyte function in depressive illness. Life Sci. 1983. [Google Scholar] [CrossRef]
- Maes, M.; Bosmans, E.; Suy, E.; Vandervorst, C.; DeJonckheere, C.; Raus, J. Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1β and soluble interleukin-2 receptor production. Acta Psychiatr. Scand. 1991. [Google Scholar] [CrossRef]
- Leonard, B.E.; Song, C. Stress and the immune system in the etiology of anxiety and depression. Pharmacol. Biochem. Behav. 1996. [Google Scholar] [CrossRef]
- McAdams, C.; Leonard, B.E. Neutrophil and monocyte phagocytosis in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 1993. [Google Scholar] [CrossRef]
- Maes, M.; Meltzer, H.Y.; Bosmans, E.; Bergmans, R.; Vandoolaeghe, E.; Ranjan, R.; Desnyder, R. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J. Affect. Disord. 1995. [Google Scholar] [CrossRef]
- Sluzewska, A.; Rybakowski, J.; Bosmans, E.; Sobieska, M.; Berghmans, R.; Maes, M.; Wiktorowicz, K. Indicators of immune activation in major depression. Psychiatry Res. 1996. [Google Scholar] [CrossRef]
- Berk, M.; Wadee, A.A.; Kuschke, R.H.; O’Neill-Kerr, A. Acute phase proteins in major depression. J. Psychosom. Res. 1997. [Google Scholar] [CrossRef]
- Connor, T.J.; Leonard, B.E. Depression, stress and immunological activation: The role of cytokines in depressive disorders. Life Sci. 1998, 62, 583–606. [Google Scholar] [CrossRef]
- Miller, A.H. Neuroendocrine and immune system interactions in stress and depression. Psychiatr. Clin. N. Am. 1998. [Google Scholar] [CrossRef]
- Licinio, J.; Wong, M.L. The role of inflammatory mediators in the biology of major depression: Central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol. Psychiatry 1999. [Google Scholar] [CrossRef]
- Kronfol, Z. Immune dysregulation in major depression: A critical review of existing evidence. Int. J. Neuropsychopharmacol. 2002. [Google Scholar] [CrossRef] [PubMed]
- Sawchenko, P.E.; Brown, E.R.; Chan, R.K.; Ericsson, A.; Li, H.Y.; Roland, B.L.; Kovács, K.J. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog. Brain Res. 1996, 107, 201–222. [Google Scholar] [PubMed]
- Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997, 20, 78–84. [Google Scholar] [CrossRef]
- Cohen, S.; Janicki-Deverts, D.; Miller, G.E. Psychological stress and disease. J. Am. Med. Assoc. 2007. [Google Scholar] [CrossRef]
- Miller, G.E.; Chen, E.; Zhou, E.S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull. 2007. [Google Scholar] [CrossRef]
- Miller, G.E.; Chen, E.; Sze, J.; Marin, T.; Arevalo, J.M.G.; Doll, R.; Ma, R.; Cole, S.W. A Functional Genomic Fingerprint of Chronic Stress in Humans: Blunted Glucocorticoid and Increased NF-κB Signaling. Biol. Psychiatry 2008. [Google Scholar] [CrossRef]
- Rohleder, N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med. 2014. [Google Scholar] [CrossRef]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun. 2017. [Google Scholar] [CrossRef]
- Takaki, A.; Huang, Q.H.; Somogyvári-Vigh, A.; Arimura, A. Immobilization stress may increase plasma lnterleukin-6 via central and peripheral catecholamines. Neuroimmunomodulation 1994. [Google Scholar] [CrossRef] [PubMed]
- Blandino, P.; Barnum, C.J.; Deak, T. The involvement of norepinephrine and microglia in hypothalamic and splenic IL-1β responses to stress. J. Neuroimmunol. 2006. [Google Scholar] [CrossRef] [PubMed]
- Lechin, F.; Van Der Dijs, B.; Benaim, M. Stress versus depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1996. [Google Scholar] [CrossRef]
- Carney, R.M.; Freedland, K.E.; Veith, R.C. Depression, the autonomic nervous system, and coronary heart disease. Psychosom. Med. 2005. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.L.; Bonilla, H.J.; Escobar Villanueva M del, C.; Brianza, M.P.; Vázquez, G.P.; Alarcón, F.J.A. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats. Physiol. Behav. 2016. [Google Scholar] [CrossRef] [PubMed]
