Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma
Abstract
:1. Introduction
2. First-Line BEV
3. Second or Subsequent Line BEV
4. Population-Based Analysis
5. Evaluation of BEV Response
6. Predictive Markers of BEV
6.1. Genetic Markers
6.2. Imaging Markers
6.3. Other Markers
7. Advantages of BEV
7.1. Tumor and Radiation Sensitivity
7.2. Combination with Immunotherapy
7.3. Effect of Radiation Necrosis
7.4. Anti-Oedematous Effect and Maintenance of PS
8. Adverse Events and Management of BEV
8.1. Adverse Events
8.2. Management
9. Basic Medical Research Associated with BEV
9.1. Intranasal BEV Administration in Polymeric Nanoparticles
9.2. Targeting Autophagy
9.3. Perivascular Microenvironment
9.4. Extracellular Vesicles in the Microenvironment
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Vredenburgh, J.J.; Desjardins, A.; Kirkpatrick, J.P.; Reardon, D.A.; Peters, K.B.; Herndon, J.E., 2nd; Marcello, J.; Bailey, L.; Threatt, S.; Sampson, J.; et al. Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Fabian, D.; Guillermo Prieto Eibl, M.; Alnahhas, I.; Sebastian, N.; Giglio, P.; Puduvalli, V.; Gonzalez, J.; Palmer, J.D. Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): A review. Cancers 2019, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma a randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [Green Version]
- Samoto, K.; Ikezaki, K.; Ono, M.; Shono, T.; Kohno, K.; Kuwano, M.; Fukui, M. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res. 1995, 55, 1189–1193. [Google Scholar]
- Armstrong, T.S.; Wen, P.Y.; Gilbert, M.R.; Schiff, D. Management of treatment-associated toxicites of anti-angiogenic therapy in patients with brain tumors. Neuro. Oncol. 2012, 14, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Bacher, M.; Schrader, J.; Thompson, N.; Kuschela, K.; Gemsa, D.; Waeber, G.; Schlegel, J. Up-regulation of macrophage migration inhibitory factor gene and protein expression in glial tumor cells during hypoxic and hypoglycemic stress indicates a critical role for angiogenesis in glioblastoma multiforme. Am. J. Pathol. 2003, 162, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Dasari, V.R.; Kaur, K.; Velpula, K.K.; Dinh, D.H.; Tsung, A.J.; Mohanam, S.; Rao, J.S. Downregulation of focal adhesion kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma. Aging 2010, 2, 791–803. [Google Scholar] [CrossRef] [Green Version]
- Wong, E.T.; Brem, S. Taming glioblastoma: Targeting angiogenesis. J. Clin. Oncol. 2007, 25, 4705–4706. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, N.; Hillan, K.J.; Gerber, H.P.; Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 2004, 3, 391–400. [Google Scholar] [CrossRef]
- Han, K.; Peyret, T.; Marchand, M.; Quartino, A.; Gosselin, N.H.; Girish, S.; Allison, D.E.; Jin, J. Population pharmacokinetics of bevacizumab in cancer patients with external validation. Cancer Chemother. Pharmacol. 2016, 78, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [Green Version]
- Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butman, J.A.; Camphausen, K.; et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
- Quillien, V.; Carpentier, A.F.; Gey, A.; Avril, T.; Tartour, E.; Sejalon, F.; Campillo-Gimenez, B.; Vauleon, E. Absolute numbers of regulatory T cells and neutrophils in corticosteroid-free patients are predictive for response to bevacizumab in recurrent glioblastoma patients. Cancer Immunol. Immunother. 2019, 68, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Narita, Y. Bevacizumab for glioblastoma. Ther. Clin. Risk Manag. 2015, 11, 1759–1765. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.B.; Gao, K.D.; Jiang, T.; Cheng, S.J.; Li, W.B. Bevacizumab combined with chemotherapy for glioblastoma: A meta-analysis of randomized controlled trials. Oncotarget 2017, 8, 57337–57344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinot, O.L.; Nishikawa, R.; Mason, W.; Henriksson, R.; Saran, F.; Cloughesy, T.; Garcia, J.; Revil, C.; Abrey, L.; Wick, W. Upfront bevacizumab may extend survival for glioblastoma patients who do not receive second-line therapy: An exploratory analysis of AVAglio. Neuro. Oncol. 2016, 18, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Balana, C.; De Las Penas, R.; Sepúlveda, J.M.; Gil-Gil, M.J.; Luque, R.; Gallego, O.; Carrato, C.; Sanz, C.; Reynes, G.; Herrero, A.; et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: The GENOM 009 randomized phase II trial. J. Neurooncol. 2016, 127, 569–579. [Google Scholar] [CrossRef]
