Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
Abstract
:1. Introduction
2. Fast Synaptic Transmission in Spinal Lamina II Neurons
3. Effects of Hypothalamus-Derived Neuropeptides on Synaptic Transmission in Spinal Lamina II Neurons
3.1. Oxytocin Action
3.1.1. Action of Oxytocin on Holding Current
3.1.2. Action of Oxytocin on Excitatory Transmission
3.1.3. Action of Oxytocin on Inhibitory Transmission
3.2. Orexins Action
3.2.1. Action of Orexin A on Holding Current
3.2.2. Action of Orexin A on Excitatory Transmission
3.2.3. Action of Orexin A on Inhibitory Transmission
3.3. Orexin B Action
3.3.1. Action of Orexin B on Holding Current
3.3.2. Action of Orexin B on Excitatory Transmission
3.3.3. Action of Orexin B on Inhibitory Transmission
4. Effects of Other Endogenous Pain Modulators on Synaptic Transmission in Spinal Lamina II Neurons
4.1. Opioid Actions
4.2. Nociceptin Action
4.3. Adenosine Action
4.4. ATP Action
4.5. Noradrenaline Action
4.6. Serotonin Action
4.7. Dopamine Action
4.8. Somatostatin Action
4.9. Cannabinoid Action
4.10. Galanin Action
4.11. Substance P Action
4.12. Bradykinin Action
4.13. Neuropeptide Y Action
4.14. Phospholipase A2 Activation Action
4.15. Acetylcholine Action
5. Similarity and Difference among Endogenous Neuromodulators in Antinociceptive Mechanisms at Cellular Levels in the Spinal Lamina II
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 1952, 96, 415–495. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, T.; Perl, E.R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization. J. Comp. Neurol. 1978, 177, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Lee, C.L.; Perl, E.R. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986, 234, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Merighi, A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog. Neurobiol. 2018, 169, 91–134. [Google Scholar] [CrossRef] [PubMed]
- Willis, W.D., Jr.; Coggeshall, R.E. Sensory Mechanisms of the Spinal Cord, 2nd ed.; Plenum: New York, NY, USA, 1991. [Google Scholar]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatsuka, T.; Park, J.-S.; Kumamoto, E.; Tamaki, T.; Yoshimura, M. Plastic changes in sensory inputs to rat substantia gelatinosa neurons following peripheral inflammation. Pain 1999, 82, 39–47. [Google Scholar] [CrossRef]
- Ito, A.; Kumamoto, E.; Takeda, M.; Takeda, M.; Shibata, K.; Sagai, H.; Yoshimura, M. Mechanisms for ovariectomy-induced hyperalgesia and its relief by calcitonin: Participation of 5-HT1A-like receptor on C-afferent terminals in substantia gelatinosa of the rat spinal cord. J. Neurosci. 2000, 20, 6302–6308. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.A.; Kohno, T.; Karchewski, L.A.; Scholz, J.; Baba, H.; Woolf, C.J. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 2002, 22, 6724–6731. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, E. The pharmacology of amino-acid responses in septal neurons. Prog. Neurobiol. 1997, 52, 197–259. [Google Scholar] [CrossRef]
- Harvey, V.L.; Caley, A.; Müller, U.C.; Harvey, R.J.; Dickenson, A.H. A selective role for α3 subunit glycine receptors in inflammatory pain. Front. Mol. Neurosci. 2009, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Coull, J.A.M.; Boudreau, D.; Bachand, K.; Prescott, S.A.; Nault, F.; Sik, A.; de Koninck, P.; de Koninck, Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003, 424, 938–942. [Google Scholar] [CrossRef] [PubMed]
- Kohno, T. A role of spinal inhibition in neuropathic pain. In Cellular and Molecular Mechanisms for the Modulation of Nociceptive Transmission in the Peripheral and Central Nervous Systems; Kumamoto, E., Ed.; Research Signpost: Kelara, India, 2007; pp. 131–145. [Google Scholar]
- Medrano, M.C.; Dhanasobhon, D.; Yalcin, I.; Schlichter, R.; Cordero-Erausquin, M. Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain. Pain 2016, 157, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, Y.-Q.; Kumamoto, E.; Furue, H.; Yoshimura, M. Voltage-clamp recordings of postsynaptic currents in substantia gelatinosa neurons in vitro and its applications to assess synaptic transmission. Brain Res. Protoc. 2001, 7, 235–240. [Google Scholar] [CrossRef]
- Yoshimura, M.; Nishi, S. Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: Pharmacological properties of synaptic currents. Neuroscience 1993, 53, 519–526. [Google Scholar] [CrossRef]
- Fürst, S. Transmitters involved in antinociception in the spinal cord. Brain Res. Bull. 1999, 48, 129–141. [Google Scholar] [CrossRef]
- Zeilhofer, H.U.; Wildner, H.; Yévenes, G.E. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol. Rev. 2012, 92, 193–235. [Google Scholar] [CrossRef]
- Jiang, C.-Y.; Fujita, T.; Kumamoto, E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J. Neurophysiol. 2014, 111, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Fujita, T.; Kumamoto, E. Modulation by orexin A of spontaneous excitatory and inhibitory transmission in adult rat spinal substantia gelatinosa neurons. Biochem. Biophys. Res. Commun. 2018, 501, 100–105. [Google Scholar] [CrossRef]
- Wang, C.; Fujita, T.; Kumamoto, E. Orexin B modulates spontaneous excitatory and inhibitory transmission in lamina II neurons of adult rat spinal cord. Neuroscience 2018, 383, 114–128. [Google Scholar] [CrossRef]
- Yoshimura, M.; Nishi, S. Primary afferent-evoked glycine- and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro. J. Physiol. 1995, 482, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Antal, M.; Petkó, M.; Polgár, E.; Heizmann, C.W.; Storm-Mathisen, J. Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 1996, 73, 509–518. [Google Scholar] [CrossRef]
- Kato, G.; Yasaka, T.; Katafuchi, T.; Furue, H.; Mizuno, M.; Iwamoto, Y.; Yoshimura, M. Direct GABAergic and glycinergic inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patch-clamp analysis in rats. J. Neurosci. 2006, 26, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, T.; Ataka, T.; Kumamoto, E.; Tamaki, T.; Yoshimura, M. Alteration in synaptic inputs through C-afferent fibers to substantia gelatinosa neurons of the rat spinal dorsal horn during postnatal development. Neuroscience 2000, 99, 549–556. [Google Scholar] [CrossRef]
- Ataka, T.; Kumamoto, E.; Shimoji, K.; Yoshimura, M. Baclofen inhibits more effectively C-afferent than Aδ-afferent glutamatergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Pain 2000, 86, 273–282. [Google Scholar] [CrossRef]
- Liu, T.; Fujita, T.; Nakatsuka, T.; Kumamoto, E. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons. J. Neurophysiol. 2008, 99, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S., 3rd. Oxytocin: The great facilitator of life. Prog. Neurobiol. 2009, 88, 127–151. [Google Scholar] [Green Version]
- Raggenbass, M. Vasopressin- and oxytocin-induced activity in the central nervous system: Electrophysiological studies using in-vitro systems. Prog. Neurobiol. 2001, 64, 307–326. [Google Scholar] [CrossRef]
- Stoop, R. Neuromodulation by oxytocin and vasopressin. Neuron 2012, 76, 142–159. [Google Scholar] [CrossRef]
- Cechetto, D.F.; Saper, C.B. Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J. Comp. Neurol. 1988, 272, 579–604. [Google Scholar] [CrossRef] [PubMed]
- Sawchenko, P.E.; Swanson, L.W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 1982, 205, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Rousselot, P.; Papadopoulos, G.; Merighi, A.; Poulain, D.A.; Theodosis, D.T. Oxytocinergic innervation of the rat spinal cord. An electron microscopic study. Brain Res. 1990, 529, 178–184. [Google Scholar] [CrossRef]
- Jo, Y.-H.; Stoeckel, M.-E.; Freund-Mercier, M.-J.; Schlichter, R. Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. J. Neurosci. 1988, 18, 2377–2386. [Google Scholar] [CrossRef]
- Liu, X.; Tribollet, E.; Ogier, R.; Barberis, C.; Raggenbass, M. Presence of functional vasopressin receptors in spinal ventral horn neurons of young rats: A morphological and electrophysiological study. Eur. J. Neurosci. 2003, 17, 1833–1846. [Google Scholar] [CrossRef] [PubMed]