- Hodes, G.E.; Pfau, M.L.; Leboeuf, M.; Golden, S.A.; Christoffel, D.J.; Bregman, D.; Rebusi, N.; Heshmati, M.; Aleyasin, H.; Warren, B.L.; et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 2014. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.M.; Roy, S.; Wong, K.; Gaikwad, S.; Chung, K.M.; Kalueff, A.V. Cytokine and endocrine parameters in mouse chronic social defeat: Implications for translational “cross-domain” modeling of stress-related brain disorders. Behav. Brain Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.; Shintani, F.; Kanba, S.; Asai, M.; Nakaki, T. Immobilization stress increases mRNA levels of interleukin-1 receptor antagonist in various rat brain regions. Cell. Mol. Neurobiol. 1997, 17, 557–562. [Google Scholar] [CrossRef]
- Ishikawa, I.; Kitamura, H.; Kimura, K.; Saito, M. Brain interleukin-1 is involved in blood interleukin-6 response to immobilization stress in rats. Jpn. J. Vet. Res. 2001, 49, 19–25. [Google Scholar]
- Nguyen, K.T.; Deak, T.; Owens, S.M.; Kohno, T.; Fleshner, M.; Watkins, L.R.; Maier, S.F. Exposure to acute stress induces brain interleukin-1beta protein in the rat. J. Neurosci. 1998, 18, 2239–2246. [Google Scholar] [CrossRef]
- Deak, T.; Bordner, K.A.; McElderry, N.K.; Barnum, C.J.; Blandino, P., Jr.; Deak, M.M.; Tammariello, S.P. Stress-induced increases in hypothalamic IL-1: A systematic analysis of multiple stressor paradigms. Brain Res. Bull. 2005, 64, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Hueston, C.M.; Barnum, C.J.; Eberle, J.A.; Ferraioli, F.J.; Buck, H.M.; Deak, T. Stress-dependent changes in neuroinflammatory markers observed after common laboratory stressors are not seen following acute social defeat of the Sprague Dawley rat. Physiol. Behav. 2011. [Google Scholar] [CrossRef] [PubMed]
- Blandino, P.; Barnum, C.J.; Solomon, L.G.; Larish, Y.; Lankow, B.S.; Deak, T. Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress. Brain Behav. Immun. 2009. [Google Scholar] [CrossRef] [PubMed]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 2016. [Google Scholar] [CrossRef] [PubMed]
- Kreisel, T.; Frank, M.G.; Licht, T.; Reshef, R.; Ben-Menachem-Zidon, O.; Baratta, M.V.; Maier, S.F.; Yirmiya, R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry 2014. [Google Scholar] [CrossRef] [PubMed]
- Wohleb, E.S.; Terwilliger, R.; Duman, C.H.; Duman, R.S. Stress-Induced Neuronal Colony Stimulating Factor 1 Provokes Microglia-Mediated Neuronal Remodeling and Depressive-like Behavior. Biol. Psychiatry 2018. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.D.; Godbout, J.P.; Sheridan, J.F. Repeated Social Defeat, Neuroinflammation, and Behavior: Monocytes Carry the Signal. Neuropsychopharmacology 2017. [Google Scholar] [CrossRef]
- Menard, C.; Pfau, M.L.; Hodes, G.E.; Kana, V.; Wang, V.X.; Bouchard, S.; Takahashi, A.; Flanigan, M.E.; Aleyasin, H.; Leclair, K.B.; et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 2017. [Google Scholar] [CrossRef]
- Lehmann, M.L.; Cooper, H.A.; Maric, D.; Herkenham, M. Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages. J. Neuroinflamm. 2016. [Google Scholar] [CrossRef]
- Vargas-Caraveo, A.; Pérez-Ishiwara, D.G.; Martínez-Martínez, A. Chronic psychological distress as an inducer of microglial activation and leukocyte recruitment into the area postrema. Neuroimmunomodulation 2015. [Google Scholar] [CrossRef]
- Definitions, B.; Group, W.; Atkinson, A.J.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001. [Google Scholar] [CrossRef]
