Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Areca catechu L. (Betel Nut)
3.2. Citrus aurantium L. (Bitter Orange)
3.3. Mitragyna speciosa Korth. (Kratom)
3.4. Panax ginseng C. A. Mey (Asian Ginseng) and Panax quinquefolius L. (American Ginseng)
3.5. Pausinystalia johimbe (K. Schum.) Pierre ex Beille (Yohimbe)
3.6. Piper methysticum G. Forst. (Kava)
3.7. Ptychopetalum olacoides Benth. (Muirapuama)
3.8. Sceletium tortuosum (L.) N. E. Brown (Kanna)
3.9. Other Plants
3.10. General Discussion
3.11. Limitations
4. Materials and Methods
- A. catechu: “Areca catechu”, “areca palm”, “areca nut palm”, “betel palm”, “Indian nut”, “Pinang palm”, arecaidine, or arecoline;
- A. Mexicana: “Argemone mexicana”, “Mexican poppy”, “flowering thistle”, sanguinarine, dihydrosanguinarine, dehydrocorydalmine, jatrorrhizine, columbamine, or oxyberberine;
- C. aurantium: “Citrus aurantium”, “bitter orange”, “Seville orange”, “bigarade orange”, or “marmalade orange”;
- E. longifolia: “Eurycoma longifolia”, “tongkat ali”, “pasak bumi”, “Malaysian ginseng”, eurycomanol, eurycomanone, or eurycomalactone;
- L. meyenii: “Lepidium meyenii”, maca, or “Peruvian ginseng”;
- M. speciosa: “Mitragyna speciose”, kratom, biak, mitragynine, or hydroxymitragynine;
- P. ginseng and P. quinquefolius: “Panax ginseng”, “Panax quinquefolius”, ginseng, or ginsenoside*;
- P. johimbe: “Pausinystalia johimbe”, yohimbe, ajmalicine, allo-yohimbine, corynantheine, pseudoyohimbine, raubasine, yohimbine;
- P. olacoides: “Ptychopetalum olacoides”, “muira puama”, or muirapuamine;
- S. tortuosum: “Sceletium tortuosum”, kanna, channa, kougoed, mesembrine, mesembrenone, mesembrenol, or tortuosamine;
- T. diffusa: “Turnera diffusa”, damania, or damianin;
- V. Africana: “Voacanga africana”, voacamine, or voacangine;
- W. somnifera: “Withania somnifera”, ashwagandha, “Indian ginseng”, or “poison gooseberry”.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leonti, M.; Casu, L. Ethnopharmacology of love. Front. Pharmacol. 2018, 9, 567. [Google Scholar] [CrossRef]
- Giorgetti, R.; Tagliabracci, A.; Schifano, F.; Zaami, S.; Marinelli, E.; Busardò, F.P. When “Chems” Meet Sex: A Rising Phenomenon Called “ChemSex.”. Curr. Neuropharmacol. 2017, 15, 762–770. [Google Scholar] [CrossRef]
- Pyke, R.E. Sexual Performance Anxiety. Sex. Med. Rev. 2020, 8, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Boivin, J.; Bunting, L.; Collins, J.A.; Nygren, K.G. International estimates on infertility prevalence and treatment seeking: Potential need and demand for medical care. Hum. Reprod. 2007, 22, 1506–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.F.; Eisenberg, M.L.; Millstein, S.G.; Nachtigall, R.D.; Shindel, A.W.; Wing, H.; Cedars, M.; Pasch, L.; Katz, P.P. The use of complementary and alternative fertility treatment in couples seeking fertility care: Data from a prospective cohort in the United States. Fertil. Steril. 2010, 93, 2169–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corazza, O.; Martinotti, G.; Santacroce, R.; Chillemi, E.; Di Giannantonio, M.; Schifano, F.; Cellek, S. Sexual enhancement products for sale online: Raising awareness of the psychoactive effects of yohimbine, maca, horny goat weed, and ginkgo biloba. BioMed Res. Int. 2014, 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.; Spiller, H.A.; Hodges, N.L.; Chounthirath, T.; Casavant, M.J.; Kamboj, A.K.; Smith, G.A. An Increase in Dietary Supplement Exposures Reported to US Poison Control Centers. J. Med. Toxicol. 2017, 13, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, P. Aphrodisiacs past and present: A historical review. Clin. Auton. Res. 2001, 11, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Guarraci, F.A.; Bolton, J.L. “Sexy stimulants”: The interaction between psychomotor stimulants and sexual behavior in the female brain. Pharmacol. Biochem. Behav. 2014, 121, 53–61. [Google Scholar] [CrossRef]
- Rot, M.A.H.; Mathew, S.J.; Charney, D.S. Neurobiological mechanisms in major depressive disorder. Can. Med. Assoc. J. 2009, 180, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Kato, T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin. Neurosci. 2019, 73, 526–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, J.C.; McArthur, S.G. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020, 11, 1003. [Google Scholar] [CrossRef] [PubMed]
- Hirao, K.; Pontone, G.M.; Smith, G.S. Molecular imaging of neuropsychiatric symptoms in Alzheimer’s and Parkinson’s disease. Neurosci. Biobehav. Rev. 2015, 49, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivatsav, A.; Balasubramanian, A.; Pathak, U.I.; Rivera-Mirabal, J.; Thirumavalavan, N.; Hotaling, J.M.; Lipshultz, L.I.; Pastuszak, A.W. Efficacy and Safety of Common Ingredients in Aphrodisiacs Used for Erectile Dysfunction: A Review. Sex. Med. Rev. 2020, 8, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Deahl, M. Betel nut-induced extrapyramidal syndrome: An unusual drug interaction. Mov. Disord. 1989, 4, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Winstock, A.R.; Trivedy, C.R.; Warnakulasuriya, S.; Peters, T.J. A dependency syndrome related to areca nut use: Some medical and psychological aspects among areca nut users in the Gujarat community in the UK. Addict. Biol. 2000, 5, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Hafeman, D.; Ahsan, H.; Islam, T.; Louis, E. Betel quid: Its tremor-producing effects in residents of Araihazar, Bangladesh. Mov. Disord. 2005, 21, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Senn, M.; Baiwog, F.; Winmai, J.; Mueller, I.; Rogerson, S.; Senn, N. Betel nut chewing during pregnancy, Madang province, Papua New Guinea. Drug Alcohol Depend. 2009, 105, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.J.S.; Blank, M.D.; Balster, R.L.; Nichter, M.; Nichter, M. Areca nut dependence among chewers in a South Indian community who do not also use tobacco. Addiction 2010, 105, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Mirza, S.S.; Shafique, K.; Vart, P.; Arain, M.I. Areca nut chewing and dependency syndrome: Is the dependence comparable to smoking? A cross sectional study. Subst. Abus. Treat. Prev. Policy 2011, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Chiang, S.L.; Ko, A.M.-S.; Hua, C.H.; Tsai, M.H.; Warnakulasuriya, S.; Ibrahim, S.O.; Sunarjo; Zain, R.B.; Ling, T.Y.; et al. Betel-quid dependence domains and syndrome associated with betel-quid ingredients among chewers: An Asian multi-country evidence. Addiction 2014, 109, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Tamí-Maury, I.M.; Ma, W.F.; Lam, C.; Tsai, M.H.; Lin, M.T.; Li, C.I.; Liu, C.S.; Li, T.C.; Chiu, C.F.; et al. Social and Cultural Context of Betel Quid Consumption in Taiwan and Implications for Prevention and Cessation Interventions. Subst. Use Misuse 2017, 52, 646–655. [Google Scholar] [CrossRef]
- Mateen, F.J.; Carone, M.; Tshering, L.; Dorji, C.; Dema, U.; Grundy, S.J.; Pokhrel, D.R.; Nirola, D.K. Areca catechu (palm tree) nut chewing and seizures: An observational study. Epilepsy Behav. 2017, 74, 76–80. [Google Scholar] [CrossRef]
- Osborne, P.G.; Ko, Y.C.; Wu, M.T.; Lee, C.H. Intoxication and substance use disorder to Areca catechu nut containing betel quid: A review of epidemiological evidence, pharmacological basis and social factors influencing quitting strategies. Drug Alcohol Depend. 2017, 179, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Papke, R.L.; Bhattacharyya, I.; Hatsukami, D.K.; Moe, I.; Glatman, S. Betel Nnut (areca) and Smokeless Tobacco Use in Myanmar. Subst. Use Misuse 2020, 55, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Li, T.C.; Li, C.I.; Gritz, E.R.; Lam, C.; Chiu, C.F.; Liu, C.S.; Lai, C.C.; Hsu, W.Y.; Tamí-Maury, I.; et al. Development and preliminary validation of a mandarin Chinese language questionnaire measuring betel quid dependency among adults in Taiwan. Psychiatry Res. 2019, 271, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Sitaram, N.; Nurnberger, J.I.; Gershon, E.S.; Gillin, J.C. Cholinergic regulation of mood and REM sleep: Potential model and marker of vulnerability to affective disorder. Am. J. Psychiatry 1982, 139, 571–576. [Google Scholar] [CrossRef]
- Nurnberger, J.I.; Jimerson, D.C.; Simmons-Alling, S.; Tamminga, C.; Nadi, N.S.; Lawrence, D.; Sitaram, N.; Gillin, J.C.; Gershon, E.S. Behavioral, physiological, and neuroendocrine responses to arecoline in normal twins and “well state” bipolar patients. Psychiatry Res. 1983, 9, 191–200. [Google Scholar] [CrossRef]
- Dubé, S.; Kumar, N.; Ettedgui, E.; Pohl, R.; Jones, D.; Sitaram, N. Cholinergic REM induction response: Separation of anxiety and depression. Biol. Psychiatry 1985, 20, 408–418. [Google Scholar] [CrossRef]
- Overstreet, D.H. Selective breeding for increased cholinergic function: Development of a new animal model of depression. Biol. Psychiatry 1986, 21, 49–58. [Google Scholar] [CrossRef]
- Tariot, P.N.; Cohen, R.M.; Welkowitz, J.A.; Sunderland, T.; Newhouse, P.A.; Murphy, D.L.; Weingartner, H. Multiple-Dose Arecoline Infusions in Alzheimer’s Disease. Arch. Gen. Psychiatry 1988, 45, 901–905. [Google Scholar] [CrossRef]
- Wager, S.; Robinson, D.; Goetz, R.; Nunes, E.; Gully, R.; Quitkin, F. Cholinergic REM sleep induction in atypical depression. Biol. Psychiatry 1990, 27, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Polinsky, R.J.; Brown, R.T.; Curras, M.T.; Baser, S.M.; Baucom, C.E.; Hooper, D.R.; Marini, A.M. Central and peripheral effects of arecoline in patients with autonomic failure. J. Neurol. Neurosurg. Psychiatry 1991, 54, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Gillin, J.C.; Sutton, L.; Ruiz, C.; Kelsoe, J.; Dupont, R.M.; Darko, D.; Risch, S.C.; Golshan, S.; Janowsky, D. The Cholinergic Rapid Eye Movement Induction Test With Arecoline in Depression. Arch. Gen. Psychiatry 1991, 48, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Dahl, R.E.; Ryan, N.D.; Perel, J.; Birmaher, B.; Al-Shabbout, M.; Nelson, B.; Puig-Antich, J. Cholinergic REM induction test with arecoline in depressed children. Psychiatry Res. 1994, 51, 269–282. [Google Scholar] [CrossRef]
- Molinengo, L.; Orsetti, M.; Pastorello, B.; Scordo, I.; Ghi, P. The action of arecoline on retrieval and memory storage evaluated in the staircase maze. Neurobiol. Learn. Mem. 1995, 63, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, D.T.; Rada, P.; Kosloff, R.A.; Taylor, J.L.; Hoebel, B.G. Nucleus accumbens muscarinic receptors in the control of behavioral depression: Antidepressant-like effects of local m1 antagonist in the porsolt swim test. Neuroscience 2001, 104, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Freitas, M.I.R.; Costa, M. Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biol. Pharm. Bull. 2002, 25, 1629–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamalifard, M.; Farshbaf-Khalili, A.; Namadian, M.; Ranjbar, Y.; Herizchi, S. Comparison of the Effect of Lavender and Bitter Orange on Sleep Quality in Postmenopausal Women: A Triple-Blind, Randomized, Controlled Clinical Trial. Women Health 2018, 58, 851–865. [Google Scholar] [CrossRef]
- Farshbaf-Khalili, A.; Kamalifard, M.; Namadian, M. Comparison of the Effect of Lavender and Bitter Orange on Anxiety in Postmenopausal Women: A Triple-Blind, Randomized, Controlled Clinical Trial. Complement. Ther. Clin. Pract. 2018, 31, 132–138. [Google Scholar] [CrossRef]
- Heydari, N.; Abootalebi, M.; Tayebi, N.; Hassanzadeh, F.; Kasraeian, M.; Emamghoreishi, M.; Akbarzadeh, M. The Effect of Aromatherapy on Mental, Physical Symptoms, and Social Functions of Females With Premenstrual Syndrome: A Randomized Clinical Trial. J. Fam. Med. Prim. Care 2019, 8, 2990–2996. [Google Scholar] [CrossRef]
- Assanangkornchai, S.; Muekthong, A.; Sam-Angsri, N.; Pattanasattayawong, U. The use of Mitragynine speciosa (“Krathom”), an addictive plant, in Thailand. Subst. Use Misuse 2007, 42, 2145–2157. [Google Scholar] [CrossRef] [PubMed]
- Boyer, E.W.; Babu, K.M.; Adkins, J.E.; Mccurdy, C.R.; Halpern, J.H. Self-treatment of opioid withdrawal using kratom (Mitragynia speciosa korth). Addiction 2008, 103, 1048–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelsen, J.L.; Lapoint, J.; Hodgman, M.J.; Aldous, K.M. Seizure and Coma Following Kratom (Mitragynina speciosa Korth) Exposure. J. Med. Toxicol. 2010, 6, 424–426. [Google Scholar] [CrossRef] [Green Version]
- Vicknasingam, B.; Narayanan, S.; Beng, G.T.; Mansor, S.M. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int. J. Drug Policy 2010, 21, 283–288. [Google Scholar] [CrossRef]
- McWhirter, L.; Morris, S. A case report of inpatient detoxification after kratom (Mitragyna speciosa) dependence. Eur. Addict. Res. 2010, 16, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Aziz, Z. Mitragyna speciosa use in the northern states of Malaysia: A cross-sectional study. J. Ethnopharmacol. 2012, 141, 446–450. [Google Scholar] [CrossRef]
- Trakulsrichai, S.; Tongpo, A.; Sriapha, C.; Wongvisawakorn, S.; Rittilert, P.; Kaojarern, S.; Wananukul, W. Kratom Abuse in Ramathibodi Poison Center, Thailand: A Five-Year. J. Psychoact. Drugs 2012, 45, 404–408. [Google Scholar] [CrossRef]