- Reiter, M.K.; Kremarik, P.; Freund-Mercier, M.J.; Stoeckel, M.E.; Desaulles, E.; Feltz, P. Localization of oxytocin binding sites in the thoracic and upper lumbar spinal cord of the adult and postnatal rat: A histoautoradiographic study. Eur. J. Neurosci. 1994, 6, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Schorscher-Petcu, A.; Sotocinal, S.; Ciura, S.; Dupré, A.; Ritchie, J.; Sorge, R.E.; Crawley, J.N.; Hu, S.-B.; Nishimori, K.; Young, L.J.; et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J. Neurosci. 2010, 30, 8274–8284. [Google Scholar] [CrossRef] [PubMed]
- Uhl-Bronner, S.; Waltisperger, E.; Martínez-Lorenzana, G.; Condés-Lara, M.; Freund-Mercier, M.J. Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of the rat. Neuroscience 2005, 135, 147–154. [Google Scholar] [CrossRef]
- Martínez-Lorenzana, G.; Espinosa-López, L.; Carranza, M.; Aramburo, C.; Paz-Tres, C.; Rojas-Piloni, G.; Condés-Lara, M. PVN electrical stimulation prolongs withdrawal latencies and releases oxytocin in cerebrospinal fluid, plasma, and spinal cord tissue in intact and neuropathic rats. Pain 2008, 140, 265–273. [Google Scholar] [CrossRef]
- Condés-Lara, M.; Rojas-Piloni, G.; Martínez-Lorenzana, G.; Rodríguez-Jiménez, J. Paraventricular hypothalamic oxytocinergic cells responding to noxious stimulation and projecting to the spinal dorsal horn represent a homeostatic analgesic mechanism. Eur. J. Neurosci. 2009, 30, 1056–1063. [Google Scholar] [CrossRef]
- Lundeberg, T.; Uvnäs-Moberg, K.; Ågren, G.; Bruzelius, G. Anti-nociceptive effects of oxytocin in rats and mice. Neurosci. Lett. 1994, 170, 153–157. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Chen, J.-M.; Liu, W.-Y.; Wang, C.-H.; Lin, B.-C. Central oxytocin enhances antinociception in the rat. Peptides 2007, 28, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Moreno-López, Y.; Martínez-Lorenzana, G.; Condés-Lara, M.; Rojas-Piloni, G. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides 2013, 47, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Tribollet, E.; Barberis, C.; Arsenijevic, Y. Distribution of vasopressin and oxytocin receptors in the rat spinal cord: Sex-related differences and effect of castration in pudendal motor nuclei. Neuroscience 1997, 78, 499–509. [Google Scholar] [CrossRef]
- Wrobel, L.; Schorscher-Petcu, A.; Dupré, A.; Yoshida, M.; Nishimori, K.; Tribollet, E. Distribution and identity of neurons expressing the oxytocin receptor in the mouse spinal cord. Neurosci. Lett. 2011, 495, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kobrinsky, E.; Mirshahi, T.; Zhang, H.; Jin, T.; Logothetis, D.E. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat. Cell Biol. 2000, 2, 507–514. [Google Scholar] [CrossRef]
- Maruyama, T.; Kanaji, T.; Nakade, S.; Kanno, T.; Mikoshiba, K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J. Biochem. 1997, 122, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Ito, S.; Ohga, A. Inhibitory action of dantrolene on Ca-induced Ca2+ release from sarcoplasmic reticulum in guinea pig skeletal muscle. Eur. J. Pharmacol. 1990, 178, 11–19. [Google Scholar]
- Herbert, J.M.; Augereau, J.M.; Gleye, J.; Maffrand, J.P. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 1990, 172, 993–999. [Google Scholar] [CrossRef]
- Brown, D.A.; Adams, P.R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 1980, 283, 673–676. [Google Scholar] [CrossRef]
- Breton, J.-D.; Poisbeau, P.; Darbon, P. Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord. Mol. Pain 2009, 5, 63. [Google Scholar] [CrossRef]
- Chini, B.; Manning, M.; Guillon, G. Affinity and efficacy of selective agonists and antagonists for vasopressin and oxytocin receptors: An “easy guide” to receptor pharmacology. Prog. Brain Res. 2008, 170, 513–517. [Google Scholar]
- Breton, J.-D.; Veinante, P.; Uhl-Bronner, S.; Vergnano, A.M.; Freund-Mercier, M.J.; Schlichter, R.; Poisbeau, P. Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition. Mol. Pain 2008, 4, 19. [Google Scholar] [CrossRef]
- Jiang, C.-Y.; Fujita, T.; Kumamoto, E. Developmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons. Biochem. Biophys. Rep. 2016, 7, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Wei, F.; Wang, G.D.; Li, P.; Kim, S.J.; Vogt, S.K.; Muglia, L.J.; Zhuo, M. Oxytocin mediates stress-induced analgesia in adult mice. J. Physiol. 2002, 540, 593–606. [Google Scholar] [CrossRef]
- Gong, L.; Gao, F.; Li, J.; Li, J.; Yu, X.; Ma, X.; Zheng, W.; Cui, S.; Liu, K.; Zhang, M.; et al. Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca2+/nNOS/NO/KATP pathway. Neuroscience 2015, 289, 417–428. [Google Scholar] [CrossRef]
- Nersesyan, Y.; Demirkhanyan, L.; Cabezas-Bratesco, D.; Oakes, V.; Kusuda, R.; Dawson, T.; Sun, X.; Cao, C.; Cohen, A.M.; Chelluboina, B.; et al. Oxytocin modulates nociception as an agonist of pain-sensing TRPV1. Cell Rep. 2017, 21, 1681–1691. [Google Scholar] [CrossRef]
- Yang, K.; Kumamoto, E.; Furue, H.; Yoshimura, M. Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci. Lett. 1998, 255, 135–138. [Google Scholar] [CrossRef]
- Yang, K.; Kumamoto, E.; Furue, H.; Li, Y.-Q.; Yoshimura, M. Action of capsaicin on dorsal root-evoked synaptic transmission to substantia gelatinosa neurons in adult rat spinal cord slices. Brain Res. 1999, 830, 268–273. [Google Scholar] [CrossRef]
- Kumamoto, E.; Fujita, T.; Jiang, C.-Y. TRP channels involved in spontaneous L-glutamate release enhancement in the adult rat spinal substantia gelatinosa. Cells 2014, 3, 331–362. [Google Scholar] [CrossRef]
- De Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.-B.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.F.; Gautvik, V.T.; Bartlett, F.S., II; et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef]
- Gao, X.-B.; Horvath, T. Function and dysfunction of hypocretin/orexin: An energetics point of view. Annu. Rev. Neurosci. 2014, 37, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Leonard, C.S.; Kukkonen, J.P. Orexin/hypocretin receptor signalling: A functional perspective. Br. J. Pharmacol. 2014, 171, 294–313. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat. Rev. Neurosci. 2007, 8, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Van den Pol, A.N. Hypothalamic hypocretin (orexin): Robust innervation of the spinal cord. J. Neurosci. 1999, 19, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Date, Y.; Mondal, M.S.; Matsukura, S.; Nakazato, M. Distribution of orexin-A and orexin-B (hypocretins) in the rat spinal cord. Neurosci. Lett. 2000, 288, 87–90. [Google Scholar] [CrossRef]
- Cluderay, J.E.; Harrison, D.C.; Hervieu, G.J. Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul. Pept. 2002, 104, 131–144. [Google Scholar] [CrossRef]
- Hervieu, G.J.; Cluderay, J.E.; Harrison, D.C.; Roberts, J.C.; Leslie, R.A. Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 2001, 103, 777–797. [Google Scholar] [CrossRef]
- Cheng, J.-K.; Chou, R.C.-C.; Hwang, L.-L.; Chiou, L.-C. Antiallodynic effects of intrathecal orexins in a rat model of postoperative pain. J. Pharmacol. Exp. Ther. 2003, 307, 1065–1071. [Google Scholar] [CrossRef]
- Mobarakeh, J.I.; Takahashi, K.; Sakurada, S.; Nishino, S.; Watanabe, H.; Kato, M.; Yanai, K. Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides 2005, 26, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Nozaki-Taguchi, N.; Chiba, T. Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br. J. Pharmacol. 2002, 137, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grudt, T.J.; Perl, E.R. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol. 2002, 540, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Lebold, T.P.; Bonaventure, P.; Shireman, B.T. Selective orexin receptor antagonists. Bioorg. Med. Chem. Lett. 2013, 23, 4761–4769. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Park, K.B.; Pervin, R.; Kim, T.W.; Youn, D.-h. Orexin-A modulates excitatory synaptic transmission and neuronal excitability in the spinal cord substantia gelatinosa. Neurosci. Lett. 2015, 604, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Grudt, T.J.; van den Pol, A.N.; Perl, E.R. Hypocretin-2 (orexin-B) modulation of superficial dorsal horn activity in rat. J. Physiol. 2002, 538, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, J.P.; Leonard, C.S. Orexin/hypocretin receptor signalling cascades. Br. J. Pharmacol. 2014, 171, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Sampogna, S.; Morales, F.R.; Chase, M.H. Co-localization of hypocretin-1 and hypocretin-2 in the cat hypothalamus and brainstem. Peptides 2002, 23, 1479–1483. [Google Scholar] [CrossRef]