- Katz, R. Biomarkers and Surrogate Markers: An FDA Perspective. NeuroRx 2004. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.D.; Shelton, R.C.; Duman, R.S. Functional biomarkers of depression: Diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 2011. [Google Scholar] [CrossRef] [PubMed]
- Sankar, V.; Webster, N.R. Clinical application of sepsis biomarkers. J. Anesth. 2013. [Google Scholar] [CrossRef] [PubMed]
- Sims, C.R.; Nguyen, T.C.; Mayeux, P.R. Could Biomarkers Direct Therapy for the Septic Patient? J. Pharmacol. Exp. Ther. 2016. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; De Simone, G.; Boccia, G.; De Caro, F.; Pagliano, P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J. Glob. Antimicrob. Resist. 2017. [Google Scholar] [CrossRef]
- Pepys, M.B. C-reactive protein: A critical update. J. Clin. Investig. 2003. [Google Scholar] [CrossRef]
- Lelubre, C.; Anselin, S.; Zouaoui Boudjeltia, K.; Biston, P.; Piagnerelli, M. Interpretation of c-reactive protein concentrations in critically Ill patients. Biomed. Res. Int. 2013. [Google Scholar] [CrossRef]
- Elliot, A.J.; Chapman, B.P. Socioeconomic status, psychological resources, and inflammatory markers: Results from the MIDUS study. Heal Psychol. 2016. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dolin, H.H.; Papadimos, T.J.; Stepkowski, S.; Chen, X.; Pan, Z.K. A Novel Combination of Biomarkers to Herald the Onset of Sepsis Prior to the Manifestation of Symptoms. Shock 2018. [Google Scholar] [CrossRef] [PubMed]
- Ivady, B.; JBeres, B.; Szabo, D. Recent Advances in Sepsis Research: Novel Biomarkers and Therapeutic Targets. Curr. Med. Chem. 2011. [Google Scholar] [CrossRef]
- Rincon, M. Interleukin-6: From an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Mauer, J.; Denson, J.L.; Brüning, J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Schett, G. Physiological effects of modulating the interleukin-6 axis. Rheumatology 2018. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, V.; Lecanu, L. Translocator protein (18 kDa) TSPO: An emerging therapeutic target in neurotrauma. Exp. Neurol. 2009. [Google Scholar] [CrossRef]
- Liu, G.J.; Middleton, R.J.; Hatty, C.R.; Kam, W.W.Y.; Chan, R.; Pham, T.; Harrison-Brown, M.; Dodson, E.; Veale, K.; Banati, R.B. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 2014. [Google Scholar] [CrossRef]
- Hannestad, J.; DellaGioia, N.; Gallezot, J.D.; Lim, K.; Nabulsi, N.; Esterlis, I.; Pittman, B.; Lee, J.Y.; O’Connor, K.C.; Pelletier, D.; et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: A [11C]PBR28 PET study. Brain Behav. Immun. 2013. [Google Scholar] [CrossRef]
- Setiawan, E.; Wilson, A.A.; Mizrahi, R.; Rusjan, P.M.; Miler, L.; Rajkowska, G.; Suridjan, I.; Kennedy, J.L.; Vivien Rekkas, P.; Houle, S.; et al. Increased Translocator Protein Distribution Volume, A Marker of Neuroinflammation, in the Brain during Major Depressive Episodes HHS Public Access. JAMA Psychiatry 2015. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, E.; Attwells, S.; Wilson, A.A.; Mizrahi, R.; Rusjan, P.M.; Miler, L.; Xu, C.; Sharma, S.; Kish, S.; Houle, S.; et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: A cross-sectional study. Lancet Psychiatry 2018. [Google Scholar] [CrossRef]
- Richards, E.M.; Zanotti-Fregonara, P.; Fujita, M.; Newman, L.; Farmer, C.; Ballard, E.D.; Machado-Vieira, R.; Yuan, P.; Niciu, M.J.; Lyoo, C.H.; et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Notter, T.; Coughlin, J.M.; Sawa, A.; Meyer, U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol. Psychiatry 2018. [Google Scholar] [CrossRef] [PubMed]