- Matsuda, K.I.; Sakurada, K.; Nemoto, K.; Kayama, T.; Sonoda, Y. Treatment outcomes of hypofractionated radiotherapy combined with temozolomide followed by bevacizumab salvage therapy in glioblastoma patients aged > 75 years. Int. J. Clin. Oncol. 2018, 23, 820–825. [Google Scholar] [CrossRef]
- Reyes-Botero, G.; Cartalat-Carel, S.; Chinot, O.L.; Barrie, M.; Taillandier, L.; Beauchesne, P.; Catry-Thomas, I.; Barrière, J.; Guillamo, J.S.; Fabbro, M.; et al. Temozolomide plus bevacizumab in elderly patients with newly diagnosed glioblastoma and poor performance status: An ANOCEF phase II trial (ATAG). Oncologist 2018, 23, 524–e44. [Google Scholar] [CrossRef] [Green Version]
- Wirsching, H.G.; Tabatabai, G.; Roelcke, U.; Hottinger, A.F.; Jörger, F.; Schmid, A.; Plasswilm, L.; Schrimpf, D.; Mancao, C.; Capper, D.; et al. Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: The randomized, open-label, phase II ARTE trial. Ann. Oncol. 2018, 29, 1423–1430. [Google Scholar] [CrossRef]
- Herrlinger, U.; Schäfer, N.; Steinbach, J.P.; Weyerbrock, A.; Hau, P.; Goldbrunner, R.; Friedrich, F.; Rohde, V.; Ringel, F.; Schlegel, U.; et al. Bevacizumab Plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: The randomized GLARIUS trial. J. Clin. Oncol. 2016, 34, 1611–1619. [Google Scholar] [CrossRef]
- Yonezawa, H.; Hirano, H.; Uchida, H.; Habu, M.; Hanaya, R.; Oyoshi, T.; Sadamura, Y.; Hanada, T.; Tokimura, H.; Moinuddin, F.; et al. Efficacy of bevacizumab therapy for unresectable malignant glioma: A retrospective analysis. Mol. Clin. Oncol. 2017, 6, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Hata, N.; Yoshimoto, K.; Hatae, R.; Kuga, D.; Akagi, Y.; Sangatsuda, Y.; Suzuki, S.O.; Shono, T.; Mizoguchi, M.; Iihara, K. Add-on bevacizumab can prevent early clinical deterioration and prolong survival in newly diagnosed partially resected glioblastoma patients with a poor performance status. Onco. Targets Ther. 2017, 10, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Hata, N.; Mizoguchi, M.; Kuga, D.; Hatae, R.; Akagi, Y.; Sangatsuda, Y.; Amemiya, T.; Michiwaki, Y.; Fujioka, Y.; Takigawa, K.; et al. First-line bevacizumab contributes to survival improvement in glioblastoma patients complementary to temozolomide. J. Neurooncol. 2020, 146, 451–458. [Google Scholar] [CrossRef]
- Kaka, N.; Hafazalla, K.; Samawi, H.; Simpkin, A.; Perry, J.; Sahgal, A.; Das, S. Progression-free but no overall survival benefit for adult patients with bevacizumab therapy for the treatment of newly diagnosed glioblastoma: A systematic review and meta-analysis. Cancers 2019, 11, 1723. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Ishi, Y.; Motegi, H.; Okamoto, M.; Kobayashi, H.; Hirata, K.; Oda, Y.; Tanaka, S.; Terasaka, S.; Houkin, K. The prognostic improvement of add-on bevacizumab for progressive disease during concomitant temozolomide and radiation therapy in the patients with glioblastoma and anaplastic astrocytoma. J. Neurosurg. Sci. 2018. [Google Scholar] [CrossRef]
- Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E., 2nd; Dowell, J.M.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Wagner, M.; et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 2007, 13, 1253–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayana, A.; Kelly, P.; Golfinos, J.; Parker, E.; Johnson, G.; Knopp, E.; Zagzag, D.; Fischer, I.; Raza, S.; Medabalmi, P.; et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: Impact on local control and patient survival. J. Neurosurg. 2009, 110, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, S.; Grunnet, K.; Hansen, S.; Schultz, H.; Holmberg, M.; Sorensen, M.; Poulsen, H.S.; Lassen, U. A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy. Acta Oncol. 2012, 51, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Anderson, S.K.; Lafky, J.M.; Uhm, J.H.; Giannini, C.; Kumar, S.K.; Kimlinger, T.K.; Northfelt, D.W.; Flynn, P.J.; Jaeckle, K.A.; et al. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): A north central cancer treatment group trial. Clin. Cancer Res. 2013, 19, 4816–4823. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, B.; Lassen, U.; Hansen, S.; Holmberg, M.; Sørensen, M.; Kosteljanetz, M.; Broholm, H.; Stockhausen, M.T.; Poulsen, H.S. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: A phase II trial. Neuro. Oncol. 2010, 12, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.; Herndon, J.E., 2nd; Bulusu, A.; Threatt, S.; Friedman, A.H.; et al. Phase II study of carboplatin, irinotecan, and bevacizumab for bevacizumab naïve, recurrent glioblastoma. J. Neurooncol. 2012, 107, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; Gururangan, S.; Sampson, J.H.; Sathornsumetee, S.; McLendon, R.E.; Herndon, J.E., 2nd; Marcello, J.E.; Norfleet, J.; et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: A phase II study. Br. J. Cancer 2009, 101, 1986–1994. [Google Scholar] [CrossRef]
- Sathornsumetee, S.; Desjardins, A.; Vredenburgh, J.J.; McLendon, R.E.; Marcello, J.; Herndon, J.E.; Mathe, A.; Hamilton, M.; Rich, J.N.; Norfleet, J.A.; et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro. Oncol. 2010, 12, 1300–1310. [Google Scholar] [CrossRef] [Green Version]
- Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E., 2nd; Marcello, J.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Sampson, J.; et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 2007, 25, 4722–4729. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Anderson, S.K.; Twohy, E.L.; Carrero, X.W.; Dixon, J.G.; Tran, D.D.; Jeyapalan, S.A.; Anderson, D.M.; Kaufmann, T.J.; Feathers, R.W.; et al. A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/north central cancer treatment group N0872. Cancer 2019, 125, 3790–3800. [Google Scholar] [CrossRef] [PubMed]
- Taal, W.; Oosterkamp, H.M.; Walenkamp, A.M.; Dubbink, H.J.; Beerepoot, L.V.; Hanse, M.C.; Buter, J.; Honkoop, A.H.; Boerman, D.; de Vos, F.Y.; et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol. 2014, 15, 943–953. [Google Scholar] [CrossRef]
- Erdem-Eraslan, L.; van den Bent, M.J.; Hoogstrate, Y.; Naz-Khan, H.; Stubbs, A.; van der Spek, P.; Böttcher, R.; Gao, Y.; de Wit, M.; Taal, W.; et al. Identification of patients with recurrent glioblastoma who may benefit from combined bevacizumab and CCNU Therapy: A report from the BELOB trial. Cancer Res. 2016, 76, 525–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Gil-Gil, M.; Saran, F.; Carpentier, A.F.; Nowak, A.K.; Mason, W.; Zagonel, V.; Dubois, F.; Finocchiaro, G.; Fountzilas, G.; et al. A randomized phase II Trial (TAMIGA) evaluating the efficacy and safety of continuous bevacizumab through multiple lines of treatment for recurrent glioblastoma. Oncologist 2019, 24, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, K.M.; Simes, J.; Nowak, A.K.; Cher, L.; Wheeler, H.; Hovey, E.J.; Brown, C.S.; Barnes, E.H.; Sawkins, K.; Livingstone, A.; et al. Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro Oncol 2015, 17, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Weathers, S.P.; Han, X.; Liu, D.D.; Conrad, C.A.; Gilbert, M.R.; Loghin, M.E.; O’Brien, B.J.; Penas-Prado, M.; Puduvalli, V.K.; Tremont-Lukats, I.; et al. A randomized phase II trial of standard dose bevacizumab versus low dose bevacizumab plus lomustine (CCNU) in adults with recurrent glioblastoma. J. Neurooncol. 2016, 129, 487–494. [Google Scholar] [CrossRef]
- Badruddoja, M.A.; Pazzi, M.; Sanan, A.; Schroeder, K.; Kuzma, K.; Norton, T.; Scully, T.; Mahadevan, D.; Ahmadi, M.M. Phase II study of bi-weekly temozolomide plus bevacizumab for adult patients with recurrent glioblastoma. Cancer Chemother. Pharmacol. 2017, 80, 715–721. [Google Scholar] [CrossRef]
- Ajlan, A.; Thomas, P.; Albakr, A.; Nagpal, S.; Recht, L. Optimizing bevacizumab dosing in glioblastoma: Less is more. J. Neurooncol. 2017, 135, 99–105. [Google Scholar] [CrossRef]
- Franceschi, E.; Lamberti, G.; Paccapelo, A.; Di Battista, M.; Genestreti, G.; Minichillo, S.; Mura, A.; Bartolini, S.; Agati, R.; Brandes, A.A. Third-line therapy in recurrent glioblastoma: Is it another chance for bevacizumab? J. Neurooncol. 2018, 139, 383–388. [Google Scholar] [CrossRef]