- Forrester, M.B. Kratom exposures reported to Texas poison centers. J. Addict. Dis. 2013, 32, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Saingam, D.; Assanangkornchai, S.; Geater, A.F.; Balthip, Q. Pattern and consequences of krathom (Mitragyna speciosa Korth.) use among male villagers in southern Thailand: A qualitative study. Int. J. Drug Policy 2013, 24, 351–358. [Google Scholar] [CrossRef]
- Singh, D.; Müller, C.P.; Vicknasingam, B.K. Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend. 2014, 139, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Swogger, M.T.; Hart, E.; Erowid, F.; Erowid, E.; Trabold, N.; Yee, K.; Parkhurst, K.A.; Priddy, B.M.; Walsh, Z. Experiences of Kratom Users: A Qualitative Analysis. J. Psychoact. Drugs 2015, 47, 360–367. [Google Scholar] [CrossRef]
- Anwar, M.; Law, R.; Schier, J. Notes from the Field: Kratom (Mitragyna speciosa) Exposures Reported to Poison Centers—United States, 2010–2015. MMWR. Morb. Mortal. Wkly. Rep. 2016, 65, 748–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saingam, D.; Assanangkornchai, S.; Geater, A.F.; Lerkiatbundit, S. Factor analytical investigation of krathom (mitragyna speciosa korth.) withdrawal syndrome in Thailand. J. Psychoact. Drugs 2016, 48, 76–85. [Google Scholar] [CrossRef]
- Buresh, M. Treatment of kratom dependence with buprenorphine-naloxone maintenance. J. Addict. Med. 2018, 12, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Narayanan, S.; Müller, C.P.; Swogger, M.T.; Rahim, A.A.; Leong Bin Abdullah, M.F.I.; Vicknasingam, B.K.; Marc, T.S. Severity of Kratom (Mitragyna speciosa Korth.) Psychological Withdrawal Symptoms. J. Psychoact. Drugs 2018, 50, 445–450. [Google Scholar] [CrossRef]
- Mackay, L.; Abrahams, R. Novel case of maternal and neonatal kratom dependence and withdrawal. Can. Fam. Physician 2018, 64, 121–122. [Google Scholar] [PubMed]
- Murthy, P.; Clark, D. An unusual cause for neonatal abstinence syndrome. Paediatr. Child Health 2019, 24, 12–14. [Google Scholar] [CrossRef]
- Diep, J.; Chin, D.T.; Gupta, S.; Syed, F.; Xiong, M.; Cheng, J. Kratom, an Emerging Drug of Abuse: A Case Report of Overdose and Management of Withdrawal. A A Pract. 2018, 10, 192–194. [Google Scholar] [CrossRef]
- Tatum, W.O.; Hasan, T.F.; Coonan, E.E.; Smelick, C.P. Recurrent seizures from chronic kratom use, an atypical herbal opioid. Epilepsy Behav. Case Rep. 2018, 10, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Khazaeli, A.; Jerry, J.M.; Vazirian, M. Treatment of Kratom Withdrawal and Addiction With Buprenorphine. J. Addict. Med. 2018, 12, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Narayanan, S.; Müller, C.P.; Vicknasingam, B.; Yücel, M.; Ho, E.T.W.; Hassan, Z.; Mansor, S.M. Long-Term Cognitive Effects of Kratom (Mitragyna speciosa Korth.) Use. J. Psychoact. Drugs 2019, 51, 19–27. [Google Scholar] [CrossRef]
- Abdullah, M.F.I.; Singh, D.; Swogger, M.T.; Rahim, A.A.; Vicknasingam, B. The prevalence of psychotic symptoms in kratom (Mitragyna speciosa Korth.) Users in Malaysia. Asian J. Psychiatr. 2019, 43, 197–201. [Google Scholar] [CrossRef]
- Eggleston, W.; Stoppacher, R.; Suen, K.; Marraffa, J.M.; Nelson, L.S. Kratom Use and Toxicities in the United States. Pharmacotherapy 2019, 39, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Meireles, V.; Rosado, T.; Barroso, M.; Soares, S.; Gonçalves, J.; Luís, Â.; Caramelo, D.; Simão, A.; Fernández, N.; Duarte, A.; et al. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. Medicines 2019, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saref, A.; Suraya, S.; Singh, D.; Grundmann, O.; Narayanan, S.; Swogger, M.T.; Prozialeck, W.C.; Boyer, E.; Chear, N.J.Y.; Balasingam, V. Self-reported prevalence and severity of opioid and kratom (Mitragyna speciosa korth.) side effects. J. Ethnopharmacol. 2019, 238, 111876. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, C.N.; Gnanasegaram, S.A.; Ahmed, S.; Penders, T. Kratom Withdrawal: A Systematic Review with Case Series. J. Psychoact. Drugs 2019, 51, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Schmuhl, K.K.; Gardner, S.M.; Cottrill, C.B.; Bonny, A.E. Home induction and outpatient treatment of kratom use disorder with buprenorphine-naloxone: A case report in a young adult. Subst. Abus. 2020, 41, 311–314. [Google Scholar] [CrossRef]
- Afzal, H.; Esang, M.; Rahman, S. A Case of Kratom-induced Seizures. Cureus 2020, 12, e6588. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Romeu, A.; Cox, D.J.; Smith, K.E.; Dunn, K.E.; Griffiths, R.R. Kratom (Mitragyna speciosa): User demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend. 2020, 208, 107849. [Google Scholar] [CrossRef]
- Singh, D.; Narayanan, S.; Suraya, S.; Saref, A.; Grundmann, O.; Prozialeck, W.C.; Corazza, O.; Swogger, M.T.; Griffin, O.; Balasingam, V. Public Perceptions toward Kratom (Mitragyna Speciosa) Use in Malaysia. J. Psychoact. Drugs 2020, 52, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Apryani, E.; Hidayat, M.T.; Moklas, M.A.A.; Fakurazi, S.; Idayu, N.F. Effects of mitragynine from Mitragyna speciosa Korth leaves on working memory. J. Ethnopharmacol. 2010, 129, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Karinen, R.; Fosen, J.T.; Rogde, S.; Vindenes, V. An accidental poisoning with mitragynine. Forensic Sci. Int. 2014, 245, e29–e32. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.H.M.; Suhaimi, F.W.; Vadivelu, R.K.; Hassan, Z.; Rümler, A.; Rotter, A.; Amato, D.; Dringenberg, H.C.; Mansor, S.M.; Navaratnam, V.; et al. Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict. Biol. 2016, 21, 98–110. [Google Scholar] [CrossRef]
- Hemby, S.E.; Mcintosh, S.; Leon, F.; Cutler, S.J.; Mccurdy, C.R. Abuse liability and therapeutic potential of the Mitragyna speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine. Addict. Biol. 2019, 24, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.; Suhaimi, F.W.; Ramanathan, S.; Ling, K.H.; Effendy, M.A.; Müller, C.P.; Dringenberg, H.C. Mitragynine (Kratom) impairs spatial learning and hippocampal synaptic transmission in rats. J. Psychopharmacol. 2019, 33, 908–918. [Google Scholar] [CrossRef]
- Vadnal, R.; Parthasarathy, L.; Parthasarathy, R. The Use of Ginseng as an Adjunct in Treatment-Resistant Depression. Nutr. Neurosci. 1998, 1, 83–85. [Google Scholar] [CrossRef]
- Joshi, K.G.; Faubion, M.D. Mania and Psychosis Associated with St. John’s Wort and Ginseng. Psychiatry (Edgmont) 2005, 2, 56–61. [Google Scholar]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Dose dependent changes in cognitive performance and mood following acute administration of Ginseng to healthy young volunteers. Nutr. Neurosci. 2001, 4, 295–310. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Differential, dose dependent changes in cognitive performance following acute administration of a Ginkgo biloba/Panax ginseng combination to healthy young volunteers. Nutr. Neurosci. 2001, 4, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, I.; Agüera-Ortiz, L.F. Herbal products and serious side effects: A case of ginseng-induced manic episode. Acta Psychiatr. Scand. 2002, 105, 76–77. [Google Scholar] [PubMed]
- Hartley, D.E.; Elsabagh, S.; File, S.E. Gincosan (A combination of ginkgo biloba and panax ginseng): The effects on mood and cognition of 6 and 12 weeks’ treatment in post-menopausal women. Nutr. Neurosci. 2004, 7, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Niederhofer, H. Panax ginseng may improve some symptoms of attention-deficit hyperactivity disorder. J. Diet. Suppl. 2009, 6, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.G.; Ko, Y.H.; Oh, S.Y.; Han, C.; Kim, T.; Joe, S.H. Effect of Korean Red Ginseng as an adjuvant treatment for women with residual symptoms of major depression. Asia Pac. Psychiatry 2015, 7, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Norelli, L.J.; Xu, C. Manic psychosis associated with Ginseng: A report of two cases and discussion of the literature. J. Diet. Suppl. 2015, 12, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Yennurajalingam, S.; Reddy, A.; Tannir, N.M.; Chisholm, G.B.; Lee, R.T.; Lopez, G.; Escalante, C.P.; Manzullo, E.F.; Hume, S.F.; Williams, J.L.; et al. High-Dose Asian Ginseng (Panax Ginseng) for Cancer-Related Fatigue: A Preliminary Report. Integr. Cancer Ther. 2015, 14, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Stigall, K.; Johnson, H.E.; Rayapati, A.O.; Chopra, N. Functional foods: How functional are they? A case report of supplement-induced psychosis. Int. J. Psychiatry Med. 2016, 51, 479–485. [Google Scholar] [CrossRef]
- Bostock, E.; Kirkby, K.; Garry, M.; Taylor, B.; Hawrelak, J.A. Mania associated with herbal medicines, other than cannabis: A systematic review and quality assessment of case reports. Front. Psychiatry 2018, 9, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farnia, V.; Alikhani, M.; Ebrahimi, A.; Golshani, S.; Bahmani, D.S.; Brand, S. Ginseng treatment improves the sexual side effects of methadone maintenance treatment. Psychiatry Res. 2019, 276, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Görgülü, S. Manic Episode Associated with Ginseng: A Case Report. Int. J. Med. Rev. Case Rep. 2020, 4, 111–113. [Google Scholar] [CrossRef]
- Lee, J.; Lee, A.; Kim, J.-H.; Shin, Y.M.; Kim, S.-J.; Cho, W.D.; Lee, S.I. Effect of omega-3 and Korean red ginseng on children with attention deficit hyperactivity disorder: An open-label pilot study. Clin. Psychopharmacol. Neurosci. 2020, 18, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.D.; Runikis, A.M. Interaction of ginseng with phenelzine. J. Clin. Psychopharmacol. 1987, 7, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.R.; Cline, J.C.; De Zepetnek, J.T.; Shan, J.J.; Pang, P.; Benishin, C. Effect of the herbal extract combination Panax quinquefolium and Ginkgo biloba on attention-deficit hyperactivity disorder: A pilot study. J. Psychiatry Neurosci. 2001, 26, 221–228. [Google Scholar] [PubMed]
- Ma, H.; Sullivan-Halley, J.; Smith, A.W.; Neuhouser, M.L.; Alfano, C.M.; Meeske, K.; George, S.M.; McTiernan, A.; McKean-Cowdin, R.; Baumgartner, K.B.; et al. Estrogenic botanical supplements, health-related quality of life, fatigue, and hormone-related symptoms in breast cancer survivors: A HEAL study report. BMC Complement. Altern. Med. 2011, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Papeschi, R.; Sourkers, T.L.; Youdim, M.B. The effect of yohimbine on brain serotonin metabolism, motor behavior and body temperature of the rat. Eur. J. Pharmacol. 1971, 15, 318–326. [Google Scholar] [CrossRef]
- MacKintosh, C.G.; Van Reenen, G. Comparison of yohimbine, 4-aminopyridine and doxapram antagonism of xylazine sedation in deer (Cervus elaphus). N. Z. Vet. J. 1984, 32, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Price, L.H.; Charney, D.S.; Heninger, G.R. Three cases of manic symptoms following yohimbine administration. Am. J. Psychiatry 1984, 141, 1267–1268. [Google Scholar] [CrossRef]
- Charney, D.S.; Heninger, G.R.; Breier, A. Noradrenergic Function in Panic Anxiety. Arch. Gen. Psychiatry 1984, 41, 751–763. [Google Scholar] [CrossRef]
- Linden, C.H.; Vellman, W.P.; Rumack, B. Yohimbine: A new street drug. Ann. Emerg. Med. 1985, 14, 1002–1004. [Google Scholar] [CrossRef]
- Charney, S.; Woods, S.W.; Goodman, K.; Heninger, R. Neurobiological Mechanisms of Panic Anxiety: Biochemical and Behavioral Correlates of Yohimbine-Induced Panic Attacks. Am. J. Psychiatry 1987, 144, 1030–1036. [Google Scholar] [CrossRef]
- Johnston, A.L.; Baldwin, H.A.; File, S.E. Measures of anxiety and stress in the rat following chronic treatment with yohimbine. J. Psychopharmacol. 1988, 2, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Heninger, G.R.; Charney, D.S.; Price, L.H. alpha 2-Adrenergic receptor sensitivity in depression. The plasma MHPG, behavioral, and cardiovascular responses to yohimbine. Arch. Gen. Psychiatry 1988, 45, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Dilsaver, S.C.; Davidson, R.K. Chronic treatment with amitriptyline produces subsensitivity to the hypothermic effects of yohimbine. Prog. Neuro-Psychopharmacology Biol. Psychiatry 1989, 13, 211–215. [Google Scholar] [CrossRef]
- Rosenblum, L.A.; Coplan, J.D.; Friedman, S.; Bassoff, T. Dose-response effects of oral yohimbine in unrestrained primates. Biol. Psychiatry 1991, 29, 647–657. [Google Scholar] [CrossRef]
- Charney, D.S.; Woods, S.W.; Krystal, J.H.; Nagy, L.M.; Heninger, G.R. Noradrenergic neuronal dysregulation in panic disorder: The effects of intravenous yohimbine and clonidine in panic disorder patients. Acta Psychiatr. Scand. 1992, 86, 273–282. [Google Scholar] [CrossRef]
- Friesen, K.; Palatnick, W.; Tenenbein, M. Benign course after massive ingestion of yohimbine. J. Emerg. Med. 1993, 11, 287–288. [Google Scholar] [CrossRef]
- Kollias-Baker, C.A.; Court, M.H.; Williams, L.L. Influence of yohimbine and tolazoline on the cardiovascular, respiratory, and sedative effects of xylazine in the horse. J. Vet. Pharmacol. Ther. 1993, 16, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Wooten, V. Effectiveness of yohimbine in treating narcolepsy. South. Med. J. 1994, 87, 1065–1066. [Google Scholar] [CrossRef] [PubMed]
- Southwick, S.M.; Morgan, C.A., III; Charney, D.S.; High, J.R. Yohimbine use in a natural setting: Effects on posttraumatic stress disorder. Biol. Psychiatry 1999, 46, 442–444. [Google Scholar] [CrossRef]