- Stapelberg, N.J.C.; Pratt, R.; Neumann, D.L.; Shum, D.H.K.; Brandis, S.; Muthukkumarasamy, V.; Stantic, B.; Blumenstein, M.; Headrick, J.P. From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression. Neurosci. Biobehav. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Valkanova, V.; Ebmeier, K.P.; Allan, C.L. CRP, IL-6 and depression: A systematic review and meta-analysis of longitudinal studies. J. Affect. Disord. 2013. [Google Scholar] [CrossRef]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018. [Google Scholar] [CrossRef]
- Levine, J.; Barak, Y.; Chengappa, K.N.R.; Rapoport, A.; Rebey, M.; Barak, V. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 1999. [Google Scholar] [CrossRef]
- Carpenter, L.L.; Heninger, G.R.; Malison, R.T.; Tyrka, A.R.; Price, L.H. Cerebrospinal fluid interleukin (IL)-6 in unipolar major depression. J. Affect. Disord. 2004. [Google Scholar] [CrossRef]
- Lindqvist, D.; Janelidze, S.; Hagell, P.; Erhardt, S.; Samuelsson, M.; Minthon, L.; Hansson, O.; Björkqvist, M.; Träskman-Bendz, L.; Brundin, L. Interleukin-6 Is Elevated in the Cerebrospinal Fluid of Suicide Attempters and Related to Symptom Severity. Biol. Psychiatry 2009. [Google Scholar] [CrossRef] [PubMed]
- Sasayama, D.; Hattori, K.; Wakabayashi, C.; Teraishi, T.; Hori, H.; Ota, M.; Yoshida, S.; Arima, K.; Higuchi, T.; Amano, N.; et al. Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J. Psychiatr. Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Skoog, I.; Börjesson-Hanson, A.; Blennow, K.; Zetterberg, H.; Östling, S.; Kern, J.; Gudmundsson, P.; Marlow, T.; Rosengren, L.; et al. Higher CSF interleukin-6 and CSF interleukin-8 in current depression in older women. Results from a population-based sample. Brain Behav. Immun. 2014. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 2018. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Hamdani, N.; Kapczinski, F.; Boukouaci, W.; Drancourt, N.; Dargel, A.; Oliveira, J.; Le Guen, E.; Marlinge, E.; Tamouza, R.; et al. Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: A systematic qualitative review. Acta Psychiatr. Scand. 2014. [Google Scholar] [CrossRef]
- Bayram, F.; Reis, F.; Tunçer, B.; Sipahi, H. The Importance of the Structural Similarity of Drugs Used for Depression and Inflammation, Two Comorbid Diseases. Curr. Top. Med. Chem. 2018, 18, 1416–1421. [Google Scholar] [CrossRef]
- Walker, F.R. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: Do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology 2013. [Google Scholar] [CrossRef]
- Strawbridge, R.; Arnone, D.; Danese, A.; Papadopoulos, A.; Herane Vives, A.; Cleare, A.J. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur. Neuropsychopharmacol. 2015. [Google Scholar] [CrossRef]
- Eyre, H.A.; Air, T.; Proctor, S.; Rositano, S.; Baune, B.T. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005. [Google Scholar] [CrossRef]
- Baune, B.T. Are non-steroidal anti-inflammatory drugs clinically suitable for the treatment of symptoms in depression-associated inflammation? Curr. Top. Behav. Neurosci. 2017. [Google Scholar] [CrossRef]
- Raison, C.L. The promise and limitations of anti-inflammatory agents for the treatment of major depressive disorder. Curr. Top. Behav. Neurosci. 2017. [Google Scholar] [CrossRef]
- Osimo, E.F.; Cardinal, R.N.; Jones, P.B.; Khandaker, G.M. Prevalence and correlates of low-grade systemic inflammation in adult psychiatric inpatients: An electronic health record-based study. Psychoneuroendocrinology 2018. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Oltean, B.P.; Kaser, M.; Dibben, C.R.M.; Ramana, R.; Jadon, D.R.; Dantzer, R.; Coles, A.J.; Lewis, G.; Jones, P.B. Protocol for the insight study: A randomised controlled trial of single-dose tocilizumab in patients with depression and low-grade inflammation. BMJ Open 2018. [Google Scholar] [CrossRef]