- Johnson, D.R.; Omuro, A.; Ravelo, A.; Sommer, N.; Guerin, A.; Ionescu-Ittu, R.; Shi, S.; Macalalad, A.; Uhm, J.H. Overall survival in patients with glioblastoma before and after bevacizumab approval. Curr. Med. Res. Opin. 2018, 34, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Du, X.L.; Lu, G.; Zhu, J.J. Survival benefit of glioblastoma patients after FDA approval of temozolomide concomitant with radiation and bevacizumab: A population-based study. Oncotarget 2017, 8, 44015–44031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, H.; Sekimoto, M.; Imanaka, Y. Effects of the per diem prospective payment system with DRG-like grouping system (DPC/PDPS) on resource usage and healthcare quality in Japan. Health Policy 2012, 107, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, K.; Kada, A.; Kuga, D.; Hatae, R.; Murata, H.; Akagi, Y.; Nishimura, K.; Kurogi, R.; Nishimura, A.; Hata, N.; et al. Current trends and healthcare resource usage in the hospital treatment of primary malignant brain tumor in Japan: A national survey using the diagnostic procedure combination database (J-ASPECT study-brain tumor). Neurol. Med. Chir. 2016, 56, 664–673. [Google Scholar] [CrossRef] [Green Version]
- Iihara, K.; Tominaga, T.; Saito, N.; Suzuki, M.; Date, I.; Fujii, Y.; Hongo, K.; Houkin, K.; Kato, A.; Kato, Y.; et al. The Japan Neurosurgical Database: Overview and results of the first-year survey. Neurol. Med. Chir. 2020, 60, 165–190. [Google Scholar] [CrossRef] [Green Version]
- Wick, W.; Chinot, O.L.; Bendszus, M.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Revil, C.; Kerloeguen, Y.; Cloughesy, T. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro. Oncol. 2016, 18, 1434–1441. [Google Scholar] [CrossRef] [Green Version]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef] [Green Version]
- Gerstner, E.R.; McNamara, M.B.; Norden, A.D.; LaFrankie, D.; Wen, P.Y. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J. Neurooncol. 2009, 94, 97–101. [Google Scholar] [CrossRef]
- Sanghera, P.; Perry, J.; Sahgal, A.; Symons, S.; Aviv, R.; Morrison, M.; Lam, K.; Davey, P.; Tsao, M.N. Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can. J. Neurol. Sci. 2010, 37, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Taal, W.; Brandsma, D.; de Bruin, H.G.; Bromberg, J.E.; Swaak-Kragten, A.T.; Smitt, P.A.; van Es, C.A.; van den Bent, M.J. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008, 113, 405–410. [Google Scholar] [CrossRef]
- Hygino da Cruz, L.C.; Rodriguez, I.; Domingues, R.C.; Gasparetto, E.L.; Sorensen, A.G. Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. Am. J. Neuroradiol. 2011, 32, 1978–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandsma, D.; van den Bent, M.J. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr. Opin. Neurol. 2009, 22, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Pàez-Ribes, M.; Allen, E.; Hudock, J.; Takeda, T.; Okuyama, H.; Viñals, F.; Inoue, M.; Bergers, G.; Hanahan, D.; Casanovas, O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 15, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, A.; De Lay, M.; Miller, L.M.; Carbonell, W.S.; Hu, Y.L.; Lu, K.; Tom, M.W.; Paquette, J.; Tokuyasu, T.A.; Tsao, S.; et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin. Cancer Res. 2013, 19, 1773–1783. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, F.M.; Abrey, L.E.; Beal, K.; Gutin, P.H.; Rosenblum, M.K.; Reuter, V.E.; DeAngelis, L.M.; Lassman, A.B. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 2009, 73, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Pope, W.B.; Xia, Q.; Paton, V.E.; Das, A.; Hambleton, J.; Kim, H.J.; Huo, J.; Brown, M.S.; Goldin, J.; Cloughesy, T. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology 2011, 76, 432–437. [Google Scholar] [CrossRef]
- Nowosielski, M.; Wiestler, B.; Goebel, G.; Hutterer, M.; Schlemmer, H.P.; Stockhammer, G.; Wick, W.; Bendszus, M.; Radbruch, A. Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology 2014, 82, 1684–1692. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, S.K.; Choi, S.H.; Lee, S.H.; Seol, H.J.; Nam, D.H.; Lee, J.I.; Park, C.K.; Kong, D.S. Prognostic implication of progression pattern after anti-VEGF bevacizumab treatment for recurrent malignant gliomas. J. Neurooncol. 2015, 124, 101–110. [Google Scholar] [CrossRef]