- Eriksson, K.S.; Sergeeva, O.; Brown, R.E.; Haas, H.L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci. 2001, 21, 9273–9279. [Google Scholar] [CrossRef] [PubMed]
- Burlet, S.; Tyler, C.J.; Leonard, C.S. Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: Implications for wakefulness and narcolepsy. J. Neurosci. 2002, 22, 2862–2872. [Google Scholar] [CrossRef]
- Kolaj, M.; Coderre, E.; Renaud, L.P. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents. Neuroscience 2008, 155, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Nakajima, K.; Oomura, Y.; Wayner, M.J.; Sasaki, K. Electrophysiological effects of orexins/hypocretins on pedunculopontine tegmental neurons in rats: An in vitro study. Peptides 2009, 30, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-C.; Dai, Y.-W.E.; Lee, Y.-H.; Chiou, L.-C.; Hwang, L.-L. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors. J. Pharmacol. Exp. Ther. 2010, 334, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, A.; Tabuchi, S.; Tsunematsu, T.; Fukazawa, Y.; Tominaga, M. Orexin directly excites orexin neurons through orexin 2 receptor. J. Neurosci. 2010, 30, 12642–12652. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Satoh, M. Molecular biology of the opioid receptors: Structures, functions and distributions. Neurosci. Res. 1995, 23, 121–145. [Google Scholar] [CrossRef]
- Besse, D.; Lombard, M.C.; Zajac, J.M.; Roques, B.P.; Besson, J.M. Pre- and postsynaptic distribution of μ, δ and κ opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res. 1990, 521, 15–22. [Google Scholar] [CrossRef]
- Gouardères, C.; Beaudet, A.; Zajac, J.-M.; Cros, J.; Quirion, R. High resolution radioautographic localization of [125I]FK-33-824-labelled mu opioid receptors in the spinal cord of normal and deafferented rats. Neuroscience 1991, 43, 197–209. [Google Scholar] [CrossRef]
- Mansour, A.; Fox, C.A.; Akil, H.; Watson, S.J. Opioid-receptor mRNA expression in the rat CNS: Anatomical and functional implications. Trends Neurosci. 1995, 18, 22–29. [Google Scholar] [CrossRef]
- Gamse, R.; Holzer, P.; Lembeck, F. Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurones. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1979, 308, 281–285. [Google Scholar] [CrossRef]
- Hunt, S.P.; Kelly, J.S.; Emson, P.C. The electron microscopic localization of methionine-enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 1980, 5, 1871–1890. [Google Scholar] [CrossRef]
- Merchenthaler, I.; Maderdrut, J.L.; Altschuler, R.A.; Petrusz, P. Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience 1986, 17, 325–348. [Google Scholar] [CrossRef]
- Wu, S.Y.; Dun, S.L.; Wright, M.T.; Chang, J.-K.; Dun, N.J. Endomorphin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons in vitro. Neuroscience 1999, 89, 317–321. [Google Scholar] [CrossRef]
- Zadina, J.E.; Hackler, L.; Ge, L.-J.; Kastin, A.J. A potent and selective endogenous agonist for the μ-opiate receptor. Nature 1997, 386, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G. Endomorphin-1 and endomorphin-2: Pharmacology of the selective endogenous μ-opioid receptor agonists. Pharmacol. Ther. 2000, 88, 437–463. [Google Scholar] [CrossRef]
- Williams, C.A.; Wu, S.Y.; Dun, S.L.; Kwok, E.H.; Dun, N.J. Release of endomorphin-2 like substances from the rat spinal cord. Neurosci. Lett. 1999, 273, 25–28. [Google Scholar] [CrossRef]
- Yaksh, T.L.; Rudy, T.A. Analgesia mediated by a direct spinal action of narcotics. Science 1976, 192, 1357–1358. [Google Scholar] [CrossRef] [PubMed]
- Cousins, M.J.; Mather, L.E. Intrathecal and epidural administration of opioids. Anesthesiology 1984, 61, 276–310. [Google Scholar] [PubMed]
- Duggan, A.W.; Hall, J.G.; Headley, P.M. Suppression of transmission of nociceptive impulses by morphine: Selective effects of morphine administered in the region of the substantia gelatinosa. Br. J. Pharmacol. 1977, 61, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Kohno, T.; Kumamoto, E.; Higashi, H.; Shimoji, K.; Yoshimura, M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J. Physiol. 1999, 518, 803–813. [Google Scholar] [CrossRef]
- Ikoma, M.; Kohno, T.; Baba, H. Differential presynaptic effects of opioid agonists on Aδ- and C-afferent glutamatergic transmission to the spinal dorsal horn. Anesthesiology 2007, 107, 807–812. [Google Scholar] [CrossRef]
- Wrigley, P.J.; Jeong, H.-J.; Vaughan, C.W. Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn. Mol. Pain 2010, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Kumamoto, E. Inhibition by endomorphin-1 and endomorphin-2 of excitatory transmission in adult rat substantia gelatinosa neurons. Neuroscience 2006, 139, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Nakatsuka, T.; Kumamoto, E. Opioid receptor activation in spinal dorsal horn. In Cellular and Molecular Mechanisms for the Modulation of Nociceptive Transmission in the Peripheral and Central Nervous Systems; Kumamoto, E., Ed.; Research Signpost: Kerala, India, 2007; pp. 87–111. [Google Scholar]
- Yajiri, Y.; Huang, L.-Y.M. Actions of endomorphins on synaptic transmission of Aδ-fibers in spinal cord dorsal horn neurons. J. Biomed. Sci. 2000, 7, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; North, R.A. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature 1983, 305, 529–530. [Google Scholar] [CrossRef] [PubMed]
- Eckert, W.A., III; Light, A.R. Hyperpolarization of substantia gelatinosa neurons evoked by μ-, κ-, δ1-, and δ2-selective opioids. J. Pain 2002, 3, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-Y.; Ohtubo, Y.; Brailoiu, G.C.; Dun, N.J. Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices. Br. J. Pharmacol. 2003, 140, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Kerchner, G.A.; Zhuo, M. Presynaptic suppression of dorsal horn inhibitory transmission by μ-opioid receptors. J. Neurophysiol. 2002, 88, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Meunier, J.-C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.-L.; Guillemot, J.-C.; Ferrara, P.; Monsarrat, B.; et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef]
- Reinscheid, R.K.; Nothacker, H.-P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bunzow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J., Jr.; Civelli, O. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995, 270, 792–794. [Google Scholar] [CrossRef]
- Schröder, W.; Lambert, D.G.; Ko, M.C.; Koch, T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br. J. Pharmacol. 2014, 171, 3777–3800. [Google Scholar] [CrossRef] [Green Version]
- Winters, B.L.; Christie, M.J.; Vaughan, C.W. Electrophysiological actions of N/OFQ. Handb. Exp. Pharmacol. 2019, 254, 91–130. [Google Scholar] [PubMed]
- Anton, B.; Fein, J.; To, T.; Li, X.; Silberstein, L.; Evans, C.J. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J. Comp. Neurol. 1996, 368, 229–251. [Google Scholar] [CrossRef]
- Houtani, T.; Nishi, M.; Takeshima, H.; Nukada, T.; Sugimoto, T. Structure and regional distribution of nociceptin/orphanin FQ precursor. Biochem. Biophys. Res. Commun. 1996, 219, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.R., Jr.; Mansour, A.; Reinscheid, R.; Nothacker, H.-P.; Civelli, O.; Watson, S.J., Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J. Comp. Neurol. 1999, 406, 503–547. [Google Scholar] [CrossRef]
- Chen, Y.; Sommer, C. Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: Implications on pain processing. J. Peripher. Nerv. Syst. 2006, 11, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Wu, S.Y.; Cook, J.; Dun, N.J. Release of nociceptin-like substances from the rat spinal cord dorsal horn. Neurosci. Lett. 1998, 244, 141–144. [Google Scholar] [CrossRef]