- Lacy, B.; Patel, N. Rome Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J. Clin. Med. 2017, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Iannetti, G.D. Painful Issues in Pain Prediction. Trends Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Zunhammer, M.; Bingel, U.; Wager, T.D. Issues in Pain Prediction—More Gain than Pain. Trends Neurosci. 2016. [Google Scholar] [CrossRef]
- Packard, R.R.S.; Libby, P. Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clin. Chem. 2008. [Google Scholar] [CrossRef]
- Van Wijk, D.F.; Boekholdt, S.M.; Wareham, N.J.; Ahmadi-Abhari, S.; Kastelein, J.J.P.; Stroes, E.S.G.; Khaw, K.T. C-Reactive protein, fatal and nonfatal coronary artery disease, stroke, and peripheral artery disease in the prospective EPIC-norfolk cohort study. Arterioscler. Thromb. Vasc. Biol. 2013. [Google Scholar] [CrossRef]
- Ammirati, E.; Moroni, F.; Norata, G.D.; Magnoni, M.; Camici, P.G. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediat. Inflamm. 2015. [Google Scholar] [CrossRef]
- Hemingway, H.; Philipson, P.; Chen, R.; Fitzpatrick, N.K.; Damant, J.; Shipley, M.; Abrams, K.R.; Moreno, S.; McAllister, K.S.L.; Palmer, S.; et al. Evaluating the quality of research into a single prognostic biomarker: A systematic review and metaanalysis of 83 studies of C-reactive protein in stable coronary artery disease. PLoS Med. 2010. [Google Scholar] [CrossRef]
- Krintus, M.; Kozinski, M.; Kubica, J.; Sypniewska, G. Critical appraisal of inflammatory markers in cardiovascular risk stratification. Crit. Rev. Clin. Lab. Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Stone, P.A.; Kazil, J. The relationships between serum C-reactive protein level and risk and progression of coronary and carotid atherosclerosis. Semin. Vasc. Surg. 2014. [Google Scholar] [CrossRef]
- Kushner, I. C-reactive protein elevation can be caused by conditions other than inflammation and may reflect biologic aging. Cleve Clin. J. Med. 2001. [Google Scholar] [CrossRef]
- Willner, P. The validity of animal models of depression. Psychopharmacology 1984, 83, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Belzung, C.; Lemoine, M. Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 2011. [Google Scholar] [CrossRef]
- Lechin, F.; van der Dijs, B.; Orozco, B.; Lechin, M.E.; Báez, S.; Lechin, A.E.; Rada, I.; Acosta, E.; Arocha, L.; Jiménez, V.; et al. Plasma neurotransmitters, blood pressure, and heart rate during supine-resting, orthostasis, and moderate exercise conditions in major depressed patients. Biol. Psychiatry 1995. [Google Scholar] [CrossRef]
- Miksa, M. Sympathetic excitotoxicity in sepsis: Pro-inflammatory priming of macrophages by norepinephrine. Front. Biosci. 2005. [Google Scholar] [CrossRef]
- Kolmus, K.; Tavernier, J.; Gerlo, S. β2-Adrenergic receptors in immunity and inflammation: Stressing NF-κB. Brain Behav. Immun. 2015. [Google Scholar] [CrossRef]
Condition or Disorder | Nb. | References (Authors, Journal, Year) |
---|---|---|
Major, bipolar or melancholic depression and their treatments | 25 | Panizzutti et al., Acta Neuropsychiatr., 2018; Mehta et al., Brain Behav. Immun., 2018; Felger et al., Mol. Psychiatry, 2018; Crawford et al., Hum. Mol. Genet., 2018; Kruse et al., J. Clin. Psychiatry, 2018; Faugere et al., J. Affect. Disord., 2018; Holmes et al., Biol. Psychiatry, 2018; Niemegeers et al., Neuropsychobiology, 2016; Lindqvist et al., Psychoneuroendocrinology, 2017; van Dooren et al., Brain Behav. Immun., 2016; Haroon et al., Mol. Psychiatry, 2016; Felger et al., Mol. Psychiatry, 2016; Al-Hakeim et al., J. Affect. Disord., 2015; Weinberger et al., Brain Behav. Immun., 2015; Grosse et al., Brain Behav. Immun., 2015; Tsai et al., Bipolar Disord., 2014; Krogh et al., Brain Behav. Immun., 2014; Rawdin et al., Brain Behav. Immun., 2013; Lamers et al., Mol. Psychiatry, 2013; Vogelzangs et al., Transl. Psychiatry, 2012; Maes et al., J. Affect. Disord., 2012; Maes et al., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012; Wolkowitz et al., PloS One, 2011; Shelton et al., Mol. Psychiatry, 2011; Wong et al., Mol. Psychiatry, 2008 |