- Bloch, O.; Safaee, M.; Sun, M.Z.; Butowski, N.A.; McDermott, M.W.; Berger, M.S.; Aghi, M.K.; Parsa, A.T. Disseminated progression of glioblastoma after treatment with bevacizumab. Clin. Neurol. Neurosurg. 2013, 115, 1795–1801. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, M.C. Radiographic patterns of relapse in glioblastoma. J. Neurooncol. 2011, 101, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Mamo, A.; Baig, A.; Azam, M.; Rho, Y.S.; Sahebjam, S.; Muanza, T.; Owen, S.; Petrecca, K.; Guiot, M.C.; Al-Shami, J.; et al. Progression pattern and adverse events with bevacizumab in glioblastoma. Curr. Oncol. 2016, 23, e468–e471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandmann, T.; Bourgon, R.; Garcia, J.; Li, C.; Cloughesy, T.; Chinot, O.L.; Wick, W.; Nishikawa, R.; Mason, W.; Henriksson, R.; et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: Retrospective analysis of the AVAglio trial. J. Clin. Oncol. 2015, 33, 2735–2744. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, R.; Saran, F.; Mason, W.P.; Wick, W.; Cloughesy, T.; Henriksson, R.; Hilton, M.; Garcia, J.; Vogt, T.; Pallaud, C.; et al. Biomarker (BM) evaluations in the phase III AVAglio study of bevacizumab (Bv) plus standard radiotherapy (RT) and temozolomide (T) for newly diagnosed glioblastoma (GBM). J. Clin. Oncol. 2013, 31, 2023. [Google Scholar] [CrossRef]
- Sulman, E.P.; Won, M.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Jenkins, R.B.; Chakravarti, A.; Jeraj, R.; Brown, P.D.; Jaeckle, K.A.; et al. Molecular predictors of outcome and response to bevacizumab (BEV) based on analysis of RTOG 0825, a phase III trial comparing chemoradiation (CRT) with and without BEV in patients with newly diagnosed glioblastoma (GBM). J. Clin. Oncol. 2013, 31. [Google Scholar] [CrossRef]
- Hovinga, K.E.; McCrea, H.J.; Brennan, C.; Huse, J.; Zheng, J.; Esquenazi, Y.; Panageas, K.S.; Tabar, V. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J. Neurooncol. 2019, 142, 337–345. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Kim, H.J.; Woodworth, D.C.; Pope, W.B.; Cloughesy, J.N.; Harris, R.J.; Lai, A.; Nghiemphu, P.L.; Cloughesy, T.F. Contrast-enhanced T1-weighted subtraction maps for response assessment in recurrent glioblastoma treated with bevacizumab. J. Clin. Oncol. 2013, 31. [Google Scholar] [CrossRef]
- Eoli, M.; Di Stefano, A.L.; Aquino, D.; Scotti, A.; Anghileri, E.; Cuppini, L.; Prodi, E.; Finocchiaro, G.; Bruzzone, M.G. Tumor perfusion during bevacizumab and irinotecan in recurrent glioblastoma: A multimodal approach. J. Clin. Oncol. 2013, 31. [Google Scholar] [CrossRef]
- Huang, R.; Rahman, R.; Hamdan, A.; Kane, C.; Chen, C.; Norden, A.D.; Reardon, D.A.; Mukundan, S.; Wen, P.Y. Recurrent glioblastoma: Stratification of patient survival using tumor volume before and after antiangiogenic treatment. J. Clin. Oncol. 2013, 31. [Google Scholar] [CrossRef]
- Grossmann, P.; Narayan, V.; Chang, K.; Rahman, R.; Abrey, L.; Reardon, D.A.; Schwartz, L.H.; Wen, P.Y.; Alexander, B.M.; Huang, R.; et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro. Oncol. 2017, 9, 1688–1697. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; Kalra, A.; Spampinato, M.V.; Tabesh, A.; Jensen, J.H.; Helpern, J.A.; de Fatima Falangola, M.; Van Horn, M.H.; Giglio, P. Early assessment of recurrent glioblastoma response to bevacizumab treatment by diffusional kurtosis imaging: A preliminary report. Neuroradiol. J. 2019, 32, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K. Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell 2014, 26, 605–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, A.L.; Williams, R.F.; Ng, C.Y.; Hartwich, J.E.; Davidoff, A.M. Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J. Pediatr. Surg. 2010, 45, 1080–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, R.; Tanaka, T.; Miyake, K.; Tabei, Y.; Ohara, K.; Sampetrean, O.; Kono, M.; Mizutani, K.; Yamamoto, Y.; Murayama, Y.; et al. Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget 2016, 7, 52423–52435. [Google Scholar] [CrossRef] [Green Version]