- Erb, K.; Liebel, J.T.; Tegeder, I.; Zeilhofer, H.U.; Brune, K.; Geisslinger, G. Spinally delivered nociceptin/orphanin FQ reduces flinching behaviour in the rat formalin test. Neuroreport 1997, 8, 1967–1970. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.-X.; Wiesenfeld-Hallin, Z.; Xu, X.-J. Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat. Neurosci. Lett. 1997, 223, 49–52. [Google Scholar] [CrossRef]
- Xu, X.-J.; Hao, J.-X.; Wiesenfeld-Hallin, Z. Nociceptin or antinociceptin: Potent spinal antinociceptive effect of orphanin FQ/nociceptin in the rat. Neuroreport 1996, 7, 2092–2094. [Google Scholar]
- Yamamoto, T.; Nozaki-Taguchi, N.; Kimura, S. Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by unilateral constriction injury to the sciatic nerve in the rat. Neurosci. Lett. 1997, 224, 107–110. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nozaki-Taguchi, N.; Kimura, S. Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by carageenan injection into the rat paw. Brain Res. 1997, 754, 329–332. [Google Scholar] [CrossRef]
- Luo, C.; Kumamoto, E.; Furue, H.; Yoshimura, M. Nociceptin-induced outward current in substantia gelatinosa neurones of the adult rat spinal cord. Neuroscience 2001, 108, 323–330. [Google Scholar] [CrossRef]
- Luo, C.; Kumamoto, E.; Furue, H.; Chen, J.; Yoshimura, M. Nociceptin inhibits excitatory but not inhibitory transmission to substantia gelatinosa neurones of adult rat spinal cord. Neuroscience 2002, 109, 349–358. [Google Scholar] [CrossRef]
- Ozaki, S.; Kawamoto, H.; Itoh, Y.; Miyaji, M.; Iwasawa, Y.; Ohta, H. A potent and highly selective nonpeptidyl nociceptin/orphanin FQ receptor (ORL1) antagonist: J-113397. Eur. J. Pharmacol. 2000, 387, R17–R18. [Google Scholar] [CrossRef]
- Lai, C.C.; Wu, S.Y.; Dun, S.L.; Dun, N.J. Nociceptin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons. Neuroscience 1997, 81, 887–891. [Google Scholar] [CrossRef]
- Liebel, J.T.; Swandulla, D.; Zeilhofer, H.U. Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horn neurones of the neonatal rat spinal cord. Br. J. Pharmacol. 1997, 121, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Zeilhofer, H.U.; Muth-Selbach, U.; Gühring, H.; Erb, K.; Ahmadi, S. Selective suppression of inhibitory synaptic transmission by nocistatin in the rat spinal cord dorsal horn. J. Neurosci. 2000, 20, 4922–4929. [Google Scholar] [CrossRef]
- Moran, T.D.; Abdulla, F.A.; Smith, P.A. Cellular neurophysiological actions of nociceptin/orphanin FQ. Peptides 2000, 21, 969–976. [Google Scholar] [CrossRef]
- Dunwiddie, T.V.; Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 2001, 24, 31–55. [Google Scholar] [CrossRef]
- Geiger, J.D.; Labella, F.S.; Nagy, J.I. Characterization and localization of adenosine receptors in rat spinal cord. J. Neurosci. 1984, 4, 2303–2310. [Google Scholar] [CrossRef] [Green Version]
- Reppert, S.M.; Weaver, D.R.; Stehle, J.H.; Rivkees, S.A. Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol. Endocrinol. 1991, 5, 1037–1048. [Google Scholar] [CrossRef]
- Ackley, M.A.; Governo, R.J.M.; Cass, C.E.; Young, J.D.; Baldwin, S.A.; King, A.E. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by the nucleoside transporter ENT1. J. Physiol. 2003, 548, 507–517. [Google Scholar] [CrossRef]
- Holmgren, M.; Hedner, J.; Mellstrand, T.; Nordberg, G.; Hedner, Th. Characterization of the antinociceptive effects of some adenosine analogues in the rat. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1986, 334, 290–293. [Google Scholar] [CrossRef]
- Karlsten, R.; Gordh, T.; Hartvig, P.; Post, C. Effects of intrathecal injection of the adenosine receptor agonists R-phenylisopropyl-adenosine and N-ethylcarboxamide-adenosine on nociception and motor function in the rat. Anesth. Analg. 1990, 71, 60–64. [Google Scholar] [CrossRef]
- Sawynok, J.; Sweeney, M.I.; White, T.D. Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br. J. Pharmacol. 1986, 88, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Sawynok, J. Adenosine receptor activation and nociception. Eur. J. Pharmacol. 1998, 317, 1–11. [Google Scholar] [CrossRef]
- Chen, Z.; Janes, K.; Chen, C.; Doyle, T.; Bryant, L.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J. 2012, 26, 1855–1865. [Google Scholar] [CrossRef]
- Terayama, R.; Tabata, M.; Maruhama, K.; Iida, S. A3 adenosine receptor agonist attenuates neuropathic pain by suppressing activation of microglia and convergence of nociceptive inputs in the spinal dorsal horn. Exp. Brain Res. 2018, 236, 3203–3213. [Google Scholar] [CrossRef]
- Lao, L.-J.; Kumamoto, E.; Luo, C.; Furue, H.; Yoshimura, M. Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A1 adenosine receptor. Pain 2001, 94, 315–324. [Google Scholar] [CrossRef]
- Liu, T.; Fujita, T.; Kawasaki, Y.; Kumamoto, E. Regulation by equilibrative nucleoside transporter of adenosine outward currents in adult rat spinal dorsal horn neurons. Brain Res. Bull. 2004, 64, 75–83. [Google Scholar] [CrossRef]
- Lao, L.-J.; Kawasaki, Y.; Yang, K.; Fujita, T.; Kumamoto, E. Modulation by adenosine of Aδ and C primary-afferent glutamatergic transmission in adult rat substantia gelatinosa neurons. Neuroscience 2004, 125, 221–231. [Google Scholar] [CrossRef]
- Yang, K.; Fujita, T.; Kumamoto, E. Adenosine inhibits GABAergic and glycinergic transmission in adult rat substantia gelatinosa neurons. J. Neurophysiol. 2004, 92, 2867–2877. [Google Scholar] [CrossRef]
- Kumamoto, E.; Fujita, T. Role of adenosine in regulating nociceptive transmission in the spinal dorsal horn. In Recent Research Developments in Physiology; Pandalai, S.G., Ed.; Research Signpost: Kelara, India, 2005; Volume 3, pp. 39–57. [Google Scholar]
- Imlach, W.L.; Bhola, R.F.; May, L.T.; Christopoulos, A.; Christie, M.J. A positive allosteric modulator of the adenosine A1 receptor selectively inhibits primary afferent synaptic transmission in a neuropathic pain model. Mol. Pharmacol. 2015, 88, 460–468. [Google Scholar] [CrossRef]
- Li, J.; Perl, E.R. Adenosine inhibition of synaptic transmission in the substantia gelatinosa. J. Neurophysiol. 1994, 72, 1611–1621. [Google Scholar] [CrossRef]
- Abbracchio, M.P.; Burnstock, G.; Boeynaems, J.-M.; Barnard, E.A.; Boyer, J.L.; Kennedy, C.; Knight, G.E.; Fumagalli, M.; Gachet, C.; Jacobson, K.A.; et al. International union of pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 2006, 58, 281–341. [Google Scholar] [CrossRef]
- Khakh, B.S.; North, R.A. P2X receptors as cell-surface ATP sensors in health and disease. Nature 2006, 442, 527–532. [Google Scholar] [CrossRef]
- Li, J.; Perl, E.R. ATP modulation of synaptic transmission in the spinal substantia gelatinosa. J. Neurosci. 1995, 15, 3357–3365. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Calejesan, A.A.; Zhuo, M. ATP P2X receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J. Neurophysiol. 1998, 80, 3356–3360. [Google Scholar] [CrossRef]
- Gu, J.G.; Bardoni, R.; Magherini, P.C.; MacDermott, A.B. Effects of the P2-purinoceptor antagonists suramin and pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid on glutamatergic synaptic transmission in rat dorsal horn neurons of the spinal cord. Neurosci. Lett. 1998, 253, 167–170. [Google Scholar] [CrossRef]
- Rhee, J.-S.; Wang, Z.-M.; Nabekura, J.; Inoue, K.; Akaike, N. ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses. J. Physiol. 2000, 524, 471–483. [Google Scholar] [CrossRef]
- Bylund, D.B.; Eikenberg, D.C.; Hieble, J.P.; Langer, S.Z.; Lefkowitz, R.J.; Minneman, K.P.; Molinoff, P.B.; Ruffolo, R.R., Jr.; Trendelenburg, U. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 1994, 46, 121–136. [Google Scholar]
- Pieribone, V.A.; Nicholas, A.P.; Dagerlind, Å.; Hökfelt, T. Distribution of α1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J. Neurosci. 1994, 14, 4252–4268. [Google Scholar] [CrossRef]
- Stone, L.S.; Broberger, C.; Vulchanova, L.; Wilcox, G.L.; Hökfelt, T.; Riedl, M.S.; Elde, R. Differential distribution of α2A and α2C adrenergic receptor immunoreactivity in the rat spinal cord. J. Neurosci. 1998, 18, 5928–5937. [Google Scholar] [CrossRef]
- Nicholas, A.P.; Pieribone, V.A.; Hökfelt, T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: An in situ hybridization study. Neuroscience 1993, 56, 1023–1039. [Google Scholar] [CrossRef]