Ageing, elderly | 16 | Rozing et al., Psychoneuroendocrinology, 2019; Niles et al., Psychoneuroendocrinology, 2018; Johnson et al., Int. Psychogeriatr., 2017; Das, Biodemography Soc. Biol. 2017; Gallagher et al., Int. J. Geriatr. Psychiatry, 2017; Theeke et al., Open J. Nurs., 2016; Mezuk et al., PloS One, 2016; Lai et al., Nutr. Res., 2016; Brown et al., J. Gerontol. A Biol. Sci. Med. Sci., 2016; Arts et al., J. Am. Geriatr. Soc., 2015; Hiles et al., J. Psychiatr. Res., 2015; Lu et al., Respir. Res., 2013; Stewart et al., Brain Behav. Immun., 2009; Davidson et al., Am. J. Cardiol., 2009; Pizzi et al., Eur. Heart J., 2008; Kop et al., Am. J. Cardiol., 2002 |
Coronary disease or myocardial infarction and their treatments | 16 | Mommersteeg et al., Brain Behav. Immun., 2016; Ma et al., J. Cardiovasc. Pharmacol., 2016; Xiong et al., Psychosom. Med. 2015; Nikkheslat et al., Brain Behav. Immun., 2015; Williams et al., Psychosomatics, 2014; Steptoe et al., Brain Behav. Immun., 2013; Munk et al., Int. J. Cardiol., 2012; Kupper et al., J. Affect. Disord., 2012; Bot et al., J. Psychosom. Res., 2011; Vaccarino et al., J. Am. Coll. Cardiol., 2007; Whooley et al., Biol. Psychiatry, 2007; Buriachkovskaia et al., Ter. Arkh., 2006; Janszky et al., Biol. Psychiatry, 2007; Toker et al., J. Occup. Health Psychol., 2005; Janszky et al., Brain Behav. Immun., 2005 |
Obesity, diabetes or metabolic syndrome and their treatments | 9 | Oriolo et al., Brain Behav. Immun., 2019; Murdock et al., Stress Health, 2018; Shenhar-Tsarfaty et al., Mol. Med., 2016; Rethorst et al., J. Clin; Psychiatry, 2014; Lamers et al., Mol. Psychiatry, 2013; Silić et al., J. Affect. Disord., 2012; Olszanecka-Glinianowicz et al., Mediators Inflamm., 2009; Emery et al., Obes. Surg., 2007; Benson et al., Brain Behav. Immun., 2008 |
Kidney disease and dialysis | 8 | Gencer et al., J. Am. Coll. Nutr.. 2018; Nowak et al., Int. Urol. Nephrol., 2013; Choi et al., Nephron Clin. Pract., 2012; Li et al., Int. Urol. Nephrol.. 2011; Ko et al., Nephron Clin. Pract., 2010; Ibrahim and Salamony, Am. J. Nephrol., 2008; Kalender et al., Int. J. Clin. Pract., 2007; Kalender et al., Nephron Clin. Pract., 2006 |
Cancer and its treatments | 6 | Jacobs et al., J Psychosom Res. 2017; Rodrigues et al., Am. J. Hosp. Palliat. Care, 2016; Han et al., Psychooncology, 2016; Castro et al., Blood Purif., 2014; J. Affect. Disord., 2012; Bower et al., J. Clin. Oncol., 2011 |
Arthritis or rheumatoid conditions | 3 | Reddy et al., Psychopharmacol. Bull., 2018; Kojima et al., Arthritis Care Res. (Hoboken), 2014; Kojima et al., Arthritis Rheum., 2009 |
Bowel conditions and their treatments | 2 | Gorrepati et al., Int. J. Colorectal Dis., 2018; Jizhong et al., Gastroenterol. Res. Pract., 2016 |
Hepatitis and its treatment | 2 | Hepgu et al., Neuropsychopharmacology, 2016; Felger et al., Physiol Behav. 2016 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konsman, J.P. Inflammation and Depression: A Nervous Plea for Psychiatry to Not Become Immune to Interpretation. Pharmaceuticals 2019, 12, 29. https://doi.org/10.3390/ph12010029
Konsman JP. Inflammation and Depression: A Nervous Plea for Psychiatry to Not Become Immune to Interpretation. Pharmaceuticals. 2019; 12(1):29. https://doi.org/10.3390/ph12010029
Chicago/Turabian StyleKonsman, Jan Pieter. 2019. "Inflammation and Depression: A Nervous Plea for Psychiatry to Not Become Immune to Interpretation" Pharmaceuticals 12, no. 1: 29. https://doi.org/10.3390/ph12010029