- Miyake, K.; Tamiya, T. Response assessment of bevacizumab for treatment of malignant glioma by neuroimaging. Japanese J. Neurosurg. 2016, 25, 912–921. [Google Scholar] [CrossRef]
- Elliott, R.E.; Parker, E.C.; Rush, S.C.; Kalhorn, S.P.; Moshel, Y.A.; Narayana, A.; Donahue, B.; Golfinos, J.C. Efficacy of gamma knife radiosurgery for small-volume recurrent malignant gliomas after initial radical resection. World Neurosurg. 2011, 76, 128–140. [Google Scholar] [CrossRef]
- Ohm, J.E.; Gabrilovich, D.I.; Sempowski, G.D.; Kisseleva, E.; Parman, K.S.; Nadaf, S.; Carbone, D.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003, 101, 4878–4886. [Google Scholar] [CrossRef]
- Wallin, J.J.; Bendell, J.C.; Funke, R.; Sznol, M.; Korski, K.; Jones, S.; Hernandez, G.; Mier, J.; He, X.; Hodi, F.S.; et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016, 7, 12624. [Google Scholar] [CrossRef]
- Furuse, M.; Nonoguchi, N.; Kuroiwa, T.; Miyamoto, S.; Arakawa, Y.; Shinoda, J.; Miwa, K.; Iuchi, T.; Tsuboi, K.; Houkin, K.; et al. A prospective, multicentre, single-arm clinical trial of bevacizumab for patients with surgically untreatable, symptomatic brain radiation necrosis. Neurooncol. Pract. 2016, 3, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.; Kumar, A.J.; Conrad, C.A.; Levin, V.A. Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 323–326. [Google Scholar] [CrossRef]
- Ney, D.E.; Carlson, J.A.; Damek, D.M.; Gaspar, L.E.; Kavanagh, B.D.; Kleinschmidt-DeMasters, B.K.; Waziri, A.E.; Lillehei, K.O.; Reddy, K.; Chen, C. Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma. J. Neurooncol. 2015, 122, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Kimu, H.; Tsuda, K.; Osuka, S.; Nakai, K.; Yamamoto, T.; Ishikawa, E.; Akutsu, H.; Matsuda, M.; Matsumura, A.; et al. Decrease in the apparent diffusion coefficient in peritumoral edema for the assessment of recurrent glioblastoma treated by bevacizumab. Acta Neurochir. Suppl. 2013, 118, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Vredenburgh, J.J.; Cloughesy, T.; Samant, M.; Prados, M.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; et al. corticosteroid use in patients with glioblastoma at first or second relapse treated with bevacizumab in the BRAIN study. Oncologist 2010, 15, 1329–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramatzki, D.; Roth, P.; Rushing, E.J.; Weller, J.; Andratschke, N.; Hofer, S.; Korol, D.; Regli, L.; Pangalu, A.; Pless, M.; et al. Bevacizumab may improve quality of life, but not overall survival in glioblastoma: An epidemiological study. Ann. Oncol. 2018, 29, 1431–1436. [Google Scholar] [CrossRef]
- Nghiemphu, P.L.; Liu, W.; Lee, Y.; Than, T.; Graham, C.; Lai, A.; Green, R.M.; Pope, W.B.; Liau, L.M.; Mischel, P.S.; et al. Bevacizumab and chemotherapy for recurrent glioblastoma: A single-institution experience. Neurology 2009, 72, 1217–1222. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.J.; Ali, S.; Qadir, M.G.; De La Fuente, M.I.; Ivan, M.E.; Komotar, R.J. The role of bevacizumab in the treatment of glioblastoma. J. Neuroonco.l 2017, 133, 455–467. [Google Scholar] [CrossRef]
- Comittee of Brain Tumor Registry of Japan. Report of brain tumor registry of Japan (2001–2004). 13th ed. Neurol. Med. Chir. 2014, 54, 1–102. [Google Scholar]
- Taphoorn, M.J.; Henriksson, R.; Bottomley, A.; Cloughesy, T.; Wick, W.; Mason, W.P.; Saran, F.; Nishikawa, R.; Hilton, M.; Theodore-Oklota, C.; et al. Health-related quality of life in a randomized phase III study of bevacizumab, temozolomide, and radiotherapy in newly diagnosed glioblastoma. J. Clin. Oncol. 2015, 33, 2166–2175. [Google Scholar] [CrossRef]
- Bag, A.K.; Kim, H.; Gao, Y.; Bolding, M.; Warren, P.P.; Fathallah-Shaykh, H.M.; Gurler, D.; Markert, J.M.; Fiveash, J.; Beasley, T.M.; et al. Prolonged treatment with bevacizumab is associated with brain atrophy: A pilot study in patients with high-grade gliomas. J. Neurooncol. 2015, 122, 585–593. [Google Scholar] [CrossRef]