- Cameron, O.G.; Zubieta, J.K.; Grunhaus, L.; Minoshima, S. Effects of yohimbine on cerebral blood flow, symptoms, and physiological functions in humans. Psychosom. Med. 2000, 62, 549–559. [Google Scholar] [CrossRef]
- Morales, L.; Perez-Garcia, C.; Alguacil, L.F. Effects of yohimbine on the antinociceptive and place conditioning effects of opioid agonists in rodents. Br. J. Pharmacol. 2001, 133, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsunaga, T.; Tsukada, H.; Nishiyama, S.; Sekine, Y.; Kakiuchi, T.; Iyo, M.; Mori, N. Yohimbine increases the binding potential for [11 C] flumazenil in the monkey brain. J. Neural Transm. 2001, 108, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Stine, S.M.; Southwick, S.M.; Petrakis, I.L.; Kosten, T.R.; Charney, D.S.; Krystal, J.H. Yohimbine-induced withdrawal and anxiety symptoms in opioid-dependent patients. Biol. Psychiatry 2002, 51, 642–651. [Google Scholar] [CrossRef]
- Shepard, J.D.; Bossert, J.M.; Liu, S.Y.; Shaham, Y. The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol. Psychiatry 2004, 55, 1082–1089. [Google Scholar] [CrossRef]
- Lee, B.; Tiefenbacher, S.; Platt, D.M.; Spealman, R.D. Pharmacological blockade of α2-adrenoceptors induces reinstatement of cocaine-seeking behavior in squirrel monkeys. Neuropsychopharmacology 2004, 29, 686–693. [Google Scholar] [CrossRef]
- Ehlert, U.; Erni, K.; Hebisch, G.; Nater, U. Salivary α-amylase levels after yohimbine challenge in healthy men. J. Clin. Endocrinol. Metab. 2006, 91, 5130–5133. [Google Scholar] [CrossRef]
- Keedy, S.K.; Connor, M.M.; Beenken, B.; Dorflinger, J.; Abel, M.; Erwin, R.J. Noradrenergic antagonism of the P13 and N40 components of the rat auditory evoked potential. Psychopharmacology 2007, 190, 117–125. [Google Scholar] [CrossRef]
- Giampreti, A.; Lonati, D.; Locatelli, C.; Rocchi, L.; Campailla, M.T. Acute neurotoxicity after yohimbine ingestion by a body builder. Clin. Toxicol. 2009, 47, 827–829. [Google Scholar] [CrossRef]
- Powers, M.B.; Smits, J.A.J.; Otto, M.W.; Sanders, C.; Emmelkamp, P.M.G. Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: A randomized placebo controlled trial of yohimbine augmentation. J. Anxiety Disord. 2009, 23, 350–356. [Google Scholar] [CrossRef]
- Banna, K.M.; Back, S.E.; Do, P.; See, R.E. Yohimbine stress potentiates conditioned cue-induced reinstatement of heroin-seeking in rats. Behav. Brain Res. 2010, 208, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Sommer, M.; Braumann, M.; Althoff, T.; Backhaus, J.; Kordon, A.; Junghanns, K.; Ehrenthal, D.; Bartmann, U.; Hohagen, F.; Broocks, A. Psychological and neuroendocrine responses to social stress and to the administration of the alpha-2-receptor antagonist, yohimbine, in highly trained endurance athletes in comparison to untrained healthy controls. Pharmacopsychiatry 2011, 44, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Umhau, J.C.; Schwandt, M.L.; Usala, J.; Geyer, C.; Singley, E.; George, D.T.; Heilig, M. Pharmacologically induced alcohol craving in treatment seeking alcoholics correlates with alcoholism severity, but is insensitive to acamprosate. Neuropsychopharmacology 2011, 36, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Berman, S.; Suyenobu, B.; Naliboff, B.D.; Bueller, J.; Stains, J.; Wong, H.; Mandelkern, M.; Fitzgerald, L.; Ohning, G.; Gupta, A.; et al. Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome. Neuroimage 2012, 63, 1854–1863. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zou, S.; Coen, K.; Funk, D.; Shram, M.J.; Lê, A.D. Sex differences in yohimbine-induced increases in the reinforcing efficacy of nicotine in adolescent rats. Addict. Biol. 2014, 19, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Lê, A.D.; Funk, D.; Coen, K.; Li, Z.; Shaham, Y. Role of corticotropin-releasing factor in the median raphe nucleus in yohimbine-induced reinstatement of alcohol seeking in rats. Addict. Biol. 2013, 18, 448–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.; Anderson, D.; Harre, N.; Wade, N. Case study: Two fatal case reports of acute yohimbine intoxication. J. Anal. Toxicol. 2013, 37, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Stopponi, S.; De Guglielmo, G.; Somaini, L.; Cippitelli, A.; Cannella, N.; Kallupi, M.; Ubaldi, M.; Heilig, M.; Demopulos, G.; Gaitanaris, G.; et al. Activation of PPAR c by Pioglitazone Potentiates the Effects of Naltrexone on Alcohol Drinking and Relapse in msP Rats. Alcohol. Clin. Exp. Res. 2013, 37, 1351–1360. [Google Scholar] [CrossRef]
- Moran-Santa Maria, M.M.; McRae-Clark, A.; Baker, N.L.; Ramakrishnan, V.; Brady, K.T. Yohimbine administration and cue-reactivity in cocaine-dependent individuals. Psychopharmacology 2014, 231, 4157–4165. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lin, J.; Zhang, Y.; Liu, X.; Chen, X.Q.; Xu, M.Q.; He, L.; Li, S.; Guo, N. Differential behavioral responses of zebrafish larvae to yohimbine treatment. Psychopharmacology 2015, 232, 197–208. [Google Scholar] [CrossRef]
- Ball, K.T.; Jarsocrak, H.; Hyacinthe, J.; Lambert, J.; Lockowitz, J.; Schrock, J. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine. Behav. Brain Res. 2015, 294, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vo, L.; Hood, S.; Drummond, P.D. Involvement of Opioid Receptors and α 2-Adrenoceptors in Inhibitory Pain Modulation Processes: A Double-Blind Placebo-Controlled Crossover Study. J. Pain 2016, 17, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Moran-Santa Maria, M.M.; Baker, N.L.; McRae-Clark, A.L.; Prisciandaro, J.J.; Brady, K.T. Effects of yohimbine and drug cues on impulsivity and attention in cocaine-dependent men and women and sex-matched controls. Drug Alcohol Depend. 2016, 162, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluen, L.M.; Agorastos, A.; Wiedemann, K.; Schwabe, L. Noradrenergic Stimulation Impairs Memory Generalization in Women. J. Cogn. Neurosci. 2017, 29, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Vo, L.; Drummond, P.D. Effect of combined opioid receptor and α2-adrenoceptor blockade on anxiety and electrically evoked startle responses. J. Psychopharmacol. 2017, 31, 722–729. [Google Scholar] [CrossRef]
- Herman, A.M.; Critchley, H.D.; Duka, T. The impact of Yohimbine-induced arousal on facets of behavioural impulsivity. Psychopharmacology 2019, 236, 1783–1795. [Google Scholar] [CrossRef] [Green Version]
- Prescott, J.; Jamieson, D.; Emdur, N.; Duffield, P. Acute effects of kava on measures of cognitive performance, physiological function and mood. Drug Alcohol Rev. 1993, 12, 49–57. [Google Scholar] [CrossRef]
- Wheatley, D. Stress-induced insomnia treated with kava and valerian: Singly and in combination. Hum. Psychopharmacol. 2001, 16, 353–356. [Google Scholar] [CrossRef]
- Connor, K.M.; Davidson, J.R.; Churchill, L.E. Adverse-Effect Profile of Kava. CNS Spectr. 2001, 6, 848–853. [Google Scholar] [CrossRef]
- Meseguer, E.; Taboada, R.; Sánchez, V.; Mena, M.A.; Campos, V.; García De Yébenes, J. Life-threatening parkinsonism induced by kava-kava. Mov. Disord. 2002, 17, 195–196. [Google Scholar] [CrossRef]
- Gastpar, M.; Klimm, H.D. Treatment of anxiety, tension and restlessness states with Kava special extract WS® 1490 in general practice: A randomized placebo-controlled double-blind multicenter trial. Phytomedicine 2003, 10, 631–639. [Google Scholar] [CrossRef]
- Cairney, S.; Maruff, P.; Clough, A.R.; Collie, A.; Currie, J.; Currie, B.J. Saccade and cognitive impairment associated with kava intoxication. Hum. Psychopharmacol. 2003, 18, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Cagnacci, A.; Arangino, S.; Renzi, A.; Zanni, A.L.; Malmusi, S.; Volpe, A. Kava-Kava administration reduces anxiety in perimenopausal women. Maturitas 2003, 44, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Shinomiya, K.; Inoue, T.; Utsu, Y.; Tokunaga, S.; Masuoka, T.; Ohmori, A.; Kamei, C. Effects of kava-kava extract on the sleep-wake cycle in sleep-disturbed rats. Psychopharmacology 2005, 180, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.; Holmes, J.F. Altered mental status and ataxia secondary to acute Kava ingestion. J. Emerg. Med. 2005, 28, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Kavanagh, D.J.; Deed, G.; Bone, K.M. St. John’s wort and Kava in treating major depressive disorder with comorbid anxiety: A randomised double-blind placebo-controlled pilot trial. Hum. Psychopharmacol. 2009, 24, 41–48. [Google Scholar] [CrossRef]
- Sarris, J.; Stough, C.; Teschke, R.; Wahid, Z.T.; Bousman, C.A.; Murray, G.; Savage, K.M.; Mouatt, P.; Ng, C.; Schweitzer, I. Kava for the treatment of generalized anxiety disorder RCT: Analysis of adverse reactions, liver function, addiction, and sexual effects. Phyther. Res. 2013, 27, 1723–1728. [Google Scholar] [CrossRef]
- Sarris, J.; Stough, C.; Bousman, C.A.; Wahid, Z.T.; Murray, G.; Teschke, R.; Savage, K.M.; Dowell, A.; Ng, C.; Schweitzer, I. Kava in the treatment of generalized anxiety disorder: A double-blind, randomized, placebo-controlled study. J. Clin. Psychopharmacol. 2013, 33, 643–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, N.; Starkey, N.J.; Charlton, S.G. Driving under the influence of drugs: Perceptions and attitudes of New Zealand drivers. Accid. Anal. Prev. 2017, 106, 44–52. [Google Scholar] [CrossRef]
- Wang, D.; Yang, L.E.; Wang, J.; Hu, G.; Liu, Z.Y.; Yan, D.; Serikuly, N.; Alpyshov, E.T.; Demin, K.A.; Galstyan, D.S.; et al. Behavioral and physiological effects of acute and chronic kava exposure in adult zebrafish. Neurotoxicol. Teratol. 2020, 79, 106881. [Google Scholar] [CrossRef]
- Fragoulis, A.; Siegl, S.; Fendt, M.; Jansen, S.; Soppa, U.; Brandenburg, L.O.; Pufe, T.; Weis, J.; Wruck, C.J. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer’s disease. Redox Biol. 2017, 12, 843–853. [Google Scholar] [CrossRef]
- Da Silva, A.L.; Bardini, S.; Nunes, D.S.; Elisabetsky, E. Anxiogenic properties of Ptychopetalum olacoides Benth. (Marapuama). Phyther. Res. 2002, 16, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.L.; Da Silva Martins, B.; Linck, V.D.M.; Herrmann, A.P.; Mai, N.; Nunes, D.S.; Elisabetsky, E. MK801- and scopolamine-induced amnesias are reversed by an Amazonian herbal locally used as a “brain tonic.”. Psychopharmacology 2009, 202, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.; Gericke, N.; Farina-Woodbury, M.; Badmaev, V.; Raheb, H.; Terpstra, K.; Antongiorgi, J.; Bureau, Y.; Cernovsky, Z.; Hou, J.; et al. Proof-of-concept randomized controlled study of cognition effects of the proprietary extract sceletium tortuosum (Zembrin) targeting phosphodiesterase-4 in cognitively healthy subjects: Implications for Alzheimer’s dementia. Evidence-Based Complement. Altern. Med. 2014, 2014, 682014. [Google Scholar] [CrossRef]
- Huang, Y.J.; Jiann, B.P. Association of Areca Nut Chewing With Risk of Erectile Dysfunction. Sex. Med. 2017, 5, e163–e168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bales, A.; Peterson, M.J.; Ojha, S.; Upadhaya, K.; Adhikari, B.; Barrett, B. Associations between betel nut (Areca catechu) and symptoms of schizophrenia among patients in Nepal: A longitudinal study. Psychiatry Res. 2009, 169, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.S. Neurological aspects of areca and betel chewing. Addict. Biol. 2002, 7, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Lo Faro, A.F.; Di Trana, A.; La Maida, N.; Tagliabracci, A.; Giorgetti, R.; Busardò, F.P. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J. Pharm. Biomed. Anal. 2020, 179, 112945. [Google Scholar] [CrossRef]
- Norton, S.A. Betel: Consumption and consequences. J. Am. Acad. Dermatol. 1998, 38, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.C.; Warnakulasuriya, S. Global epidemiology of areca nut usage. Addict. Biol. 2002, 7, 77–83. [Google Scholar] [CrossRef]
- Agostini-Costa, T. da S. Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas—A review. J. Ethnopharmacol. 2018, 224, 202–229. [Google Scholar] [CrossRef]
- Srimany, A.; George, C.; Naik, H.R.; Pinto, D.G.; Chandrakumar, N.; Pradeep, T. Developmental patterning and segregation of alkaloids in areca nut (seed of Areca catechu) revealed by magnetic resonance and mass spectrometry imaging. Phytochemistry 2016, 125, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, Y.J.; Wu, N.; Sun, T.; He, X.Y.; Gao, Y.X.; Wu, C.J. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015, 164, 340–356. [Google Scholar] [CrossRef]
- Liu, Y.J.; Peng, W.; Hu, M.B.; Xu, M.; Wu, C.J. The pharmacology, toxicology and potential applications of arecoline: A review. Pharm. Biol. 2016, 54, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Gheddar, L.; Ricaut, F.X.; Ameline, A.; Brucato, N.; Tsang, R.; Leavesley, M.; Raul, J.S.; Kintz, P. Testing for Betel Nut Alkaloids in Hair of Papuans Abusers using UPLC-MS/MS and UPLC-Q-Tof-MS. J. Anal. Toxicol. 2020, 44, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Tulsyan, S.; Thakur, N.; Sharma, V.; Sinha, D.N.; Mehrotra, R. Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul. Toxicol. Pharmacol. 2020, 110, 104548. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Konovalov, D.A.; Fru, P.; Kapewangolo, P.; Peron, G.; Ksenija, M.S.; Cardoso, S.M.; Pereira, O.R.; Nigam, M.; Nicola, S.; et al. Areca catechu—From farm to food and biomedical applications. Phyther. Res. 2020, 34, 2140–2158. [Google Scholar] [CrossRef]