- Hagihira, S.; Senba, E.; Yoshida, S.; Tohyama, M.; Yoshiya, I. Fine structure of noradrenergic terminals and their synapses in the rat spinal dorsal horn: An immunohistochemical study. Brain Res. 1990, 526, 73–80. [Google Scholar] [CrossRef]
- Satoh, K.; Kashiba, A.; Kimura, H.; Maeda, T. Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord: An electron-microscopic study using glyoxylic acid-potassium permanganate fixation. Cell Tissue Res. 1982, 222, 359–378. [Google Scholar] [CrossRef]
- Yeomans, D.C.; Clark, F.M.; Paice, J.A.; Proudfit, H.K. Antinociception induced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group of the rat. Pain 1992, 48, 449–461. [Google Scholar] [CrossRef]
- Yaksh, T.L. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol. Biochem. Behav. 1985, 22, 845–858. [Google Scholar] [CrossRef]
- Aimone, L.D.; Jones, S.L.; Gebhart, G.F. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: Mediation by spinal monoamines but not opioids. Pain 1987, 31, 123–136. [Google Scholar] [CrossRef]
- Howe, J.R.; Wang, J.-Y.; Yaksh, T.L. Selective antagonism of the antinociceptive effect of intrathecally applied alpha adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J. Pharmacol. Exp. Ther. 1983, 224, 552–558. [Google Scholar]
- Reddy, S.V.R.; Maderdrut, J.L.; Yaksh, T.L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J. Pharmacol. Exp. Ther. 1980, 213, 525–533. [Google Scholar]
- Baba, H.; Shimoji, K.; Yoshimura, M. Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 1). Effects on axon terminals of GABAergic and glycinergic neurons. Anesthesiology 2000, 92, 473–484. [Google Scholar] [CrossRef]
- Sonohata, M.; Furue, H.; Katafuchi, T.; Yasaka, T.; Doi, A.; Kumamoto, E.; Yoshimura, M. Actions of noradrenaline on substantia gelatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J. Physiol. 2004, 555, 515–526. [Google Scholar] [CrossRef]
- Baba, H.; Goldstein, P.A.; Okamoto, M.; Kohno, T.; Ataka, T.; Yoshimura, M.; Shimoji, K. Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2). Effects on somatodendritic sites of GABAergic neurons. Anesthesiology 2000, 92, 485–492. [Google Scholar] [CrossRef]
- Liu, T.; Fujita, T.; Kumamoto, E. Acetylcholine and norepinephrine mediate GABAergic but not glycinergic transmission enhancement by melittin in adult rat substantia gelatinosa neurons. J. Neurophysiol. 2011, 106, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, Y.; Kumamoto, E.; Furue, H.; Yoshimura, M. α2 Adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 2003, 98, 682–689. [Google Scholar] [CrossRef]
- Pan, Y.-Z.; Li, D.-P.; Pan, H.-L. Inhibition of glutamatergic synaptic input to spinal lamina IIo neurons by presynaptic α2-adrenergic receptors. J. Neurophysiol. 2002, 87, 1938–1947. [Google Scholar] [CrossRef]
- Raymond, J.R.; Mukhin, Y.V.; Gelasco, A.; Turner, J.; Collinsworth, G.; Gettys, T.W.; Grewal, J.S.; Garnovskaya, M.N. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther. 2001, 92, 179–212. [Google Scholar] [CrossRef]
- Hamon, M.; Gallissot, M.C.; Menard, F.; Gozlan, H.; Bourgoin, S.; Vergé, D. 5-HT3 receptor binding sites are on capsaicin-sensitive fibres in the rat spinal cord. Eur. J. Pharmacol. 1989, 164, 315–322. [Google Scholar] [CrossRef]
- Marlier, L.; Teilhac, J.-R.; Cerruti, C.; Privat, A. Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res. 1991, 550, 15–23. [Google Scholar] [CrossRef]
- Bowker, R.M.; Reddy, V.K.; Fung, S.J.; Chan, J.Y.H.; Barnes, C.D. Serotonergic and non-serotonergic raphe neurons projecting to the feline lumbar and cervical spinal cord: A quantitative horseradish peroxidase-immunocytochemical study. Neurosci. Lett. 1987, 75, 31–37. [Google Scholar] [CrossRef]
- Steinbusch, H.W.M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 1981, 6, 557–618. [Google Scholar] [CrossRef]
- Sorkin, L.S.; McAdoo, D.J.; Willis, W.D. Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res. 1993, 618, 95–108. [Google Scholar] [CrossRef]
- Xu, W.; Qiu, X.-C.; Han, J.-S. Serotonin receptor subtypes in spinal antinociception in the rat. J. Pharmacol. Exp. Ther. 1994, 269, 1182–1189. [Google Scholar]
- Lu, Y.; Perl, E.R. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J. Physiol. 2007, 582, 127–136. [Google Scholar] [CrossRef]
- Abe, K.; Kato, G.; Katafuchi, T.; Tamae, A.; Furue, H.; Yoshimura, M. Responses to 5-HT in morphologically identified neurons in the rat substantia gelatinosa in vitro. Neuroscience 2009, 159, 316–324. [Google Scholar] [CrossRef]
- Fukushima, T.; Ohtsubo, T.; Tsuda, M.; Yanagawa, Y.; Hori, Y. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. J. Neurophysiol. 2009, 102, 1459–1471. [Google Scholar] [CrossRef]
- Kawamata, T.; Omote, K.; Toriyabe, M.; Yamamoto, H.; Namiki, A. The activation of 5-HT3 receptors evokes GABA release in the spinal cord. Brain Res. 2003, 978, 250–255. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef]
- Levant, B.; McCarson, K.E. D3 dopamine receptors in rat spinal cord: Implications for sensory and motor function. Neurosci. Lett. 2001, 303, 9–12. [Google Scholar] [CrossRef]
- Holstege, J.C.; Van Dijken, H.; Buijs, R.M.; Goedknegt, H.; Gosens, T.; Bongers, C.M.H. Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J. Comp. Neurol. 1996, 376, 631–652. [Google Scholar] [CrossRef]
- Skagerberg, G.; Björklund, A.; Lindvall, O.; Schmidt, R.H. Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res. Bull. 1982, 9, 237–444. [Google Scholar] [CrossRef]
- Ozawa, H.; Yamaguchi, T.; Hamaguchi, S.; Yamaguchi, S.; Ueda, S. Three types of A11 neurons project to the rat spinal cord. Neurochem. Res. 2017, 42, 2142–2153. [Google Scholar] [CrossRef]
- Swanson, L.W.; Kuypers, H.G. The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 1980, 194, 555–570. [Google Scholar] [CrossRef]
- Jensen, T.S.; Yaksh, T.L. Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats. Brain Res. 1984, 296, 285–293. [Google Scholar] [CrossRef]
- Puopolo, M. The hypothalamic-spinal dopaminergic system: A target for pain modulation. Neural Regen. Res. 2019, 14, 925–930. [Google Scholar] [CrossRef]
- Tamae, A.; Nakatsuka, T.; Koga, K.; Kato, G.; Furue, H.; Katafuchi, T.; Yoshimura, M. Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J. Physiol. 2005, 568, 243–253. [Google Scholar] [CrossRef]
- Taniguchi, W.; Nakatsuka, T.; Miyazaki, N.; Yamada, H.; Takeda, D.; Fujita, T.; Kumamoto, E.; Yoshida, M. In vivo patch-clamp analysis of dopaminergic antinociceptive actions on substantia gelatinosa neurons in the spinal cord. Pain 2011, 152, 95–105. [Google Scholar] [CrossRef]
- Schindler, M.; Humphrey, P.P.A.; Emson, P.C. Somatostatin receptors in the central nervous system. Prog. Neurobiol. 1996, 50, 9–47. [Google Scholar] [CrossRef]
- Von Banchet, G.S.; Schindler, M.; Hervieu, G.J.; Beckmann, B.; Emson, P.C.; Heppelmann, B. Distribution of somatostatin receptor subtypes in rat lumbar spinal cord examined with gold-labelled somatostatin and anti-receptor antibodies. Brain Res. 1999, 816, 254–257. [Google Scholar] [CrossRef]
- Tuchscherer, M.M.; Seybold, V.S. Immunohistochemical studies of substance P, cholecystokinin-octapeptide and somatostatin in dorsal root ganglia of the rat. Neuroscience 1985, 14, 593–605. [Google Scholar] [CrossRef]
- Hökfelt, T.; Elde, R.; Johansson, O.; Luft, R.; Nilsson, G.; Arimura, A. Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neuroscience 1976, 1, 131–136. [Google Scholar] [CrossRef]
- Sandkühler, J.; Fu, Q.G.; Helmchen, C. Spinal somatostatin superfusion in vivo affects activity of cat nociceptive dorsal horn neurons: Comparison with spinal morphine. Neuroscience 1990, 34, 565–576. [Google Scholar] [CrossRef]
- Chapman, V.; Dickenson, A.H. The spinal and peripheral roles of bradykinin and prostaglandins in nociceptive processing in the rat. Eur. J. Pharmacol. 1992, 219, 427–433. [Google Scholar] [CrossRef]
- Jiang, N.; Furue, H.; Katafuchi, T.; Yoshimura, M. Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro. Neurosci. Res. 2003, 47, 97–107. [Google Scholar] [CrossRef]