- Latzer, P.; Schlegel, U.; Theiss, C. Morphological changes of cortical and hippocampal neurons after treatment with VEGF and bevacizumab. CNS Neurosci. Ther. 2016, 22, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Zuniga, R.M.; Torcuator, R.; Jain, R.; Anderson, J.; Doyle, T.; Schultz, L.; Mikkelsen, T. Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma. J. Neurooncol. 2010, 99, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Hertenstein, A.; Hielscher, T.; Menn, O.; Wiestler, B.; Winkler, F.; Platten, M.; Wick, W.; Wick, A. Impact of tapering and discontinuation of bevacizumab in patients with progressive glioblastoma. J. Neurooncol. 2016, 129, 533–539. [Google Scholar] [CrossRef]
- Anderson, M.D.; Hamza, M.A.; Hess, K.R.; Puduvalli, V.K. Implications of bevacizumab discontinuation in adults with recurrent glioblastoma. Neuro. Oncol. 2014, 16, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, F.; Dhaliwal, H.K.; Gattacceca, F.; Sarmento, B.; Amiji, M.M. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J. Controlled Release 2019, 309, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Hanson, L.R.; Frey, W.H., 2nd. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008, 9, S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.J.; Fernandes, C.; Martins, S.; Borges, F.; Sarmento, B. Tailoring lipid and polymeric nanoparticles as siRNA carriers towards the blood-brain barrier—from targeting to safe administration. J. Neuroimmune Pharmacol. 2017, 12, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Q.; Wang, S.B.; Shao, Y.F.; Shi, J.N.; Wang, W.; Chen, W.Y.; Ye, Z.Q.; Jiang, J.Y.; Fang, Q.X.; Zhang, G.B.; et al. Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed. Pharmacother. 2019, 118, 109339. [Google Scholar] [CrossRef]
- Wu, H.B.; Yang, S.; Weng, H.Y.; Chen, Q.; Zhao, X.L.; Fu, W.J.; Niu, Q.; Ping, Y.F.; Wang, J.M.; Zhang, X.; et al. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy 2017, 13, 1528–1542. [Google Scholar] [CrossRef] [Green Version]
- Mahase, S.; Rattenni, R.N.; Wesseling, P.; Leenders, W.; Baldotto, C.; Jain, R.; Zagzag, D. Hypoxia-mediated mechanisms associated with antiangiogenic treatment resistance in glioblastomas. Am. J. Pathol. 2017, 187, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.L.; Wärri, A.; Soto-Pantoja, D.R.; Clarke, P.A.G.; Cruz, M.I.; Zwart, A.; Clarke, R. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER breast cancer. Clin. Cancer Res. 2014, 20, 3222–3232. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Müller-Greven, G.; Carlin, C.R.; Burgett, M.E.; Ahluwalia, M.S.; Lauko, A.; Nowacki, A.S.; Herting, C.J.; Qadan, M.A.; Bredel, M.; Toms, S.A.; et al. Macropinocytosis of bevacizumab by glioblastoma cells in the perivascular niche affects their survival. Clin. Cancer Res. 2017, 23, 7059–7071. [Google Scholar] [CrossRef] [Green Version]
- Simon, T.; Pinioti, S.; Schellenberger, P.; Rajeeve, V.; Wendler, F.; Cutillas, P.R.; King, A.; Stebbing, J.; Giamas, G. Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma. Mol. Cancer 2018, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Wendler, F.; Favicchio, R.; Simon, T.; Alifrangis, C.; Stebbing, J.; Giamas, G. Extracellular vesicles swarm the cancer microenvironment: From tumor-stroma communication to drug intervention. Oncogene 2017, 36, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Year | Study Category | Inclusion Criteria | Study Design | Number of Patients | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|---|
Chinot et al. [17] | 2014 | Phase III trial (AVAglio) | GBM, PS: 0–2 | TMZ + BEV vs. TMZ | 458 vs. 463 | 10.6 vs. 6.2 * | 16.8 vs. 16.7 |
Gilbert et al. [18] | 2014 | Phase III trial (RTOG 0825) | GBM, KPS ≥ 70 | TMZ + BEV vs. TMZ | 312 vs. 309 | 10.7 vs. 7.3 * | 15.7 vs. 16.1 |
Chinot et al. [21] | 2016 | Subanalysis (AVAglio) | GBM, PS: 0–2; without second-line treatment | TMZ + BEV vs. TMZ | 120 vs. 105 | 8.4 vs. 4.8 * | 11.6 vs. 8.0 * |
Balana et al. [22] | 2016 | Phase II trial | GBM, PS: 0–2, PR/biopsy | TMZ + BEV vs. TMZ | 48 vs. 45 | 4.8 vs. 2.2 | 10.6 vs. 7.7 |
Herrlinger et al. [26] | 2016 | Phase II trial (GLARIUS) | GBM, unmethylated MGMT, KPS ≥ 70 | BEV + IRI vs. TMZ | 116 vs. 54 | 9.7 vs. 6.0 * | 16.6 vs. 17.5 |
Yonezawa et al. [27] | 2016 | Retrospective study | GBM, biopsy | TMZ + BEV vs. TMZ | 20 vs. 11 | NA | 18.9 vs. 5.3 * |
Hata et al. [28] | 2017 | Retrospective study | GBM, IDH-wildtype, PR/biopsy | TMZ + BEV vs. TMZ | 13 vs. 19 | NA | 17.4 vs. 9.8 |