- Horenstein, N.A.; Quadri, M.; Stokes, C.; Shoaib, M.; Papke, R.L. Cracking the betel nut: Cholinergic activity of areca alkaloids and related compounds. Nicotine Tob. Res. 2019, 21, 805–812. [Google Scholar] [CrossRef]
- Thiele, A. Muscarinic Signaling in the Brain. Annu. Rev. Neurosci. 2013, 36, 271–294. [Google Scholar] [CrossRef]
- Coppola, M.; Mondola, R. Potential action of betel alkaloids on positive and negative symptoms of schizophrenia: A review. Nord. J. Psychiatry 2012, 66, 73–78. [Google Scholar] [CrossRef]
- Meltzer, L.T.; Rosecrans, J.A. Discriminative stimulus properties of arecoline: A new approach for studying central muscarinic receptors. Psychopharmacology 1981, 75, 383–387. [Google Scholar] [CrossRef]
- Avery, E.E.; Baker, L.D.; Asthana, S. Potential Role of Muscarinic Agonists in Alzheimer’s Disease. Drugs Aging 1997, 11, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Chandradasa, M.; Rathnayake, L. Socio-cultural and neurobiological perspectives of betel nut chewing in schizophrenia. Asian J. Psychiatr. 2018, 37, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Kuruppuarachchi, K.; Williams, S. Betel use and schizophrenia. Br. J. Psychiatry 2003, 182, 455. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, R.J.; Andres, S.; Otto, C.; Miles, W.; Kydd, R. The Effects of an Indigenous Muscarinic Drug, Betel Nut (Areca catechu), on the Symptoms of Schizophrenia: A Longitudinal Study in Palau, Micronesia. Am. J. Psychiatry 2007, 164, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Moran, S.P.; Maksymetz, J.; Conn, P.J. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends Pharmacol. Sci. 2019, 40, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.S. Effects of Betel chewing on the central and autonomic nervous systems. J. Biomed. Sci. 2001, 8, 229–236. [Google Scholar] [CrossRef]
- Molinengo, L.; Cassone, M.C.; Orsetti, M. Action of arecoline on the levels of acetylcholine, norepinephrine and dopamine in the mouse central nervous system. Pharmacol. Biochem. Behav. 1986, 24, 1801–1803. [Google Scholar] [CrossRef]
- Manzanares, J.; Julian, M.; Carrascosa, A. Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes. Curr. Neuropharmacol. 2006, 4, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Chaturvedi, P.; Gupta, P.C. A review of the systemic adverse effects of areca nut or betel nut. Indian J. Med. Paediatr. Oncol. 2014, 35, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Boucher, B.J.; Mannan, N. Metabolic effects of the consumption of Areca catechu. Addict. Biol. 2002, 7, 103–110. [Google Scholar] [CrossRef]
- Johnston, G.; Krogsgaard-Larsen, P.; Stephanson, A. Betel nut constituents as inhibitors of gamma-aminobutyric acid uptake. Nature 1975, 258, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Lodge, D.; Johnston, G.A.R.; Curtis, D.R.; Brand, S.J. Effects of the Areca nut constituents arecaidine and guvacine on the action of GABA in the cat central nervous system. Brain Res. 1977, 136, 513–522. [Google Scholar] [CrossRef]
- Volgin, A.D.; Bashirzade, A.; Amstislavskaya, T.G.; Yakovlev, O.A.; Demin, K.A.; Ho, Y.J.; Wang, D.; Shevyrin, V.A.; Yan, D.; Tang, Z.; et al. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem. Neurosci. 2019, 10, 2176–2185. [Google Scholar] [CrossRef]
- Wu, M.; Fang, M.; Hu, Y.; Wang, X. Four types of traditional Chinese medicine inducing epileptic seizures. Seizure 2012, 21, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Y.T.; Chen, P.S.; Wu, C.H.; Tseng, Y.T.; Wu, Y.C.; Lo, Y.C. Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system. Free Radic. Biol. Med. 2010, 49, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, C.; Calapai, F.; Cardia, L.; Inferrera, G.; D’Arena, G.; Di Pietro, M.; Navarra, M.; Gangemi, S.; Spagnolo, E.V.; Calapai, G. Clinical pharmacology of citrus aurantium and citrus sinensis for the treatment of anxiety. Evid.-Based Complement. Altern. Med. 2018, 2018, 3624094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosoky, N.S.; Setzer, W.N. Biological activities and safety of citrus spp. Essential oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, T.M.; Kushima, H.; Moleiro, F.C.; Santos, R.C.; Rocha, L.R.M.; Marques, M.O.; Vilegas, W.; Hiruma-Lima, C.A. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. Chem. Biol. Interact. 2009, 180, 499–505. [Google Scholar] [CrossRef]
- Stohs, S.J. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p-Synephrine. Phyther. Res. 2017, 31, 1463–1474. [Google Scholar] [CrossRef] [Green Version]
- Suntar, I.; Khan, H.; Patel, S.; Celano, R.; Rastrelli, L. An overview on Citrus aurantium L.: Its functions as food ingredient and therapeutic agent. Oxid. Med. Cell. Longev. 2018, 2018, 7864269. [Google Scholar] [CrossRef] [Green Version]
- Teneva, D.; Denkova-Kostova, R.; Goranov, B.; Hristova-Ivanova, Y.; Slavchev, A.; Denkova, Z.; Kostov, G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from Citrus aurantium L zest against some pathogenic microorganisms. Z. Naturforsch. C. J. Biosci. 2019, 74, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem. 2018, 25, 4929–4945. [Google Scholar] [CrossRef]
- Wolffenbüttel, A.N.; Zamboni, A.; Becker, G.; dos Santos, M.K.; Borille, B.T.; de Cássia Mariotti, K.; Fagundes, A.C.; de Oliveira Salomón, J.L.; Coelho, V.R.; Ruiz, L.V.; et al. Citrus essential oils inhalation by mice: Behavioral testing, GCMS plasma analysis, corticosterone, and melatonin levels evaluation. Phyther. Res. 2018, 32, 160–169. [Google Scholar] [CrossRef]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Amparo Blázquez, M.; Granell, A. Volatile compounds in citrus essential oils: A comprehensive review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.R.; Cho, M.H. Citrus essential oils: Extraction, authentication and application in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.J.; Mendoza-Madrigal, A.G.; Di Pierro, P.; García-Almendárez, B.E.; Amaro-Reyes, A.; Regalado-González, C. Physical, structural, barrier, and antifungal characterization of chitosan-zein edible films with added essential oils. Int. J. Mol. Sci. 2017, 18, 2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moslemi, F.; Alijaniha, F.; Naseri, M.; Kazemnejad, A.; Charkhkar, M.; Heidari, M.R. Citrus aurantium Aroma for Anxiety in Patients with Acute Coronary Syndrome: A Double-Blind Placebo-Controlled Trial. J. Altern. Complement. Med. 2019, 25, 833–839. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.P.; de Almeida Soares Hocayen, P.; Andrade, L.N.; Andreatini, R. A systematic review of the anxiolytic-like effects of essential oils in animal models. Molecules 2015, 20, 18620–18660. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.A.R.A.; Cury, T.C.; Cassettari, B.O.; Takahira, R.K.; Flório, J.C.; Costa, M. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment. BMC Complement. Altern. Med. 2013, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M.; Shabanian, G.; Rafieian-Kopaei, M.; Parvin, N.; Saadat, M.; Akhlaghi, M. Citrus Aurantium Blossom and Preoperative Anxiety. Rev. Bras. Anestesiol. 2011, 61, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Bahr, T.A.; Rodriguez, D.; Beaumont, C.; Allred, K. The effects of various essential oils on epilepsy and acute seizure: A systematic review. Evid. Based Complement. Altern. Med. 2019, 2019, 6216745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komiya, M.; Takeuchi, T.; Harada, E. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav. Brain Res. 2006, 172, 240–249. [Google Scholar] [CrossRef]
- Ghiasi, A.; Bagheri, L.; Haseli, A. A Systematic Review on the Anxiolytic Effect of Aromatherapy during the First Stage of Labor. J. Caring Sci. 2019, 8, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabri Karoui, I.; Marzouk, B. Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities. Biomed Res. Int. 2013, 2013, 345415. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.K.; George, N.I.; White, G.E.; Abdel-Rahman, A.; Pellicore, L.S.; Fabricant, D. Cardiovascular toxicity of Citrus aurantium in exercised rats. Cardiovasc. Toxicol. 2013, 13, 208–219. [Google Scholar] [CrossRef]
- Brown, A.C. Heart Toxicity Related to Herbs and Dietary Supplements: Online Table of Case Reports. Part 4 of 5. J. Diet. Suppl. 2018, 15, 516–555. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.; ji Kwon, N.; Han, E. A review on the abuse of three NPS (synthetic cannabinoids, kratom, poppers) among youths in Asia. Forensic Sci. Int. 2018, 292, 45–49. [Google Scholar] [CrossRef]
- Singh, D.; Müller, C.P.; Vicknasingam, B.K.; Mansor, S.M. Social Functioning of Kratom (Mitragyna speciosa) Users in Malaysia. J. Psychoact. Drugs 2015, 47, 125–131. [Google Scholar] [CrossRef]
- Brown, P.N.; Lund, J.A.; Murch, S.J. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: Implications for products sold as kratom. J. Ethnopharmacol. 2017, 202, 302–325. [Google Scholar] [CrossRef]
- Prozialeck, W.C. Update on the pharmacology and legal status of Kratom. J. Am. Osteopath. Assoc. 2016, 116, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Horie, S.; Ishikawa, H.; Takayama, H.; Aimi, N.; Ponglux, D.; Watanabe, K. Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2004, 74, 2143–2155. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, L.T.; Horie, S.; Takayama, H.; Aimi, N.; Sakai, S.I.; Yano, S.; Shan, J.; Pang, P.K.T.; Ponglux, D.; Watanabe, K. Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa. Gen. Pharmacol. 1999, 33, 73–81. [Google Scholar] [CrossRef]
- LaBryer, L.; Sharma, R.; Chaudhari, K.S.; Talsania, M.; Scofield, R.H. Kratom, an Emerging Drug of Abuse, Raises Prolactin and Causes Secondary Hypogonadism: Case Report. J. Investig. Med. High Impact Case Rep. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, K.; Horie, S.; Takayama, H.; Ishikawa, H.; Aimi, N.; Ponglux, D.; Murayama, T.; Watanabe, K. Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2005, 78, 2–7. [Google Scholar] [CrossRef]
- Trakulsrichai, S.; Sathirakul, K.; Auparakkitanon, S.; Krongvorakul, J.; Sueajai, J.; Noumjad, N.; Sukasem, C.; Wananukul, W. Pharmacokinetics of mitragynine in man. Drug Des. Devel. Ther. 2015, 9, 2421–2429. [Google Scholar] [CrossRef] [Green Version]
- Veltri, C.; Grundmann, O. Current perspectives on the impact of Kratom use. Subst. Abus. Rehabil. 2019, 10, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Fluyau, D.; Revadigar, N. Biochemical benefits, diagnosis, and clinical risks evaluation of kratom. Front. Psychiatry 2017, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Xu, F.-R.; Wang, Y.-Z. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. J. Ethnopharmacol. 2020, 263, 112792. [Google Scholar] [CrossRef] [PubMed]
- Won, H.J.; Kim, H., Il; Park, T.; Kim, H.; Jo, K.; Jeon, H.; Ha, S.J.; Hyun, J.M.; Jeong, A.; Kim, J.S.; et al. Non-clinical pharmacokinetic behavior of ginsenosides. J. Ginseng Res. 2019, 43, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Balan, P.; Popovich, D.G. Chapter 6—Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. In Bioactive Natural Product, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 63, pp. 161–195. [Google Scholar]
- Leung, K.W.; Wong, A.S. Ginseng and male reproductive function. Spermatogenesis 2013, 3, e26391. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 2017, 107, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.M.; Reddy, P. Effects of Panax ginseng on quality of life. Ann. Pharmacother. 2002, 36, 375–379. [Google Scholar] [CrossRef]
- Lee, S.-T.; Chu, K.; Sim, J.-J.; Heo, J.-H.; Kim, M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2008, 22, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.-H.; Lee, S.-T.; Oh, M.J.; Park, H.-J.; Shim, J.-Y.; Chu, K.; Kim, M. Improvement of cognitive deficit in Alzheimer’s disease patients by long term treatment with Korean red ginseng. J. Ginseng Res. 2011, 35, 457–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.-H.; Yoo, S.-R.; Kim, H.-G.; Cho, J.-H.; Son, C.G. Safety and tolerability of panax ginseng root extract: A randomized, placebo-controlled, clinical trial in healthy Korean volunteers. J. Altern. Complement. Med. 2012, 18, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, G.Z.; Yeung, A.; Liu, J.X.; Camfield, D.A.; de Blasio, F.M.; Pipingas, A.; Scholey, A.B.; Stough, C.; Chang, D.H. The effect of Sailuotong (SLT) on neurocognitive and cardiovascular function in healthy adults: A randomised, doubleblind, placebo controlled crossover pilot trial. BMC Complement. Altern. Med. 2016, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Keshavan, M.; Jones, D.A.; Dube, S.; Grabowski, J.; Bell, J.; Sitaram, N. Cardioacceleratory responses to arecoline infusion during sleep in depressive, anxious, and normal subjects. Biol. Psychiatry 1987, 22, 1473–1477. [Google Scholar] [CrossRef]
- Coon, J.T.; Ernst, E. Panax ginseng: A systematic review of adverse effects and drug interactions. Drug Saf. 2002, 25, 323–344. [Google Scholar] [CrossRef]