- Nakatsuka, T.; Fujita, T.; Inoue, K.; Kumamoto, E. Activation of GIRK channels in substantia gelatinosa neurones of the adult rat spinal cord: A possible involvement of somatostatin. J. Physiol. 2008, 586, 2511–2522. [Google Scholar] [CrossRef]
- Kim, S.J.; Chung, W.H.; Rhim, H.; Eun, S.-Y.; Jung, S.J.; Kim, J. Postsynaptic action mechanism of somatostatin on the membrane excitability in spinal substantia gelatinosa neurons of juvenile rats. Neuroscience 2002, 114, 1139–1148. [Google Scholar] [CrossRef]
- Manzanares, J.; Julian, M.D.; Carrascosa, A. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr. Neuropharmacol. 2006, 4, 239–257. [Google Scholar] [CrossRef]
- Pertwee, R.G. Cannabinoid receptors and pain. Prog. Neurobiol. 2001, 63, 569–611. [Google Scholar] [CrossRef]
- Lichtman, A.H.; Martin, B.R. Cannabinoid-induced antinociception is mediated by a spinal α2-noradrenergic mechanism. Brain Res. 1991, 559, 309–314. [Google Scholar] [CrossRef]
- Hohmann, A.G.; Tsou, K.; Walker, J.M. Cannabinoid modulation of wide dynamic range neurons in the lumbar dorsal horn of the rat by spinally administered WIN55,212-2. Neurosci. Lett. 1998, 257, 119–122. [Google Scholar] [CrossRef]
- Mailleux, P.; Vanderhaeghen, J.-J. Distribution of neuronal cannabinoid receptor in the adult rat brain: A comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 1992, 48, 655–668. [Google Scholar] [CrossRef]
- Hohmann, A.G.; Briley, E.M.; Herkenham, M. Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res. 1999, 822, 17–25. [Google Scholar] [CrossRef]
- Hegyi, Z.; Kis, G.; Holló, K.; Ledent, C.; Antal, M. Neuronal and glial localization of the cannabinoid-1 receptor in the superficial spinal dorsal horn of the rodent spinal cord. Eur. J. Neurosci. 2009, 30, 251–262. [Google Scholar] [CrossRef]
- Chapman, V. The cannabinoid CB1 receptor antagonist, SR141716A, selectively facilitates nociceptive responses of dorsal horn neurones in the rat. Br. J. Pharmacol. 1999, 127, 1765–1767. [Google Scholar] [CrossRef]
- Luo, C.; Kumamoto, E.; Furue, H.; Chen, J.; Yoshimura, M. Anandamide inhibits excitatory transmission to rat substantia gelatinosa neurones in a manner different from that of capsaicin. Neurosci. Lett. 2002, 321, 17–20. [Google Scholar] [CrossRef]
- Zygmunt, P.M.; Petersson, J.; Andersson, D.A.; Chuang, H.-h.; Sørgård, M.; Di Marzo, V.; Julius, D.; Högestätt, E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999, 400, 452–457. [Google Scholar] [CrossRef]
- Morisset, V.; Urban, L. Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J. Neurophysiol. 2001, 86, 40–48. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Fujita, T.; Yang, K.; Kumamoto, E. Anandamide depresses glycinergic and GABAergic inhibitory transmissions in adult rat substantia gelatinosa neurons. Pharmacol. Pharm. 2015, 6, 103–117. [Google Scholar] [CrossRef]
- Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [Google Scholar] [CrossRef]
- Tatemoto, K.; Rökaeus, Å.; Jörnvall, H.; McDonald, T.J.; Mutt, V. Galanin—A novel biologically active peptide from porcine intestine. FEBS Lett. 1983, 164, 124–128. [Google Scholar] [CrossRef]
- Lang, R.; Gundlach, A.L.; Kofler, B. The galanin peptide family: Receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Ther. 2007, 115, 177–207. [Google Scholar] [CrossRef]
- Hökfelt, T. Galanin and its receptors: Introduction to the Third International Symposium, San Diego, California, USA, 21–22 October 2004. Neuropeptides 2005, 39, 125–142. [Google Scholar] [CrossRef]
- Liu, H.-X.; Hökfelt, T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol. Sci. 2002, 23, 468–474. [Google Scholar] [CrossRef]
- Brumovsky, P.; Mennicken, F.; O’Donnell, D.; Hökfelt, T. Differential distribution and regulation of galanin receptors- 1 and -2 in the rat lumbar spinal cord. Brain Res. 2006, 1085, 111–120. [Google Scholar] [CrossRef]
- Ch’ng, J.L.C.; Christofides, N.D.; Anand, P.; Gibson, S.J.; Allen, Y.S.; Su, H.C.; Tatemoto, K.; Morrison, J.F.B.; Polak, J.M.; Bloom, S.R. Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 1985, 16, 343–354. [Google Scholar] [CrossRef]
- Kerekes, N.; Mennicken, F.; O’Donnell, D.; Hökfelt, T.; Hill, R.H. Galanin increases membrane excitability and enhances Ca2+ currents in adult, acutely dissociated dorsal root ganglion neurons. Eur. J. Neurosci. 2003, 18, 2957–2966. [Google Scholar] [CrossRef]
- Landry, M.; Bouali-Benazzouz, R.; André, C.; Shi, T.J.S.; Léger, C.; Nagy, F.; Hökfelt, T. Galanin receptor 1 is expressed in a subpopulation of glutamatergic interneurons in the dorsal horn of the rat spinal cord. J. Comp. Neurol. 2006, 499, 391–403. [Google Scholar] [CrossRef]
- O’Donnell, D.; Ahmad, S.; Wahlestedt, C.; Walker, P. Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: Distinct distribution from GALR1. J. Comp. Neurol. 1999, 409, 469–481. [Google Scholar] [CrossRef]
- Skofitsch, G.; Jacobowitz, D.M. Galanin-like immunoreactivity in capsaicin sensitive sensory neurons and ganglia. Brain Res. Bull. 1985, 15, 191–195. [Google Scholar] [CrossRef]
- Waters, S.M.; Krause, J.E. Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 2000, 95, 265–271. [Google Scholar] [CrossRef]
- Ji, R.-R.; Zhang, X.; Zhang, Q.; Dagerlind, Å.; Nilsson, S.; Wiesenfeld-Hallin, Z.; Hökfelt, T. Central and peripheral expression of galanin in response to inflammation. Neuroscience 1995, 68, 563–576. [Google Scholar] [CrossRef]
- Cridland, R.A.; Henry, J.L. Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II. Neuropeptides 1988, 11, 23–32. [Google Scholar] [CrossRef]
- Kuraishi, Y.; Kawamura, M.; Yamaguchi, T.; Houtani, T.; Kawabata, S.; Futaki, S.; Fujii, N.; Satoh, M. Intrathecal injections of galanin and its antiserum affect nociceptive response of rat to mechanical, but not thermal, stimuli. Pain 1991, 44, 321–324. [Google Scholar] [CrossRef]
- Liu, H.-X.; Brumovsky, P.; Schmidt, R.; Brown, W.; Payza, K.; Hodzic, L.; Pou, C.; Godbout, C.; Hökfelt, T. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: Selective actions via GalR1 and GalR2 receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 9960–9964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesenfeld-Hallin, Z.; Villar, M.J.; Hökfelt, T. The effects of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res. 1989, 486, 205–213. [Google Scholar] [CrossRef]
- Holmes, F.E.; Bacon, A.; Pope, R.J.P.; Vanderplank, P.A.; Kerr, N.C.H.; Sukumaran, M.; Pachnis, V.; Wynick, D. Transgenic overexpression of galanin in the dorsal root ganglia modulates pain-related behavior. Proc. Natl. Acad. Sci. USA 2003, 100, 6180–6185. [Google Scholar] [CrossRef] [Green Version]
- Lundström, L.; Sollenberg, U.; Brewer, A.; Kouya, P.F.; Zheng, K.; Xu, X.-J.; Sheng, X.; Robinson, J.K.; Wiesenfeld-Hallin, Z.; Xu, Z.-Q.; et al. A galanin receptor subtype 1 specific agonist. Int. J. Peptide Res. Ther. 2005, 11, 17–27. [Google Scholar] [CrossRef]
- Yue, H.-Y.; Fujita, T.; Kumamoto, E. Biphasic modulation by galanin of excitatory synaptic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. J. Neurophysiol. 2011, 105, 2337–2349. [Google Scholar] [CrossRef] [Green Version]
- Alier, K.A.; Chen, Y.; Sollenberg, U.E.; Langel, Ü.; Smith, P.A. Selective stimulation of GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- and pro-nociceptive actions of galanin. Pain 2008, 137, 138–146. [Google Scholar] [CrossRef]
- Khawaja, A.M.; Rogers, D.F. Tachykinins: Receptor to effector. Int. J. Biochem. Cell. Biol. 1996, 28, 721–738. [Google Scholar] [CrossRef]
- Urbán, L.; Randic, M. Slow excitatory transmission in rat dorsal horn: Possible mediation by peptides. Brain Res. 1984, 290, 336–341. [Google Scholar] [CrossRef]
- Dickenson, A.H.; Sullivan, A.F. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 1987, 26, 1235–1238. [Google Scholar] [CrossRef]
- Mendell, L.M. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp. Neurol. 1966, 16, 316–332. [Google Scholar] [CrossRef]
- Xu, X.-J.; Dalsgaard, C.-J.; Wiesenfeld-Hallin, Z. Spinal substance P and N-methyl-D-aspartate receptors are coactivated in the induction of central sensitization of the nociceptive flexor reflex. Neuroscience 1992, 51, 641–648. [Google Scholar] [CrossRef]