Wirsching et al. [25] | 2018 | Phase II trial (ARTE) | GBM, age ≥ 65 | BEV vs. None | 50 vs. 25 | 7.6 vs. 4.8 * | 12.1 vs. 12.2 |
Hata et al. [29] | 2020 | Retrospective study | GBM, IDH-wildtype, unmethylated MGMT | TMZ + BEV vs. TMZ | 26 vs. 24 | NA | 16.7 vs. 12.2 * |
Author | Year | Study Category | Inclusion Criteria | Study Design | Number of Patients | Median PFS from PD (Months) | Median OS from PD (Months) |
---|---|---|---|---|---|---|---|
Taal et al. [42] | 2014 | Phase II trial (BELOB) | GBM, PS: 0–2; first recurrence | BEV + CCNU vs. BEV vs. CCNU | 50 vs. 46 vs. 52 | 4 vs. 3 vs. 1 | 12 vs. 8 vs. 8 |
Field et al. [46] | 2015 | Phase II trial | GBM, PS: 0–2; first recurrence | BEV + CBDCA vs. BEV | 60 vs. 62 | 3.5 vs. 3.5 | 6.9 vs. 7.5 |
Erdem-Eraslan et al. [43] | 2016 | Subanalysis (BELOB) | IGS-18 or classical GBM; first recurrence | BEV + CCNU vs. BEV vs. CCNU | 43 vs. 35 vs. 37 | 4.2 vs. 2.9 vs. 1.4 * | 11.9 vs. 8.3 vs. 7.9 |
Weathers et al. [47] | 2016 | Phase II trial | GBM, KPS ≥ 60; first recurrence | Low-dose BEV + CCNU vs. BEV | 24 vs. 23 | 5.0 vs. 3.2 | 13.1 vs. 8.8 |
Badruddoja et al. [48] | 2017 | Phase II trial | GBM, KPS > 60; first recurrence | BEV + biweekly TMZ | 30 | 5.3 | 11.7 |
Ajlan et al. [49] | 2017 | Retrospective study | GBM; recurrence (91%) | Low dose (<3 mg/kg/week) vs. high dose (≥3 mg/kg/week) | 33 vs. 47 | NA | 39.0 vs. 17.3 |
Wick et al. [44] | 2017 | Phase III trial | GBM; first recurrence | BEV + CCNU vs. CCNU | 288 vs. 149 | 4.2 vs. 1.5 * | 9.1 vs. 8.6 |
Franceschi et al. [50] | 2018 | Retrospective study | GBM; second recurrence | BEV vs. chemotherapy | 32 vs. 136 | 4.7 vs. 2.6 * | 8.0 vs. 6.0 * |
Brandes et al. [45] | 2019 | Phase II trial (TAMIGA) | GBM, PS: 0–2; first-line: TMZ + BEV | BEV + CCNU vs. CCNU | 61 vs. 62 | 2.3 vs. 1.8 | 6.4 vs. 5.5 |
Author | Year | Study Design | Relapse Pattern | Number of Patients | Median OS from PD (Months) | HR (95% CI) | p Value |
---|---|---|---|---|---|---|---|
Iwamoto et al. [66] | 2009 | BEV + multiple agents | Enhancing initial site | 17 (46%) | 4.5 (2.1–5.9) | Reference | |
New enhancing | 6 (16%) | 1.44 (0.51–4.08) | 0.49 | ||||
Non-enhancing tumor | 13 (35%) | 2.25 (1.00–5.10) | 0.05 * | ||||
Pope et al. [67] | 2011 | BEV alone | Local to local | 37 (77%) | 9.7 (8.1–11.8) | Reference | |
Local to diffuse | 11 (23%) | 9.2 (7.6–12.0) | 1.6 (0.78–3.17) | NA | |||
BEV + IRI | Local to local | 18 (45%) | 11.5 (8.2–13.0) | Reference | |||
Local to diffuse | 22 (55%) | 8.9 (7.8–11.0) | 1.6 (0.83–3.16) | NA | |||
Nowosielski et al. [68] | 2014 | BEV | T2 diffuse | 15 (18%) | 4.8 (1.8–7.7) | Reference | |
Flare-up of CE | 35 (42%) | 4.6 (3.4–5.7) | 1.7 (1.3–2.2) | <0.001 * | |||
Primary non-responder | 16 (19%) | 3.0 (1.7–4.2) | |||||
T2 circumscribed | 17 (21%) | 1.6 (0.5–2.8) | |||||
Kim et al. [69] | 2015 | BEV + multiple agents | Primary non-responder | 21 (33%) | 4.4 (2.9–5.9) | NA | <0.0001 * |
Flare-up of CE | 25 (39%) | 11.0 (7.7–14.3) | |||||
Non-enhancing infiltration | 18 (28%) | 9.0 (6.3–11.7) | |||||
Bloch et al. [70] | 2017 | BEV + multiple agents | Nodular enhancement | 33% | NA | NA | 0.31 |
Diffuse patchy enhancement | 50% | ||||||
Non-enhancing tumor | 17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funakoshi, Y.; Hata, N.; Kuga, D.; Hatae, R.; Sangatsuda, Y.; Fujioka, Y.; Takigawa, K.; Mizoguchi, M. Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma. Pharmaceuticals 2020, 13, 470. https://doi.org/10.3390/ph13120470
Funakoshi Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Mizoguchi M. Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma. Pharmaceuticals. 2020; 13(12):470. https://doi.org/10.3390/ph13120470
Chicago/Turabian StyleFunakoshi, Yusuke, Nobuhiro Hata, Daisuke Kuga, Ryusuke Hatae, Yuhei Sangatsuda, Yutaka Fujioka, Kosuke Takigawa, and Masahiro Mizoguchi. 2020. "Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma" Pharmaceuticals 13, no. 12: 470. https://doi.org/10.3390/ph13120470
APA StyleFunakoshi, Y., Hata, N., Kuga, D., Hatae, R., Sangatsuda, Y., Fujioka, Y., Takigawa, K., & Mizoguchi, M. (2020). Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma. Pharmaceuticals, 13(12), 470. https://doi.org/10.3390/ph13120470