- Woroń, J.; Siwek, M. Unwanted effects of psychotropic drug interactions with medicinal products and diet supplements containing plant extracts. Psychiatr. Pol. 2018, 52, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Song, I.S. Interactions of ginseng with therapeutic drugs. Arch. Pharm. Res. 2019, 42, 862–878. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.Y.; Xu, H.Z.; Liu, J.J.; Meng, X.G.; Zhou, M.; Ruan, H.L. Alkaloids with Immunosuppressive Activity from the Bark of Pausinystalia yohimbe. J. Nat. Prod. 2018, 81, 1841–1849. [Google Scholar] [CrossRef]
- Sun, J.; Baker, A.; Chen, P. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2591–2602. [Google Scholar] [CrossRef]
- Raman, V.; Avula, B.; Galal, A.M.; Wang, Y.H.; Khan, I.A. Microscopic and UPLC-UV-MS analyses of authentic and commercial yohimbe (Pausinystalia johimbe) bark samples. J. Nat. Med. 2013, 67, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.A.; Wang, Y.H.; Maller, G.; Desouza, R.; Khan, I.A. Pharmaceutical quantities of yohimbine found in dietary supplements in the USA. Drug Test. Anal. 2016, 8, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Uhde, T.W.; Boulenger, J.P.; Post, R.M.; Siever, L.J.; Vittone, B.J.; Jimerson, D.C.; Roy-Byrne, P.P. Fear and anxiety: Relationship to noradrenergic function. Psychopathology 1984, 17 (Suppl. 3), 8–23. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Bakalli, H.; Rinaman, L. Yohimbine anxiogenesis in the elevated plus maze is disrupted by bilaterally disconnecting the bed nucleus of the stria terminalis from the central nucleus of the amygdala. Neuroscience 2012, 223, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, S.W.; Worcel, M.; Wyllie, M. Yohimbine: A clinical review. Pharmacol. Ther. 2001, 91, 215–243. [Google Scholar] [CrossRef]
- Owen, J.A.; Nakatsu, S.L.; Fenemore, J.; Condra, M.; Surridge, D.H.C.; Morales, A. The pharmacokinetics of yohimbine in man. Eur. J. Clin. Pharmacol. 1987, 32, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Berlan, M.; Le Verge, R.; Galitzky, J.; Le Corre, P. α 2-Adrenoceptor antagonist potencies of two hydroxylated metabolites of yohimbine. Br. J. Pharmacol. 1993, 108, 927–932. [Google Scholar] [CrossRef]
- Kearney, T.; Tu, N.; Haller, C. Adverse drug events associated with yohimbine-containing products: A retrospective review of the California poison control system reported cases. Ann. Pharmacother. 2010, 44, 1022–1029. [Google Scholar] [CrossRef]
- Shannon, M.; Neuman, M.I. Yohimbine. Pediatr. Emerg. Care 2000, 16, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, A.J. New directions in the treatment of antidepressant-induced sexual dysfunction. Clin. Ther. 2000, 22, A42–A57. [Google Scholar] [CrossRef]
- Shamloul, R. Natural aphrodisiacs. J. Sex. Med. 2010, 7, 39–49. [Google Scholar] [CrossRef] [PubMed]
- West, E.; Krychman, M. Natural Aphrodisiacs-A Review of Selected Sexual Enhancers. Sex. Med. Rev. 2015, 3, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Cimolai, N.; Cimolai, T. Yohimbine use for physical enhancement and its potential toxicity. J. Diet. Suppl. 2011, 8, 346–354. [Google Scholar] [CrossRef]
- Yang, H.L.; Yang, T.Y.; Gowrisankar, Y.V.; Liao, C.H.; Liao, J.W.; Huang, P.J.; Hseu, Y.C. Suppression of LPS-Induced Inflammation by Chalcone Flavokawain A through Activation of Nrf2/ARE-Mediated Antioxidant Genes and Inhibition of ROS/NF κ B Signaling Pathways in Primary Splenocytes. Oxid. Med. Cell. Longev. 2020, 2020, 3476212. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.D. Pills, potions, products: Kava’s transformations in new and nontraditional contexts. Contemp. Pac. 2012, 24, 233–265. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.D.; Fukuta, M.; Wei, A.C.; Elzaawely, A.A.; Khanh, T.D.; Tawata, S. Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots. J. Nat. Med. 2008, 62, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Qiu, S.X.; Lebot, V. Herbal hepatotoxicity by kava: Update on pipermethystine, flavokavain B, and mould hepatotoxins as primarily assumed culprits. Dig. Liver Dis. 2011, 43, 676–681. [Google Scholar] [CrossRef]
- Baum, S.S.; Hill, R.; Rommelspacher, H. Effect of kava extract and individual kavapyrones on neurotransmitter levels in the nucleus accumbens of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 1998, 22, 1105–1120. [Google Scholar] [CrossRef]
- Boonen, G.; Ferger, B.; Kuschinsky, K.; Häberlein, H. In vivo effects of the kavapyrones (+)-dihydromethysticin and (±)-kavain on dopamine, 3,4-dihydroxyphenylacetic acid, serotonin and 5-hydroxyindoleacetic acid levels in striatal and cortical brain regions. Planta Med. 1998, 64, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Anke, J.; Ramzan, I. Pharmacokinetic and pharmacodynamic drug interactions with Kava (Piper methysticum Forst. f.). J. Ethnopharmacol. 2004, 93, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.M.; Etheridge, A.; Valentine, J.L.; Black, S.R.; Coleman, D.P.; Patel, P.; So, J.; Burka, L.T. Pharmacokinetics and disposition of the kavalactone kawain: Interaction with kava extract and kavalactones in vivo and in vitro. Drug Metab. Dispos. 2005, 33, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.P.; Xia, Q.; Guo, L.; Yu, H.; Chan, P.C. Toxicity of kava kava. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 89–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clough, A.R.; Bailie, R.S.; Currie, B. Liver Function Test Abnormalities in Users of Aqueous Kava Extracts. J. Toxicol. Clin. Toxicol. 2003, 41, 821–829. [Google Scholar] [CrossRef]
- White, C.M. The Pharmacology, Pharmacokinetics, Efficacy, and Adverse Events Associated With Kava. J. Clin. Pharmacol. 2018, 58, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- de Vargas, F.S.; Almeida, P.D.O.; de Boleti, A.P.A.; Pereira, M.M.; de Souza, T.P.; de Vasconcellos, M.C.; Nunez, C.V.; Pohlit, A.M.; Lima, E.S. Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complement. Altern. Med. 2016, 16, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siqueira, I.R.; Fochesatto, C.; Da Silva, A.L.; Nunes, D.S.; Battastini, A.M.; Netto, C.A.; Elisabetsky, E. Ptychopetalum olacoides, a traditional Amazonian “nerve tonic”, possesses anticholinesterase activity. Pharmacol. Biochem. Behav. 2003, 75, 645–650. [Google Scholar] [CrossRef]
- Siqueira, I.R.; Lara, D.R.; Silva, D.; Gaieski, F.S.; Nunes, D.S.; Elisabetsky, E. Psychopharmacological properties of Ptycopetalum olacoides Bentham (Olacaceae). Pharm. Biol. 1998, 36, 327–334. [Google Scholar] [CrossRef]
- Pankow, E.; Auterhoff, H. Contents of Muira puama. 2. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1969, 302, 209–212. [Google Scholar] [CrossRef]
- Novello, C.R.; Marques, L.C.; Miyazaki, C.R.; Milaneze-Gutierre, M.A.; Carneiro-Torres, D.S.; Sarragiotto, M.H.; de Mello, J.C.P. Morphoanatomy and pharmacognostic study of the wood of Croton echioides, the Northeastern Marapuama. Braz. J. Pharmacogn. 2012, 22, 946–956. [Google Scholar] [CrossRef] [Green Version]
- Vaz, Z.R.; Mata, L.V.; Calixto, J.B. Analgesic effect of the herbal medicine Catuama in thermal and chemical models of nociception in mice. Phyther. Res. 1997, 11, 101–106. [Google Scholar] [CrossRef]
- Muszyńska, B.; Łojewski, M.; Rojowski, J.; Opoka, W.; Sułkowska-Ziaja, K. Natural products of relevance in the prevention and supportive treatment of depression. Psychiatr. Pol. 2015, 49, 435–453. [Google Scholar] [CrossRef] [PubMed]
- Dimpfel, W.; Franklin, R.; Gericke, N.; Schombert, L. Effect of Zembrin® and four of its alkaloid constituents on electric excitability of the rat hippocampus. J. Ethnopharmacol. 2018, 223, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Manda, V.K.; Avula, B.; Ashfaq, M.K.; Abe, N.; Khan, I.A.; Khan, S.I. Quantification of mesembrine and mesembrenone in mouse plasma using UHPLC-QToF-MS: Application to a pharmacokinetic study. Biomed. Chromatogr. 2017, 31, e3815. [Google Scholar] [CrossRef]
- Zhao, J.; Khan, I.A.; Combrinck, S.; Sandasi, M.; Chen, W.; Viljoen, A.M. 1H-NMR and UPLC-MS metabolomics: Functional tools for exploring chemotypic variation in Sceletium tortuosum from two provinces in South Africa. Phytochemistry 2018, 152, 191–203. [Google Scholar] [CrossRef]
- Smith, M.T.; Crouch, N.R.; Gericke, N.; Hirst, M. Psychoactive constituents of the genus Sceletium N.E.Br. and other Mesembryanthemaceae: A review. J. Ethnopharmacol. 1996, 50, 119–130. [Google Scholar] [CrossRef]
- Cashman, J.R.; Voelker, T.; Johnson, R.; Janowsky, A. Stereoselective inhibition of serotonin re-uptake and phosphodiesterase by dual inhibitors as potential agents for depression. Bioorg. Med. Chem. 2009, 17, 337–343. [Google Scholar] [CrossRef]
- Loria, M.J.; Ali, Z.; Abe, N.; Sufka, K.J.; Khan, I.A. Effects of Sceletium tortuosum in rats. J. Ethnopharmacol. 2014, 155, 731–735. [Google Scholar] [CrossRef]
- Harvey, A.L.; Young, L.C.; Viljoen, A.M.; Gericke, N.P. Pharmacological actions of the South African medicinal and functional food plant Sceletium tortuosum and its principal alkaloids. J. Ethnopharmacol. 2011, 137, 1124–1129. [Google Scholar] [CrossRef]
- Smith, C. The effects of Sceletium tortuosum in an in vivo model of psychological stress. J. Ethnopharmacol. 2011, 133, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.M.; Jourdan, M.K.; Fountain, E.M.; Ali, Z.; Abe, N.; Khan, I.A.; Sufka, K.J. The effects of Sceletium tortuosum (L.) N.E. Br. extract fraction in the chick anxiety-depression model. J. Ethnopharmacol. 2016, 193, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Stafford, G.I.; Pedersen, M.E.; van Staden, J.; Jäger, A.K. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol. 2008, 119, 513–537. [Google Scholar] [CrossRef]
- Terburg, D.; Syal, S.; Rosenberger, L.A.; Heany, S.; Phillips, N.; Gericke, N.; Stein, D.J.; Van Honk, J. Acute effects of sceletium tortuosum (Zembrin), a dual 5-HT reuptake and PDE4 inhibitor, in the human amygdala and its connection to the hypothalamus. Neuropsychopharmacology 2013, 38, 2708–2716. [Google Scholar] [CrossRef]
- Coetzee, D.D.; López, V.; Smith, C. High-mesembrine Sceletium extract (TrimesemineTM) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor. J. Ethnopharmacol. 2016, 177, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.C.; Smith, C. Immunomodulatory effects of Sceletium tortuosum (TrimesemineTM) elucidated in vitro: Implications for chronic disease. J. Ethnopharmacol. 2018, 214, 134–140. [Google Scholar] [CrossRef]
- Krstenansky, J.L. Mesembrine alkaloids: Review of their occurrence, chemistry, and pharmacology. J. Ethnopharmacol. 2017, 195, 10–19. [Google Scholar] [CrossRef]
- Beharry, S.; Heinrich, M. Is the hype around the reproductive health claims of maca (Lepidium meyenii Walp.) justified? J. Ethnopharmacol. 2018, 211, 126–170. [Google Scholar] [CrossRef] [Green Version]
- Quandt, P.; Puga, M. Manic episode secondary to maca. Eur. Psychiatry 2016, 33, S339. [Google Scholar] [CrossRef]
- Ingawale, D.S.M.; Namdeo, A.G. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J. Diet. Suppl. 2020, 1–44. [Google Scholar] [CrossRef]
- Tandon, N.; Yadav, S.S. Safety and clinical effectiveness of Withania Somnifera (Linn.) Dunal root in human ailments. J. Ethnopharmacol. 2020, 255, 112768. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Reyes, R.; Carro-Juárez, M.; Martínez-Mota, L. Pro-sexual effects of Turnera diffusa Wild (Turneraceae) in male rats involves the nitric oxide pathway. J. Ethnopharmacol. 2013, 146, 164–172. [Google Scholar] [CrossRef] [PubMed]
- María, D.-B.A.; María, V.V.R.; Lilian, M.-N.; Lucía, M.-M.; Oscar, G.-P.; Rosa, E.R. Neurobehavioral and toxicological effects of an aqueous extract of Turnera diffusa Willd (Turneraceae) in mice. J. Ethnopharmacol. 2019, 236, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Vilgiate, T. The Invention of Voacanga africana as a Ceremonial Psychedelic|Environment & Society Portal. Available online: http://www.environmentandsociety.org/arcadia/invention-voacanga-africana-ceremonial-psychedelic (accessed on 27 August 2020).
- Alper, K.R.; Lotsof, H.S.; Kaplan, C.D. The ibogaine medical subculture. J. Ethnopharmacol. 2008, 115, 9–24. [Google Scholar] [CrossRef]
- Kombian, S.B.; Saleh, T.M.; Fiagbe, N.I.Y.; Chen, X.; Akabutu, J.J.; Buolamwini, J.K.; Pittman, Q.J. Ibogaine and a total alkaloidal extract of Voacanga africana modulate neuronal excitability and synaptic transmission in the rat parabrachial nucleus in vitro. Brain Res. Bull. 1997, 44, 603–610. [Google Scholar] [CrossRef]
- Currais, A.; Chiruta, C.; Goujon-Svrzic, M.; Costa, G.; Santos, T.; Batista, M.T.; Paiva, J.; Do Céu Madureira, M.; Maher, P. Screening and identification of neuroprotective compounds relevant to Alzheimer’s disease from medicinal plants of S. Tomé e Príncipe. J. Ethnopharmacol. 2014, 155, 830–840. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
- Ko, R.J. Adulterants in Asian patent medicines. N. Engl. J. Med. 1998, 339, 847. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Traditional Medicine Strategy 2014–2023. Available online: https://apps.who.int/iris/bitstream/handle/10665/92455/9789241506090_eng.pdf;jsessionid=55A97B8E89F5867AF5301067143BA683?sequence=1 (accessed on 27 August 2020).