- Barber, R.P.; Vaughn, J.E.; Slemmon, J.R.; Salvaterra, P.M.; Roberts, E.; Leeman, S.E. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol. 1979, 184, 331–351. [Google Scholar] [CrossRef]
- Yang, K.; Kumamoto, E.; Furue, H.; Li, Y.-Q.; Yoshimura, M. Capsaicin induces a slow inward current which is not mediated by substance P in substantia gelatinosa neurons of the rat spinal cord. Neuropharmacology 2000, 39, 2185–2194. [Google Scholar] [CrossRef]
- Bleazard, L.; Hill, R.G.; Morris, R. NK1 receptor and the actions of tachykinin agonists in the dorsal horn of the rat indicates that substance P does not have a functional role on substantia gelatinosa (lamina II) neurons. J. Neurosci. 1994, 14, 7655–7664. [Google Scholar] [CrossRef]
- Urbán, L.; Dray, A. Synaptic activation of dorsal horn neurons by selective C-fibre excitation with capsaicin in the mouse spinal cord in vitro. Neuroscience 1992, 47, 693–702. [Google Scholar] [CrossRef]
- Ikeda, H.; Heinke, B.; Ruscheweyh, R.; Sandkühler, J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003, 299, 1237–1240. [Google Scholar] [CrossRef]
- Prado, G.N.; Taylor, L.; Zhou, X.; Ricupero, D.; Mierke, D.F.; Polgar, P. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J. Cell. Physiol. 2002, 193, 275–286. [Google Scholar] [CrossRef]
- Rueff, A.; Dray, A. Sensitization of peripheral afferent fibres in the in vitro neonatal rat spinal cord-tail by bradykinin and prostaglandins. Neuroscience 1993, 54, 527–535. [Google Scholar] [CrossRef]
- Couture, R.; Harrisson, M.; Vianna, R.M.; Cloutier, F. Kinin receptors in pain and inflammation. Eur. J. Pharmacol. 2001, 429, 161–176. [Google Scholar] [CrossRef]
- Chapman, V.; Dickenson, A.H. The effects of sandostatin and somatostatin on nociceptive transmission in the dorsal horn of the rat spinal cord. Neuropeptides 1992, 23, 147–152. [Google Scholar] [CrossRef]
- Ferreira, J.; Campos, M.M.; Araújo, R.; Bader, M.; Pesquero, J.B.; Calixto, J.B. The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 2002, 43, 1188–1197. [Google Scholar] [CrossRef]
- Wang, H.; Kohno, T.; Amaya, F.; Brenner, G.J.; Ito, N.; Allchorne, A.; Ji, R.-R.; Woolf, C.J. Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J. Neurosci. 2005, 25, 7986–7992. [Google Scholar] [CrossRef]
- Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide Y—A novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982, 296, 659–660. [Google Scholar] [CrossRef]
- Taiwo, O.B.; Taylor, B.K. Antihyperalgesic effects of intrathecal neuropeptide Y during inflammation are mediated by Y1 receptors. Pain 2002, 96, 353–363. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Lundeberg, T.; Yu, L.-C. Involvement of neuropeptide Y and Y1 receptor in antinociception in nucleus raphe magnus of rats. Regul. Pept. 2000, 95, 109–113. [Google Scholar] [CrossRef]
- Hökfelt, T.; Broberger, C.; Zhang, X.; Diez, M.; Kopp, J.; Xu, Z.-Q.; Landry, M.; Bao, L.; Schalling, M.; Koistinaho, J.; et al. Neuropeptide Y: Some viewpoints on a multifaceted peptide in the normal and diseased nervous system. Brain Res. Brain Res. Rev. 1998, 26, 154–166. [Google Scholar] [CrossRef]
- Larhammar, D.; Blomqvist, A.G.; Söderberg, C. Evolution of neuropeptide Y and its related peptides. Comp. Biochem. Physiol. C 1993, 106, 743–752. [Google Scholar] [CrossRef]
- Wakisaka, S.; Kajander, K.C.; Bennett, G.J. Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neurosci. Lett. 1991, 124, 200–203. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, L.; Xu, Z.-Q.; Kopp, J.; Arvidsson, U.; Elde, R.; Hökfelt, T. Localization of neuropeptide Y Y1 receptors in the rat nervous system with special reference to somatic receptors on small dorsal root ganglion neurons. Proc. Natl. Acad. Sci. USA 1994, 91, 11738–11742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, T.; Holmberg, K.; Landry, M.; Huang, W.; Xiao, H.; Ju, G.; Hökfelt, T. Expression and regulation of the neuropeptide Y Y2 receptor in sensory and autonomic ganglia. Proc. Natl. Acad. Sci. USA 1997, 94, 729–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, X.Y.; Boublik, J.H.; Spicer, M.A.; Rivier, J.E.; Brown, M.R.; Yaksh, T.L. The antinociceptive effects of spinally administered neuropeptide Y in the rat: Systematic studies on structure-activity relationship. J. Pharmacol. Exp. Ther. 1991, 258, 243–248. [Google Scholar] [PubMed]
- Naveilhan, P.; Hassani, H.; Lucas, G.; Blakeman, K.H.; Hao, J.-X.; Xu, X.-J.; Wiesenfeld-Hallin, Z.; Thorén, P.; Ernfors, P. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 2001, 409, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, A.; Furue, H.; Katafuchi, T.; Jiang, N.; Yasaka, T.; Kato, G.; Yoshimura, M. Action of neuropeptide Y on nociceptive transmission in substantia gelatinosa of the adult rat spinal dorsal horn. Neuroscience 2005, 134, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 1994, 269, 13057–13060. [Google Scholar]
- Shimizu, T.; Wolfe, L.S. Arachidonic acid cascade and signal transduction. J. Neurochem. 1990, 55, 1–15. [Google Scholar] [CrossRef]
- Katsuki, H.; Okuda, S. Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 1995, 46, 607–636. [Google Scholar] [CrossRef]
- Samad, T.A.; Sapirstein, A.; Woolf, C.J. Prostanoids and pain: Unraveling mechanisms and revealing therapeutic targets. Trends Mol. Med. 2002, 8, 390–396. [Google Scholar] [CrossRef]
- Svensson, C.I.; Yaksh, T.L. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 553–583. [Google Scholar] [CrossRef] [PubMed]
- Habermann, E. Bee and wasp venoms. Science 1972, 177, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Conway, T.M.; Shorr, R.G.L.; Crooke, S.T. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J. Biol. Chem. 1987, 262, 4402–4406. [Google Scholar] [PubMed]
- Hassid, A.; Levine, L. Stimulation of phospholipase activity and prostaglandin biosynthesis by melittin in cell culture and in vivo. Res. Commun. Chem. Pathol. Pharmacol. 1977, 18, 507–517. [Google Scholar] [PubMed]
- Steiner, M.R.; Bomalaski, J.S.; Clark, M.A. Responses of purified phospholipases A2 to phospholipase A2 activating protein (PLAP) and melittin. Biochim. Biophys. Acta 1993, 1166, 124–130. [Google Scholar] [CrossRef]
- Mayer, R.J.; Marshall, L.A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993, 7, 339–348. [Google Scholar] [CrossRef]
- Yue, H.-Y.; Fujita, T.; Kumamoto, E. Phospholipase A2 activation by melittin enhances spontaneous glutamatergic excitatory transmission in rat substantia gelatinosa neurons. Neuroscience 2005, 135, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Vishwanath, B.S.; Kini, R.M.; Gowda, T.V. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 1987, 25, 501–515. [Google Scholar] [CrossRef]
- Kumamoto, E.; Liu, T.; Fujita, T.; Yue, H.-Y.; Nakatsuka, T. Role of phospholipase A2 in modulating synaptic transmission in the spinal dorsal horn. In Cellular and Molecular Mechanisms for the Modulation of Nociceptive Transmission in the Peripheral and Central Nervous Systems; Kumamoto, E., Ed.; Research Signpost: Kelara, India, 2007; pp. 113–130. [Google Scholar]
- Baba, H.; Kohno, T.; Moore, K.A.; Woolf, C.J. Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J. Neurosci. 2001, 21, 1750–1756. [Google Scholar] [CrossRef]
- Minami, T.; Okuda-Ashitaka, E.; Hori, Y.; Sakuma, S.; Sugimoto, T.; Sakimura, K.; Mishina, M.; Ito, S. Involvement of primary afferent C-fibres in touch-evoked pain (allodynia) induced by prostaglandin E2. Eur. J. Neurosci. 1999, 11, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Dani, J.A. Overview of nicotinic receptors and their roles in the central nervous system. Biol. Psychiatry 2001, 49, 166–174. [Google Scholar] [CrossRef]
- Eglen, R.M.; Choppin, A.; Watson, N. Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol. Sci. 2001, 22, 409–414. [Google Scholar] [CrossRef]
- Wada, E.; Wada, K.; Boulter, J.; Deneris, E.; Heinemann, S.; Patrick, J.; Swanson, L.W. Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. J. Comp. Neurol. 1989, 284, 314–335. [Google Scholar] [CrossRef] [PubMed]