Plant/Active Ingredients | Co-Exposure | Study, Participants, Age, and Sex | Neurological/Psychiatric Effects | References |
---|---|---|---|---|
Areca catechu L. | Fluphenazine decanoate, procyclidine, flupentixol | Case reports of acute intoxications with Areca catechu L. in two schizophrenic men aged 51 and 45; both patients consumed a high quantity of betel nuts for 2 weeks | Rigidity, bradykinesia, akathisia, and tremors | [15] |
Tobacco, alcohol, cannabis, amphetamine | Survey study on 11 participants aged 27–70 (average = 52), 9 males and 2 females; chewed 6 nuts/week (range = 4–6 days) | Mood swings, anxiety, irritability, reduced concentration, reduced energy, sleep disturbance, craving, tolerance, and dependence | [16] | |
Tobacco, salbutamol, tea, coffee, arsenic | Longitudinal pilot study on 100 participants, 26 users with a mean (±SD) age of 40.0 (±9) years, 11 males and 15 women | Enhancement of physiological tremor | [17] | |
Tobacco, alcohol | Cross-sectional study on 310 pregnant women, 292 users, mean age of 26 years (range = 25–27); took 5–10 nuts during pregnancy | Addiction | [18] | |
Tobacco | Survey study on 59 participants, 47 males and 12 females, median age of 43.0 years (range = 12–70); 1–50 years of chewing | Craving and dependence | [19] | |
Tobacco | Cross-sectional study on 851 participants, aged 16–35, 314 users, 242 tobacco + users, and 295 regular cigarette smokers; <6–>10 years of chewing | Tolerance and withdrawal | [20] | |
Tobacco, alcohol | Intercountry Asian BQ Consortium study on 2078 participants who took any A. catechu products/day for a minimum of 6 months | Tolerance, withdrawal, craving, and dependence syndrome | [21] | |
Tobacco, alcohol | Survey study on 41 participants with a mean (±SD) age of 40.34 (±9.23) years, 27 males and 14 females; took 5 to more than 31 BQ/day | Relaxation, stimulation, addiction, and withdrawal symptoms | [22] | |
Benzodiazepines, carbamazepine, levetiracetam, phenobarbital, phenytoin, sodium valproate, other medications (not specified) | Observational study on 152 participants with epilepsy, 50 users with a mean age of 28.4 (95% CI: 25.3, 31.6) years, 23 males and 27 women; chewed 1–20 nuts/day for more than 5 years | Drowsiness | [23] | |
Tobacco and alcohol- | Epidemiological studies of dependence on 4031 participants Case report of two women | Dependence, tolerance, withdrawal, attentional bias, impaired work, impaired time perception, and increased arousal Poor concentration, lethargy, despondency, and episodes of paranoia (1 individual) | [24] | |
Tobacco | Survey study on 200 participants, 171 males and 29 females aged 22–45 years; chewed 4.3 nuts/day | Addiction | [25] | |
Nicotine, arecaidine (1.46 µg/mL in urine), N-methylnipecotate, cotinine | Cross-sectional survey on 113 participants with a mean (±SD) age of 40.0 (±12.6) years, 104 males and 9 females | Craving for BQ, addiction, depression, and drowsiness | [26] | |
Arecoline | Methscopolamine | Cholinergic REM induction test on 34 participants: 14 bipolar patients with a mean (±SD) age of 30 (±6.1) years, 6 males and 8 females; 15 HC volunteers with a mean (±SD) age of 26.8 (±4.4) years, 8 males and 7 females; and 5 subjects with a personal or family history of affective disorders, age ranged between 23 and 35 years, 2 males and 3 females; administered with 0.5 mg of arecoline | Shorter REM latency in patients with primary affective disorders (1st and 3rd) | [27] |
Glycopyrrolate | Pilot dose–response study on 24 participants, 8 bipolar subjects and 16 HC monozygotic twins; administered with 1 or 12 mg of arecoline IP and 4 or 12 mg SC | Nausea, vomiting, increased anger, confusion, depression, fatigue and tension, decreased elation, friendliness, and vigor | [28] | |
Glycopyrrolate | Arecoline REM induction test on 97 participants: 20 MDD patients with a mean age of 46.6 years (range 22–83), 8 males and 12 females; 19 MDD+ANX patients with a mean age of 40.0 years (range 21–47), 7 males and 12 females; 18 ANX patients with a mean age of 32.2 years (range 22–51), 8 males and 10 females; 14 ANX+MDD patients with a mean age of 32.8 years (range 23–38), 4 males and 10 females; and 26 healthy controls with a mean age of 36.4 years (range 20–87), 11 males and 15 females; administered with 0.5 mg of arecoline | Rapid REM induction in MDD and MDD+ANX patients compared to healthy controls | [29] | |
Methyl atropine | Animal study on 265 Sprague Dawley rats; administered with 2 mg/kg of arecoline | Decreased locomotory activity | [30] | |
Glycopyrrolate | Cognitive and behavioral study on 12 participants with AD, mean age of 65.5 years (range 54–79), 4 males and 8 females; administered with 0.5 and 12 mg/h of arecoline for 1 to 6 h | Decreased knowledge memory, psychomotor retardation, dysphoria, and difficulty with verbal expression | [31] | |
Glycopyrrolate | Arecoline REM induction test on 30 participants: 10 with atypical depression with a mean (±SD) age of 33.5 (±7.8) years, 4 males and 6 females, and 20 HC with a mean (±SD) age of 34.5 (±13.8) years, 10 males and 10 females; administered with 0.5 mg of arecoline | Rapid REM induction in atypical depressives without a history of panic attacks or anxiety disorders compared to HC | [32] | |
Glycopyrrolate | Catecholamine and ACTH responses to an arecoline study on 31 participants: 15 MSA patients with a mean (±SD) age of 57.9 (±1.8) years, 8 males and 7 females; 6 PAF patients with a mean (±SD) age of 52.3 (±1.8) years, 2 males and 4 females; and 10 HC with a mean (±SD) age of 58.5 (±4) years, 7 males and 3 females; administered with 0.3 mg of arecoline | Mild vertigo, nystagmus, nausea, exacerbation of tremor, and alteration in mood | [33] | |
Glycopyrrolate | Randomized, double-blind, placebo-controlled study on 111 participants: 40 placebo-receiving subjects, including 20 depressed patients with a mean (±SD) age of 39 (±12) years and 20 HC with a mean (±SD) age of 28 (±6) years; 38 subjects receiving 0.5 mg of arecoline, including 21 depressed patients with a mean (±SD) age of 38 (±9) years and 17 HC with a mean (±SD) age of 28 (±6) years; and 33 subjects receiving 1.0 mg of arecoline, including 18 depressed patients with a mean (±SD) age of 42 (±11) years and 15 HC with a mean (±SD) age of 34.5 (±13.8) years | Shorter REM latency in depressed patients | [34] | |
- | Cholinergic REM induction test on 48 participants: 33 MDD children with a mean (±SD) age of 10.5 (±1.5) years, 26 males and 7 females and 15 HC children with a mean (±SD) age of 10.2 (±1.6) years; administered with 0.5 mg of arecoline over 60 min | Shorter REM latency in depressed children | [35] | |
- | Animal study on 63 male albino Wistar-derived rats; administered with 0.5, 1.5, or 3.5 mg/kg of arecoline SC before test | Accelerated decay of memory after chronic administration | [36] | |
- | Animal study on 96 female Sprague Dawley rats; administered with 40 or 80 µg of arecoline | Decreased locomotory activity | [37] | |
Citrus aurantium L. | Chlordiazepoxide, valproic acid, diazepam, sodium pentobarbital, d-limonene | Animal study on 176 adult male Swiss mice; administered with 0.5 or 1.0 mg/kg of EO (90.4% of d-limonene) and 1.0 mg/kg of four different fractions of leaves extract orally | Increased hypnotic effect and enhanced sleeping time induced by pentobarbital | [38] |
- | Randomized, triple-blind, clinical study on 156 postmenopausal women: 52 CA-receiving women with a mean (±SD) age of 53.65 (±3.55) years, 52 lavender-receiving women with a mean (±SD) age of 54.21 (±3.86) years, and 52 placebo-receiving women with a mean (±SD) age of 52.12 (±3.49) years; took 2 × 500 mg/day of CA powder for 6 weeks | Headache, nausea, and hypnosis | [39] | |
- | Randomized, triple-blind, clinical study on 156 postmenopausal women: 52 CA-receiving women with a mean (±SD) age of 53.65 (±3.55) years, 52 lavender-receiving women with a mean (±SD) age of 54.21 (±3.86) years, and 52 placebo-receiving women with a mean (±SD) age of 52.12 (±3.49) years; took 2 × 500 mg/day of CA powder for 6 weeks | Headache and nausea | [40] | |
Rosa damascena Mill. | Randomized, double-blind clinical study on 99 female students with a mean (±SD) age of 22.33 (±2.38) years, equally parted into two intervention groups and a control group; inhaled EO of CA blossom at 0.5% | Headache, nausea, and vomiting | [41] | |
Mitragyna speciosa Korth. | - | Cross-sectional study on 433 participants with a mean (±SD) age of 45.7 (±13.6) years, 350 males and 83 females; 149 regular users chewed 12 leaves/day, 168 occasional users chewed 4 leaves/day, and 116 controls | Dizziness, freshness, sprightliness, fatigue, shaking hands, headaches, decreased sexual drive, poor concentration, distractedness, difficulty sleeping, irritability, poor thinking ability, impaired memory, laziness, and social withdrawal | [42] |
Modafinil | Case report of a kratom intoxication of a 43-year-old male with chronic pain and opioid withdrawal; took kratom tea four times daily for 3.5 years | Withdrawal, drowsiness, and generalized tonic-clonic seizure | [43] | |
Datura stramonium L., cannabinoids, tricyclic antidepressants, oxycodone | Case report of a kratom intoxication of a 64-year-old male, found with 167 ± 15 ng/mL of mitragynine in urine | Seizures and coma | [44] | |
heroin, cannabis, amphetamine, methamphetamine, mitragynine (67.5–75 mg/day) | Cross-sectional survey on 136 participants: 72 short-term users and 64 long-term users, age range = 36–65 years, 135 males and 1 female; took 3 × 250 mL/day of kratom tea for 3.5 years | Loss of weight, tiredness, dose-dependent stimulation/sedation, intense craving, withdrawal, chronic fatigue, insomnia, frequent sweating, and sudden nerve pain | [45] | |
- | Case report of a 44-year-old kratom addicted male with a previous history of alcohol and cocaine dependence; took from 2 × 4 g/day to 4 × 10 g/day for 3 years | Wellbeing, euphoria, increased productivity, industriousness, relaxation, tolerance, withdrawal symptoms of cravings, anxiety, restlessness, and itch | [46] | |
- | Cross-sectional study on 530 MS users, 528 males and 2 females (age not reported); took MS tea 1–10 times daily for 4–5 years | Increased alertness, dizziness, sedation, hot sensation, hallucination, vomiting, hostility, aggression, excessive tearing, inability to work, aching of muscles and bones, jerky movement of limbs, loss of appetite, weight loss, insomnia, malaise, and restlessness | [47] | |
Amphetamine, haloperidol, diphenhydramine, codeine, depressants, unknown chemical substance | Retrospective study on 52 participants with a median age of 30.5 years (range: 2 days–81 years), 84.6% males and 15.4% females | Seizure, nausea, alteration of consciousness, contraction, confusion, headache, dizziness, syncope, myalgia, insomnia, fatigue, loss of appetite, agitation, tremor, ataxia, dystonia, and neonatal withdrawal | [48] | |
Wild dagga, wormwood, alprazolam, synthetic cannabinoid, synthetic tryptamine, alcohol, methamphetamine, risperidone | 14 kratom exposures reported to the Texas Poison Center Network of 11 males and 3 females aged between 18 and 48 years | Agitation, nausea, vomiting, confusion, tremor, diaphoresis, drowsiness, hallucinations, mydriasis, and abdominal pain | [49] | |
Alcohol | Qualitative study on 34 male participants: 22 regular users chewed 10–80 leaves/day for 3–50 years; 6 occasional users chewed 1–20 leaves/day for 1–6 years; 3 non-users; and 3 ex-users | Loss of appetite, craving to eat kratom, withdrawal, compulsion, impaired control, preoccupation, loss of weight, muscle/bone/back/joint aches, cramps/numbness, anxiety, depressed mood, dysphoria, moodiness, annoyance, restlessness, irritability, autonomic nervous system hyper/hypoactivity, chills, sneeze, cough, illness/catch cold, sleepy, yawning, watering eyes, runny nose, sticky mouth, disturbances of behaviors and cognitive functions, and fatigue | [50] | |
Mitragynine (291.9 mg/day) | Cross-sectional survey on 293 male kratom users with a mean age of 28.9 years, 153 medium-term users and 140 long-term users; up to ≥3 × 350 mL/day of kratom fresh juice | Sleeping difficulty, decreased appetite, nausea, vomiting, muscle spasm, sweating, fever, abdominal pain, headaches, hot flashes, hiccups, shakiness or tremors, severe muscle pain and cramps, nervousness, sadness, restlessness, anger, tension, depressed mood, and craving | [51] | |
- | Qualitative study on 168 kratom users: 109 males, 13 females, and 44 others (sex not specified) | Warmth/tingling, nausea/stomachache, alternating chills/sweats, dizziness/unsteadiness, vomiting, itching, numbness in mouth/throat, visual alterations, and sedation | [52] | |
Alcohol, other botanicals, benzodiazepines, narcotics, acetaminophen | 660 calls about kratom exposure received by U.S. poison centers, the median age was 28 years (range = 2 months–69 years, data available for 604 subjects), 472 males and 186 females (data available for 658 subjects) | Agitation, irritability, drowsiness, and nausea | [53] | |
- | Cross-sectional study on 526 kratom users with a mean age of 51.8 years; took 3–17 leaves/day | Craving-fatigue syndrome, mood symptoms, insomnia, and physical sickness | [54] | |
Tramadol, codeine, morphine | Case reports of two kratom-addicted subjects, a 60-year-old female who took 0.25 ounces of kratom every 4 h for several months, and a 57-year-old male | Dependence, tolerance, irritability, increased pain, anxiety, edginess, and leg shaking | [55] | |
- | Retrospective study on 150 male participants with a mean (±SD) age of 34.4 (±11.2) years; took up to ≥4 × 350 mL/day of kratom fresh juice | Withdrawal symptoms, anxiety, and depression | [56] | |
Morphine | Case report of a maternal (a 29-year-old female) and neonatal kratom exposure; took 3 × 18-20 g/day of kratom powder | Anxiety and maternal and neonatal withdrawal | [57] | |
- | Case report of a female infant’s NAS, her mother took 3–4 kratom teas/day during her pregnancy | Excessive sucking, irritability, sleeplessness, and withdrawal | [58] | |
- | Case report of a kratom overdose and management of withdrawal of a 24-year-old man with Asperger syndrome, depression, and long-term substance dependence; took 600 mg/day of kratom | Unresponsiveness, seizures, and withdrawal | [59] | |
Lisdexamfetamine | Case report of a kratom intoxication of a 19-year-old male with ADHD; took several pills (2–8 g) per day for several months | Seizures | [60] | |
Benzodiazepines | Case report of a 52-year-old kratom-addicted female with a long-standing history of MDD; took 1 tablespoon 4–6 times per day for 9 months | Increased depression, anxiety, suicidal thoughts, exacerbation of chronic pain issues, dysphoria, nausea, muscle aches, sweating, goose bumps, and insomnia | [61] | |
- | Cross-sectional study on 95 male participants: 70 kratom users with a mean (±SD) age of 28.8 (±5.3) who took 3 glasses of kratom tea/juice daily, and 25 healthy controls with a mean (±SD) age of 25 (±7.6) | Visual memory and new learning impairment | [62] | |
- | Cross-sectional study on 150 male kratom users with a mean (±SD) age of 34.4 (±11.2) years; took up to ≥3 glasses/day for more than 6 years | Auditory, visual, tactile, and olfactory hallucinations, persecutory, reference, control and grandiose delusion thought broadcasting, and withdrawal | [63] | |
Alcohol, clonazepam, cocaine | Brief report on 2321 kratom exposures, of which 4 cases of NAS and 2 deaths were reported, and 4 deaths for which kratom was listed as a cause or contributing factor to the death | Agitation, drowsiness, confusion, seizure, withdrawal, hallucinations, respiratory depression, coma, and cardiac or respiratory arrest | [64] | |
Alcohol, other unknown substances | Case reports of kratom intoxications with 4 males with a mean age of 43.5 years (range = 44–67); case 2 took 4 × 10 g/day of kratom over 24 h | Seizure, sedation, withdrawal symptoms, and dependence syndrome | [65] | |
Opiate, methamphetamine, methadone | Cross-sectional survey on 163 regular kratom male users with a mean (±SD) age of 37.1 (±10.9) years; took 1–3 glasses/day of kratom tea for more than 6 years | Weight loss, physical pain, loss of appetite, fatigue, craving for opioid, insomnia, and depression | [66] | |
- | Case reports of two kratom intoxications: a 27-year-old male with bipolar disorder and schizophrenia who took 5 g/day of kratom for 3 years, and a 26-year-old female with no history of mental health disorders who took 2–3 pills/day (20–30 g of kratom/day) for 2 years | Restlessness, generalized body aches, overwhelming anxiety, thoughts of suicide, hallucinations, and withdrawal symptoms | [67] | |
Dextroamphetamine | Case report of a 22-year-old male with ADHD and kratom use disorder; took kratom tea every 2 h daily (30 g at maximum dosage) for 2 years | Tolerance, irritability, and withdrawal symptoms | [68] | |
Diphenhydramine | Case report of a 27-year-old male with a history of ANX, ADHD, benzodiazepine, and opioid use disorders; took up to 4 × 8 mL/day bottles of kratom for 1.5 years | Tonic-clonic seizures | [69] | |
Alcohol, antidepressants, benzodiazepines, cannabis, cocaine, hallucinogens, opioids (prescribed or illicit), tobacco | Online anonymous cross-sectional survey on 2798 kratom users with a mean (±SD) age of 40.2 (±11.8) years, 1099 males and 1699 females; took up to 3 × 1–6 g/day of kratom | Sickness, dizziness, alertness, anxiety, sleepiness, and withdrawal symptoms | [70] | |
- | Cross-sectional quantitative study on 356 participants, 137 kratom users and 219 non-users aged between 18 and ≥37 years, 212 males and 144 females | Addiction, withdrawal symptoms, and impaired social functioning | [71] | |
Mitragynine | Scopolamine | Animal study on 36 male mice from the ICR strain: 18 mitragynine-treated mice administered with 5, 10, or 15 mg/kg IP of for 28 days; 6 scopolamine-treated mice; and 12 HC | Impaired working memory function and reduction in locomotory activity | [72] |
7-hydroxymitragynine (0.15 mg/L in blood, 2.20 mg/L in urine), zopiclone, citalopram, lamotrigine | Fatal mitragynine intoxication of a middle-aged male, found with 1.06 and 3.47 mg/L of mitragynine in blood and urine, respectively | CNS depression | [73] | |
Morphine, methamphetamine, | Animal study on male C57BL/6 mice; administered with 1, 5, 10, or 20 mg/kg IP 30 min before or immediately after locomotor and consolidation tests, 30 mg/kg IP for 14 days for the withdrawal induction and for 28 days for the chronic study | Decreased activity in the δ, θ, and β, but not α band in the hippocampus and withdrawal | [74] | |
Morphine, penicillin G procaine, propofol, xylazine, ketamine, naltrindole, naloxonazine | Animal study on 39 male Fischer 334 rats; administered with 25, 50, 100, or 150 µg of mitragynine and 2.5, 5, 10, or 20 μg of 7-hydroxymitragynine | Increased morphine self-administration after 7-hydroxymitragynine treatment | [75] | |
Morphine, urethane, xylocaine | Animal study on 60 male Sprague Dawley rats and other set of animals used for in vivo electrophysiological studies; administered with 1.0, 5.0 and 10.0 mg/kg of mitragynine IP | Impaired acquisition of spatial learning and significant synaptic depression in the hippocampal region at high mitragynine doses | [76] | |
Panax ginseng C. A. Mey | Fluvoxamine, venlafaxine | Case report of a 47-year-old female with chronic depression; took 200 mg of ginseng extract within 24 h | Hypomania | [77] |
- | Case report of a 26-year-old male with history of suicidal thoughts; took 250 mg/day of Chinese ginseng for two weeks | Restless, insomnia, agitation, disorganization | [78] | |
Contraceptive pill, ginsenosides (4%) | Placebo-controlled, clinical study on 20 participants with (mean (±SD) age of 20.6 (±4.2), 10 males and 10 females; administered with placebo and 5 × 200, 400, or 600 mg of ginseng extract with a 7-day wash-out between administrations | Decreased speed attention | [79] | |
Ginkgo biloba L., contraceptive pill. | Placebo-controlled, clinical study on 20 participants with a mean (±SD) age of 20.6 (±4.2), 10 males and 10 females; administered with placebo and 5 × 200, 400, or 600 mg of ginseng extract with a 7-day wash-out between administrations | Decreased speed attention | [80] | |
Clomipramine | Case report of ginseng intoxication of a MDD 56-year-old woman; took 300 mg/day of root extract for 2 weeks | Hyperactivity, insomnia, dysphoria, and verbal and physical aggressiveness | [81] | |
Ginkgo biloba L., vitamins and minerals, cold-liver oil, primrose oil, caffeine, alcohol | Randomized, double-blind, placebo-controlled clinical study on 70 post-menopausal females, 12 ginseng-receiving subjects with a mean (±SD) age of 58.4 (±1.0) years and 14 placebo-receiving subjects with a mean (±SD) age of 57.4 (±0.7) years; administered with 2 × 100 mg/day of ginseng extract for 12 weeks | Slight depression (one case) | [82] | |
Ginsenosides (27–30%) | Single-blind, placebo-controlled clinical study on 14- and a 17-year-old ADHD males; administered with 2 × 250 mg/day of ginseng extract | Mild sedation | [83] | |
Rg1, Rb1, Rg3, Re, Rc, Rb2, Rd, Rf, Rh1, Rg2s, other minor ginsenosides, escitalopram, venlafaxine, paroxetine, duloxetine, citalopram, bupropion, fluvoxamine, imipramine, trazodone | Open-label study on 35 MDD females with a mean (±SD) age of 45.1 (±9.5) years; administered with 2 g at day 1 of red ginseng extract titrated at 3 g/day for 4 weeks and maintained for another 4 weeks | Headache, insomnia, and hypersomnia | [84] | |
Cannabis | Case reports on two ginseng intoxications of 23- and a 79-years-old; took ginseng ≅ 15 and ≅ 20 g/day, respectively | Racing thoughts, anxiety, irritable mood, labile affect, disorganized thought process, constant distraction, and auditory hallucinations, | [85] | |
Chemotherapies, ginsenosides, malonylginsenosides | Open-label study on 30 patients with cancer-related fatigue and under chemotherapy with a median age of 58 (range = 48–68) years, 15 males and 15 females; administered with 2 × 400 mg/day ginseng root extract for 4 weeks | Pain, nausea, cognitive disturbance, and seizure | [86] | |
Multivitamins, herbal supplements | Case report of a 42-year-old female with no history of psychiatric issue or illicit drug use | Psychosis and confusion | [87] | |
- | Case report of a ginseng intoxication (age, sex, and dose not specified) | Mania | [88] | |
Methadone | Randomized, double-blind, placebo-controlled clinical study on 74 opioid-addicted participants under methadone maintenance treatment, 48 males with a mean age of 40.64 years and 26 females with a mean age of 39.0 years; administered with 4 × 250 mg of root powder | Sleepiness and agitation | [89] | |
- | Case report of a 47-year-old male with no history of psychiatric disorder; took 600 mg/day ginseng to increase energy and sexual activity | Nervousness, aggressive behaviors, irritability, increased psychomotor activity, decreased sleep, and excessive talkativeness | [90] | |
Eicosapentaenoic acid, docosahexaenoic acid, Rg1, Rb1, Rg3 | Open-label study on 40 ADHD children with a mean (±SD) age of 8 (±1.45) years 31 males and 9 females; administered with 3 mg/day ginseng extract for 12 weeks | Transitory headache (one case) | [91] | |
Panax quinquefolius L. | Phenelzine, bee pollen, other natural medications | Case report of a 42-year-old female with chronic depression, but no history of manic episodes | Mania and hallucinations | [92] |
Ginkgo biloba L., ritalin, efamol | Open-label study on 36 ADHD children with a mean (±SD) age of 10.2 (±3.7); administered with 2 × 200 mg/day of ginseng extract for 4 weeks | Increased impulsiveness, hyperactivity and aggressiveness, headache, and tiredness | [93] | |
Tamoxifen, other estrogenic botanical supplements | Multicenter, prospective study on 788 with breast cancer; 103 used ginseng after cancer diagnosis | Fatigue | [94] | |
Pausinystalia johimbe (K. Schum.) Pierre ex Beille (yohimbine) | Corynanthine (5, 20 mg/kg) | Animal study on 101 male Sprague Dawley rats; administered with 5 or 20 mg/kg of yohimbine IP | Decrease in spontaneous locomotor activity, overreaction to external stimuli, violent tremors, convulsions, abnormal posture, and decrease in body temperature | [95] |
Xylazine, Doxapram, 4-aminopyridine | Animal study on 82 red deer (Cervus elaphus L.), administered with 0.063, 0.124, 0.125, 0.128, 0.189, 0.20, 0.21, 0.23, 0.24, 0.25, or 1.00 mg/kg of yohimbine IV | Rapid reaction to external stimuli, anxiety, and nervousness | [96] | |
Desipramine, bupropion, trazodone | Three case reports of manic symptoms following yohimbine administration of three psychiatric patients: a 41-year-old male who took 10 mg of yohimbine orally, and 20- and 43-year-old females who took 20 mg of yohimbine in two sessions and one session, respectively | Tremors, nausea, generalized restlessness, diaphoresis, and palpitations | [97] | |
- | Randomized, double-blind, placebo-controlled study on 59 participants: 39 drug-free patients with agoraphobia and panic attacks—11 males with a mean (±SD) age of 36.8 (±8.2) years and 29 females with a mean (±SD) age of 38.8 (±10.1) years; and 20 HC—9 males with a mean (±SD) age of 33.3 (±7.3) years and 11 females with a mean (±SD) age of 43.3 (±7.4) years; administered with 4 × 5 mg of yohimbine capsules | Anxiety, nervousness, hot and cold flashes, restlessness, tremors, and piloerection | [98] | |
Acetylsalicylic acid | Case report of an acute yohimbine intoxication of a 16-year-old female; took 250 mg of powdered yohimbine | Weakness, generalized paresthesia, loss of coordination, dissociative state, severe headache, dizziness, tremors, decreased hearing, nausea, diaphoresis, and intermittent palpitations | [99] | |
- | Randomized, double-blind, placebo-controlled study on 88 participants: 68 agoraphobic subjects with panic attacks or panic disorder—19 males with a mean (±SD) age of 38 (±9) years and 49 females with a mean (±SD) age of 40 (±1) years; and 20 HC—9 males with a mean (±SD) age of 34 (±8) years and 11 females with a mean (±SD) age of 43 (±7) years; administered with 4x5 mg of yohimbine capsules | Increased rate of panic attacks, anxiety | [100] | |
- | Animal study on male hooded Lister rats; administered with 2.5 or 5 mg/kg of yohimbine IP for acute exposure evaluation and 2.5 or 5 mg/kg daily for 5 days for chronic exposure evaluation | Decreased locomotory activity and increased anxiety | [101] | |
- | Randomized, double-blind, placebo-controlled study on 65 participants: 45 depressed subjects with a mean (±SD) age of 41 (±13) years—17 males and 28 females; and 20 HC with a mean (±SD) age of 39 (±9) years—9 males and 11 females; administered with 4 × 5 mg of yohimbine capsules | Drowsiness, nervousness, anxiety, fear, sadness, depression, nausea, tremors, hot and cold flashes, and muscle aches | [102] | |
Amitriptyline | Animal study on 12 male Sprague Dawley rats; administered with 5 mg/kg IP weekly for 6 weeks | Profound hypothermia | [103] | |
- | Animal study on six unrestrained bonnet macaques (Macaca radiata É. Geoffroy); administered with 0.10, 0.25, 0.50, or 0.75 mg/kg (0.93–9.74 mg) of yohimbine orally | Distress symptoms, freezing behaviors, clonic jaw movements, excessive yawning, and sexual arousal | [104] | |
Clonidine | Randomized double-blind placebo-controlled study on 53 participants: 38 subjects with panic disorders with a mean (±SD) age of 35 (±2) years—11 males and 27 females; and 15 HC with a mean (±SD) age of 30 (±3) years—5 males and 10 females; administered with 0.4 mg/kg of yohimbine over 10 min | Anxiety and panic attacks | [105] | |
Glyburide, alcohol | Case report of an acute yohimbine intoxication of a diabetic 63-year-old man; took 100 × 2 mg of yohimbine tablets in about 90–120 min | Anxiety and alertness | [106] | |
Tolazoline, xylazine | Animal study on four healthy horses—three mares and one gelding; administered with 0.025 mg/kg of yohimbine every 2 min until a maximal dose of 2.0 mg/kg | Agitation, muscular tremors, mild excitement, and reduction in xylazine-mediated sedation | [107] | |
- | Clinical study on eight narcoleptic participants, four males with a mean age of 43.5 years (range 22–64) and four females with a mean age of 26 years (range 21–39); administered with 2.7, 5.4 mg of yohimbine tablets twice daily up to 16.2 mg/day | Insomnia, tremors, and flushing | [108] | |
Fluoxetine, TCAs, propranolol, benzodiazepines | Four case reports of a 44-, two 45-, and a 53-year-old males with PTSD; took “high” quantity of over-the-counter yohimbine | Sexual arousal, sweating, shaking, panic attacks, and flashbacks | [109] | |
[15O] H2O | PET scans in a single-blind fixed-order study on nine participants with a mean age of 30.7 years—three males and six females; administered with 0.15 mg/kg up to a maximum dose of 10 mg of yohimbine over 3 min | Panic attack (one subject) and increased anxiety | [110] | |
Morphine, U-50,488, SNC80 | Animal study on 318 male OF1 mice and male Sprague Dawley rats; administered with 2 and 4 mg/kg of yohimbine IP | Blockage of opioid-mediated spinal antinociception | [111] | |
benzodiazepines, [11C] flumazenil | Animal study on three adult male rhesus monkeys; administered with 0.4 mg/kg of yohimbine | Increased binding potential for BDZ receptors in the hippocampus and anxiety | [112] | |