- Wada, E.; McKinnon, D.; Heinemann, S.; Patrick, J.; Swanson, L.W. The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (α5) in the rat central nervous system. J. Physiol. 1990, 526, 45–53. [Google Scholar] [CrossRef]
- Yamamura, H.I.; Wamsley, J.K.; Deshmukh, P.; Roeske, W.R. Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]pirenzepine. Eur. J. Pharmacol. 1983, 91, 147–149. [Google Scholar] [CrossRef]
- Ribeiro-da-Silva, A.; Cuello, A.C. Choline acetyltransferase-immunoreactive profiles are presynaptic to primary sensory fibers in the rat superficial dorsal horn. J. Comp. Neurol. 1990, 295, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. Immunohistochemical evidence that acetylcholine and glycine exist in different populations of GABAergic neurons in lamina III of rat spinal dorsal horn. Neuroscience 1991, 44, 741–746. [Google Scholar] [CrossRef]
- Abram, S.E.; O’Connor, T.C. Characteristics of the analgesic effects and drug interactions of intrathecal carbachol in rats. Anesthesiology 1995, 83, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Abram, S.E.; Winne, R.P. Intrathecal acetyl cholinesterase inhibitors produce analgesia that is synergistic with morphine and clonidine in rats. Anesth. Analg. 1995, 81, 501–507. [Google Scholar] [PubMed]
- Khan, I.M.; Buerkle, H.; Taylor, P.; Yaksh, T.L. Nociceptive and antinociceptive responses to intrathecally administered nicotinic agonists. Neuropharmacology 1998, 37, 1515–1525. [Google Scholar] [CrossRef]
- Khan, I.M.; Stanislaus, S.; Zhang, L.; Taylor, P.; Yaksh, T.L. A-85380 and epibatidine each interact with disparate spinal nicotinic receptor subtypes to achieve analgesia and nociception. J. Pharmacol. Exp. Ther. 2001, 297, 230–239. [Google Scholar] [PubMed]
- Baba, H.; Kohno, T.; Okamoto, M.; Goldstein, P.A.; Shimoji, K.; Yoshimura, M. Muscarinic facilitation of GABA release in substantia gelatinosa of the rat spinal dorsal horn. J. Physiol. 1998, 508, 83–93. [Google Scholar] [CrossRef]
- Takeda, D.; Nakatsuka, T.; Papke, R.; Gu, J.G. Modulation of inhibitory synaptic activity by a non-α4β2, non-α7 subtype of nicotinic receptors in the substantia gelatinosa of adult rat spinal cord. Pain 2003, 101, 13–23. [Google Scholar] [CrossRef]
- Kumamoto, E.; Fujita, T. Differential activation of TRP channels in the adult rat spinal substantia gelatinosa by stereoisomers of plant-derived chemicals. Pharmaceuticals 2016, 9, 46. [Google Scholar] [CrossRef]
- Kumamoto, E. Effects of plant-derived compounds on excitatory synaptic transmission and nerve conduction in the nervous system—Involvement in pain modulation. Curr. Top. Phytochem. 2018, 14, 45–70. [Google Scholar]
- Liu, T.; Jiang, C.-Y.; Fujita, T.; Luo, S.-W.; Kumamoto, E. Enhancement by interleukin-1β of AMPA and NMDA receptor-mediated currents in adult rat spinal superficial dorsal horn neurons. Mol. Pain 2013, 9, 16. [Google Scholar] [CrossRef]
- Arriagada, O.; Constandil, L.; Hernández, A.; Barra, R.; Soto-Moyano, R.; Laurido, C. Effects of interleukin-1β on spinal cord nociceptive transmission in intact and propentofylline-treated rats. Int. J. Neurosci. 2007, 117, 617–625. [Google Scholar] [CrossRef]
- Iyadomi, M.; Iyadomi, I.; Kumamoto, E.; Tomokuni, K.; Yoshimura, M. Presynaptic inhibition by baclofen of miniature EPSCs and IPSCs in substantia gelatinosa neurons of the adult rat spinal dorsal horn. Pain 2000, 85, 385–393. [Google Scholar] [CrossRef]
- Kangrga, I.; Jiang, M.C.; Randić, M. Actions of (-)-baclofen on rat dorsal horn neurons. Brain Res. 1991, 562, 265–275. [Google Scholar] [CrossRef]
- Koga, A.; Fujita, T.; Totoki, T.; Kumamoto, E. Tramadol produces outward currents by activating μ-opioid receptors in adult rat substantia gelatinosa neurones. Br. J. Pharmacol. 2005, 145, 602–607. [Google Scholar] [CrossRef]
- Koga, A.; Fujita, T.; Piao, L.-H.; Nakatsuka, T.; Kumamoto, E. Inhibition by O-desmethyltramadol of glutamatergic excitatory transmission in adult rat spinal substantia gelatinosa neurons. Mol. Pain 2019, 15, 1744806918824243. [Google Scholar] [CrossRef]
- Yamasaki, H.; Funai, Y.; Funao, T.; Mori, T.; Nishikawa, K. Effects of tramadol on substantia gelatinosa neurons in the rat spinal cord: An in vivo patch-clamp analysis. PLoS ONE 2015, 10, e0125147. [Google Scholar] [CrossRef]
- Condés-Lara, M.; Rojas-Piloni, G.; Martínez-Lorenzana, G.; López-Hidalgo, M.; Rodríguez-Jiménez, J. Hypothalamospinal oxytocinergic antinociception is mediated by GABAergic and opiate neurons that reduce A-delta and C fiber primary afferent excitation of spinal cord cells. Brain Res. 2009, 1247, 38–49. [Google Scholar] [CrossRef]
- Keller, A.F.; Coull, J.A.M.; Chéry, N.; Poisbeau, P.; De Koninck, Y. Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J. Neurosci. 2001, 21, 7871–7880. [Google Scholar] [CrossRef]
- Eliava, M.; Melchior, M.; Knobloch-Bollmann, H.S.; Wahis, J.; da Silva Gouveia, M.; Tang, Y.; Ciobanu, A.C.; Triana del Rio, R.; Roth, L.C.; Althammer, F.; et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 2016, 89, 1291–1304. [Google Scholar] [CrossRef]
- Hagan, J.J.; Leslie, R.A.; Patel, S.; Evans, M.L.; Wattam, T.A.; Holmes, S.; Benham, C.D.; Taylor, S.G.; Routledge, C.; Hemmati, P.; et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 1999, 96, 10911–10916. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.-C.; Lee, H.-J.; Tung, L.-W.; Liao, Y.-Y.; Fu, S.-Y.; Teng, S.-F.; Liao, H.-T.; Mackie, K.; Chiou, L.-C. Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J. Neurosci. 2011, 31, 14600–14610. [Google Scholar] [CrossRef]
Endogenous Neuromodulators | Resting Membrane Potential | Glutamatergic Excitatory Transmission | GABAergic Spontaneous Inhibitory Transmission | Glycinergic Spontaneous Inhibitory Transmission | References |
---|---|---|---|---|---|
Oxytocin *1 | Depolarization | No change | Facilitation (sensitive to TTX) | Facilitation (sensitive to TTX) | [20] |
Orexin A *1 | Depolarization | Facilitation | Facilitation (sensitive to TTX) | Facilitation (sensitive to TTX) | [21] |
Orexin B *1 | Depolarization | Facilitation | No change | Facilitation (sensitive to TTX) | [22] |
Endomorphins *1 | Hyperpolarization | Depression | No change | No change | [104,106] |
Nociceptin *1 | Hyperpolarization | Depression | No change | No change | [125,126] |
Adenosine *1 | Hyperpolarization | Depression | Depression | Depression | [142,143,144,145] |
ATP | Fast depolarization | Facilitation | − | Facilitation | [151,154] |
Noradrenaline *1 | Hyperpolarization | No change (spontaneous) Depression (evoked) | Facilitation | Facilitation | [166,167,168,170] |
Serotonin (5-HT) *1 | HyperpolarizationDepolarization | Depression | Facilitation | Facilitation | [9,180,181] |
Dopamine *1 | Hyperpolarization | No change | − | − | [191,192] |
Somatostatin *1 | Hyperpolarization | No change | No change | No change | [199,200] |
Cannabinoids *1 | No change | No change (spontaneous) Depression (evoked) | Depression | Depression | [210,213] |
Galanin *2 | Hyperpolarization | Facilitation (spontaneous) Depression (evoked ) | No change | No change | [233] |
Substance P *3 | No change | No change | − | − | [241] |
Bradykinin *3 | No change | Facilitation | − | − | [250] |
Neuropeptide Y *1 | Hyperpolarization | No change | No change | No change | [261] |
Phospholipase A2 activator | No change | Facilitation | Facilitation (sensitive to TTX) | Facilitation (resistant to TTX) | [28,169,272] |
Acetylcholine (nicotinic) *1 | Depolarization | No change | Facilitation | Facilitation | [20,289] |
Acetylcholine (muscarinic) *1 | Depolarization | No change | Facilitation | Facilitation | [28,288] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumamoto, E. Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals 2019, 12, 136. https://doi.org/10.3390/ph12030136
Kumamoto E. Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals. 2019; 12(3):136. https://doi.org/10.3390/ph12030136
Chicago/Turabian StyleKumamoto, Eiichi. 2019. "Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators" Pharmaceuticals 12, no. 3: 136. https://doi.org/10.3390/ph12030136
APA StyleKumamoto, E. (2019). Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals, 12(3), 136. https://doi.org/10.3390/ph12030136