- | Randomized, double-blind, placebo-controlled study on 17 participants: 8 methadone-maintained subjects with a mean (±SD) age of 38 (±2.6) years—6 males and 2 females; and 9 male HC with a mean (±SD) age of 30 (±3.7) years; administered with 4 mg/kg of yohimbine over 10 min | Precipitation of withdrawal and craving symptoms in methadone patients | [113] | |
Xylazine, ketamine, buprenorphine, gentamicin, methamphetamine | Animal study on 73 male Long–Evans rats; administered with 1.25 or 2.5 mg/kg of yohimbine IP after extinction and 0.625 mg/kg after 21–51 days of withdrawal | Reinstatement of extinguished methamphetamine seeking behavior | [114] | |
Cocaine, clonidine, RS-79948, flupenthixol | Animal study on 14 adult squirrel monkeys (Saimiri sciureus L.); administered with 0.1 and 0.56 mg/kg of yohimbine IP before the reinstatement test | Reinstatement of extinguished cocaine seeking behavior | [115] | |
- | Randomized double-blind placebo-controlled study on 13 male participants with a mean (±SD) age of 24.9 (±2.2) years; administered with 0.4 mg/kg of yohimbine IV, procedure repeated after 14 days | Increased restlessness, anxiety, and impaired mood | [116] | |
Pentobarbital | Animal study on 12 adult male Sprague Dawley rats; administered with 0.1, 1.0, or 10.0 mg/kg of yohimbine IP | Suppression of P13 and N40 auditory circuitry components at high doses and increment of amplitude at low/moderate doses | [117] | |
- | Case report of an acute yohimbine intoxication of a 37-year-old male body builder; took 5 g of yohimbine, found with 5240, 2250, 1530, and 865 ng/mL in blood 3, 6, 14, and 22 h, respectively, after ingestion and 50 mg/L in urine at admission | General malaise, vomiting, loss of consciousness, and tonic-clonic seizures | [118] | |
- | Randomized double-blind placebo-controlled study on 24 claustrophobic participants, 12 yohimbine-receiving subjects and 12 placebo-receiving patients, 79% females with a mean (±SD) age of 24.46 (±8.65) years (males not reported); administered with 2 × 5.4 mg of yohimbine pills, procedure repeated after 14 days | Significant improvement in peak fear at the one-week follow-up behavioral assessment | [119] | |
Xylazine, ketamine, pentobarbital, chloral hydrate, cefazoline, heparin, heroin | Animal study on 22 male Sprague Dawley rats; administered with 1.25 and 2.5 mg/kg of yohimbine IP 30 min before reinstatement sessions | Stress and reinstatement of extinguished heroin seeking behavior | [120] | |
- | Randomized, double-blind, placebo-controlled study on 24 male participants: 12 athletes with an average age of 29 years and 12 untrained HC with an average age of 29.5 years; administered with 0.4 mg/kg of yohimbine IV | Anxiety | [121] | |
Nicotine, acamprosate | Randomized, double-blind, placebo-controlled study on 35 participants: 12 acamprosate-receiving subjects with a mean (±SD) age of 44.4 (±1.6) years—11 males and 1 female; and 13 placebo-receiving patients with a mean (±SD) age of 44.1 (±1.9) years—11 males and 2 females; administered with 0.4 mg/kg of yohimbine IV | Increase in alcohol craving symptoms | [122] | |
Clonidine, 2-[18F]-fluoro-2-deoxy-D-glucose | Randomized, double-blind, placebo-controlled study on 22 participants, 11 patients with IBS with a mean (±SD) age of 40.5 (±12.9) years and 11 HC with a mean (±SD) age of 37.3 (±10.6) years; administered with 40 mg of yohimbine tablet | Increased anxiety and reduced brain activity in the anterior cingulate cortex, amygdala, dorsal brainstem, and posterior insula | [123] | |
Nicotine, ketamine, xylazine, buprenorphine, bupivacaine, penicillin | Animal study on 84 Long–Evans juvenile rats; administered with 0.3 and 0.6 mg/kg of yohimbine IP before operative sessions | Increased nicotine self-administration | [124] | |
Alcohol, d-Phe CRF | Animal study on 60 rats (strain not reported); administered with 1.25 mg/kg of yohimbine IP before alcohol self-administration and reinstatement sessions | Increased alcohol self-administration and reinstatement of alcohol seeking behavior | [125] | |
Caffeine, diphenhydramine, alcohol | Two fatal case reports of acute yohimbine intoxication of 23- and 37-year-old males; found 7400 ng/mL in iliac blood and 5400 ng/mL in heart blood, respectively | Seizures, elevated vitals, and death | [126] | |
Pioglitazone, naltrexone, alcohol | Animal study on 193 genetically selected msP male rats; administered with 1.25 mg/kg of yohimbine IP 1 h after naltrexone and before the reinstatement session | Reinstatement of alcohol seeking behavior | [127] | |
Nicotine, caffeine, | Randomized, double-blind, placebo-controlled study on 119 participants: 62 cocaine-dependent subjects with a mean (±SD) age of 41.1 (±10.0) years—32 males and 30 females; and 57 HC with a mean (±SD) age of 33.1 (±12.6) years—32 males and 30 females; administered with 21.6 mg of yohimbine capsule | Increase in anxiety and craving in cocaine-dependent subjects | [128] | |
- | Animal study on 768 AB strain wild zebrafish larvae, 640 yohimbine-receiving animals; administered with 10, 25, 50, 100, or 200 mg/L of yohimbine solution, and 128 HC | anxiogenic at high concentrations | [129] | |
MDMA, SCH-23390, atropine, ketamine, xylazine | Animal study on 67 male Sprague Dawley rats; administered with 2.0 mg/kg before reinstatement test and 5.0 mg/kg daily for 10 days for chronic treatment | Anxiogenic effects and reinstatement of extinguished MDMA seeking behavior | [130] | |
naltrexone | Double-blind, placebo-controlled study on 16 healthy women aged between 18 and 32 years: 5 yohimbine + naltrexone-receiving patients, and 11-placebo-receiving patients; administered with 16 mg of yohimbine orally alone and co-administered with 50 mg of naltrexone orally | Agitation, restlessness, anxiety, headaches, nausea, light-headedness, vomiting, weakness, lethargy, tremors, blockage of analgesia in ipsilateral forehead, and increase in electrically evoked pain in forearm | [131] | |
Nicotine, THC | Randomized, double-blind, placebo-controlled study on 95 participants: 39 cocaine-dependent subjects with a mean (±SD) age of 41 (±1.7) years—12 males and 27 females; and 56 HC with a mean (±SD) age of 33 (±1.7) years—32 males and 34 females; administered with 21.6 mg of yohimbine prior to two cocaine exposure sessions | Increased impulsivity in HC and slower hit reaction time in female cocaine-dependent subjects | [132] | |
Hydrocortisone | Randomized, double-blind, placebo-controlled study on 103 participants with a mean (±SD) age of 24.79 (±0.36) years—51 males and 52 females randomly assigned to four experimental groups (placebo, yohimbine, hydrocortisone, yohimbine + hydrocortisone); administered with 20 mg of yohimbine orally | Decreased memory generalization in females (both yohimbine and yohimbine + hydrocortisone groups) | [133] | |
Naltrexone | Randomized, double-blind, placebo-controlled study on 39 participants: 13 yohimbine-receiving patients and 10 placebo-receiving patients—13 males and 10 females aged between 18 and 52 years; 5 yohimbine + naltrexone-receiving females and 11 placebo-receiving females aged between 18 and 32 years; administered with 16 mg of yohimbine alone and co-administered with 50 mg of naltrexone orally | Nausea, headache, malaise, pain, anxiety, and sexual arousal | [134] | |
- | Randomized, double-blind, placebo-controlled study on 42 health participants with a mean (±SD) age of 21.29 (±3.27): 21 yohimbine-receiving subjects and 21 placebo-receiving subjects—19 males and 23 females; administered with 20 mg of yohimbine orally 45 min before behavioral test | Anxiety, nervousness, nausea, decreased motor and temporal impulsivity, and increased reflection impulsivity | [135] | |
Piper methysticum G. Forst. | Alcohol, kavain (450.1 mg/L), dihydrokavain (456 mg/L) | Alternated, double-blind, placebo-controlled study on 24 participants with a mean age of 26.7 years (range = 18–53), 10 males and 13 females; 12 subjects received 500 mL of kava juice and 12 received placebo | Body sway and decreased reaction time tasks | [136] |
Valerian | Cross-over study on 24 participants with stress-induced insomnia, 9 males with a mean age of 43.7 years (range 23–65) and 15 females with a mean age of 44.6 (range 30–65) years; administered with 120 mg/day of standardized kava extract for 6 weeks | Dizziness, vivid dreams, and dry mouth | [137] | |
- | Randomized, double-blind, placebo-controlled study on 38 participants with a previous history of GAD and a mean (±SD) age of 51.7 (±11.6) years—7 males and 31 females; administered 140 mg/day of standardized kava extract for 1 week and 280 mg/day for the next 3 weeks | Bad taste in mouth, difficulty achieving orgasm, drowsiness, dry mouth, increased appetite, muscle twitching, nausea, spasms or drawing of muscles, sweating, tingling or numbness, and trembling | [138] | |
Benzodiazepines, fluoxetine, sertraline | Case report of a kava intoxication of a 45-year-old female with a family history of essential tremor; took 65 mg/day of kava extract for 10 days | Slow saccades, hypophonic speech, generalized postural and tremor at rest, severe generalized rigidity in axial and appendicular muscles, severe akinesia, gait disturbance with lack of balance, and inability to walk | [139] | |
- | Randomized, double-blind, placebo-controlled study on 141 participants with neurotic anxiety: 71 subjects with a mean age of 48.8 (range 18–69) years, administered with 3 × 50 mg/day of standardized kava extract for 4 weeks; and 70 placebo-receiving subjects with a mean age of 48.2 (range 18–69) years—36 males and 105 females | Withdrawal, aggravation of anxiogenic symptoms, and tiredness | [140] | |
- | Saccade and cognitive study on 28 participants: 11 kava-intoxicated subjects with a mean (±SD) age of 38.1 (±10.3) years and 17 kava-users with a mean (±SD) age of 33.1 (±7.0) years; took 75–375 g of kava powder | Ataxia, tremors, sedation, disorientation, and blepharospasm | [141] | |
Kavain (55%) | Randomized, prospective, open study on 68 perimenopausal females: 15 kava-receiving subjects with a mean (±SD) age of 51.5 (±1.1) years were administered with 100 mg/day of calcium plus kava for 3 months; 19 kava-receiving subjects with a mean (±SD) age of 51.1 (±0.8) years were administered with 200 mg/day of calcium plus kava for 3 months; and 34 HC with a mean (±SD) age of 50.2 (±0.6) years | Nausea | [142] | |
Flunitrazepam, flumazenil | Animal study on 40 male sleep-disturbed Wistar rats; administered with 10, 30, or 300 mg/kg of a 96% ethanol kava extract | Hypnosis (shorter sleep latency, increase in the total non-REM time) | [143] | |
- | Case report of an acute kava intoxication of a 37-year-old male; took a “too strong” kava tea | Leg weakness, severe vertigo, nausea, vomiting, diaphoresis, and dizziness | [144] | |
Hypericum perforatum L., alcohol, caffeine | Randomized, double-blind, placebo-controlled study on 24 participants with MDD and a mean (±SD) age of 42.9 (±8.8) years—20 males and 38 females; took 3 × 2.66 g/day of herbal kava tablets for 10 months | One case of withdrawal | [145] | |
Dihydrokavain (26%), kavain (21%), dihydromethysticin (18%), methysticin (14%), yangonin (13%), Desmethoxyyangonin (8%) | Randomized, double-blind, placebo-controlled study on 28 participants with GAD and a mean (±SD) age of 30.1 (±12.4) years—7 males and 21 females; administered with 120 and 240 mg/day of kavalactones in 3 g tablets of standardized extract of kava roots | Increased females’ sex drive and difficulty to reach the orgasm in males | [146] | |
Dihydrokavain (26%), kavain (21%), dihydromethysticin (18%), methysticin (14%), yangonin (13%), desmethoxyyangonin (8%) | Randomized, double-blind, placebo-controlled study on 58 participants with GAD and a mean (±SD) age of 30.1 (±8.8) years, 20 males and 38 females; administered with 120 or 240 mg/day of kavalactones in 3 g tablets of standardized extract of kava roots | Significant reduction in anxiety and headaches | [147] | |
Anxiolytics, antidepressants, antinausea, antipsychotics, painkillers, stimulants, sedatives, meth/amphetamine, cannabis, cocaine, ecstasy, hallucinogens, opiates, benzylpiperazine, synthetic cannabis | Survey study on 434 participants with a mean (±SD) age of 34.54 (±14.62) years—36.41% males and 63.59% females, 26 kava-users | Driving-impairment | [148] | |
Kavalactones | Animal study on adult wild-type short-fin outbred zebrafish with a 1:1 male-to-female ratio; administered with 10, 20, or 50 mg/L of water extract from powdered kava roots for 20 min and 7.5 mg/L for 1 week | Sedation and immobility | [149] | |
Methysticin | DMSO | Animal study on 18 AD model mice—12 APP/Psen1 strain and 6 wild-type mice; administered with 6 mg/kg of methysticin once a week for 52 weeks | Reduced movements | [150] |
Ptychopetalum olacoides Benth. | Diazepam, pentylenetetrazol | Animal study on CF1 strain male adult mice parted in eight groups (15–30 animals); administered with 30, 100, or 300 mg/kg of ethanolic extract for 30 min | Reduced locomotion | [151] |
MK801, DMSO, scopolamine, physostigmine | Animal study on 66 CF1 strain male adult albino mice; administered with 50 or 100 mg/kg of standardized ethanolic and 100–800 mg/kg once a day for 21 weeks | Impairment of both short- and long-term memories | [152] | |
Sceletium tortuosum (L.) N. E. Brown | - | Randomized, double-blind, placebo-controlled study on 21 participants with a mean (±SD) age of 54.6 (±6.0), 9 males and 12 females; administered with 25 mg/day of standardized extract (Zembrin®) for 3 weeks | Headache, blurred vision, poor hearing, nausea, vomiting, appetite increase, muscles rigidity, drowsiness, confusion, concentration difficulty, memory problems, depression, anxiety, and ataxia | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetti, P.; Lo Faro, A.F.; Tini, A.; Busardò, F.P.; Carlier, J. Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals 2020, 13, 309. https://doi.org/10.3390/ph13100309
Brunetti P, Lo Faro AF, Tini A, Busardò FP, Carlier J. Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals. 2020; 13(10):309. https://doi.org/10.3390/ph13100309
Chicago/Turabian StyleBrunetti, Pietro, Alfredo Fabrizio Lo Faro, Anastasio Tini, Francesco Paolo Busardò, and Jeremy Carlier. 2020. "Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects" Pharmaceuticals 13, no. 10: 309. https://doi.org/10.3390/ph13100309
APA StyleBrunetti, P., Lo Faro, A. F., Tini, A., Busardò, F. P., & Carlier, J. (2020). Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals, 13(10), 309. https://doi.org/10.3390/ph13100309