Unveiling Pharmacological Responses and Potential Targets Insights of Identified Bioactive Constituents of Cuscuta reflexa Roxb. Leaves through In Vivo and In Silico Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Preparation of Plant Extract
2.2. Chemicals
2.3. Experimental Animals and Ethical Statements
2.4. Acute Oral Toxicity Test
2.5. Experimental Design (Drugs and Treatments)
2.6. Anxiolytic Activity
2.6.1. Elevated Plus Maze Test (EPM)
2.6.2. Hole-Board Test for Exploratory Behaviour in Mice (HBT)
2.7. Antidepressant Activity
2.7.1. Forced Swim Test (FST)
2.7.2. Tail Suspension Test (TST)
2.8. Anti-Nociceptive Activity
2.8.1. Acetic Acid-Induced Writhing Test
2.8.2. Formalin Induced Licking Test
2.9. Anti-Diarrheal Activity
Castor Oil-Induced Diarrhea
3. In Silico Studies
3.1. Molecular Docking Analysis: Ligand Preparation
3.1.1. Molecular Docking Analysis: Enzyme/Receptor Preparation
3.1.2. Molecular Docking Analysis: Glide Standard Precision Docking
3.2. In Silico Study: Determination of Pharmacokinetic Parameters by SwissADME
3.3. In Silico Study: Toxicological Properties Prediction by admetSAR
4. Statistical Analysis
5. Result
5.1. Elevated Plus Maze (EPM)
Hole Board Test (HBT)
5.2. Forced Swimming Test (FST)
Tail Suspension Test (TST)
5.3. Acetic Acid-Induced Writhing Test
Formalin Induced Licking Test
5.4. Castor Oil-Induced Diarrhea
5.5. Molecular Docking Study for Anxiolytic and Antidepressant Activity
5.5.1. Molecular Docking Study for Anti-Nociceptive Activity
5.5.2. Molecular Docking Study for Antidiarrheal Activity
5.6. Pharmacokinetic (ADME) and Toxicological Properties Prediction
6. Discussion
7. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MECR refers to methanol extract of Cuscuta reflexa leaves | |
p.o. | per oral; |
i.p. | Intraperitoneal; |
ANOVA | Analysis of variance; |
BW | body weight; |
SEM | standard error of mean; |
SPSS | statistical package for social science. |
ADME/T | Absorption, Distribution, Metabolism, Excretion, and Toxicity; |
PASS | Prediction of Activity Spectra for Substances. |
References
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Chy, M.N.U.; Rudra, S.; Tahamina, A.; Das, R.; Tanim, M.A.H.; Siddique, T.I.; Hoque, A.; Tasnim, S.M.; Paul, A.; et al. Evaluation of Bonamia semidigyna (Roxb.) for antioxidant, antibacterial, anthelmintic and cytotoxic properties with the involvement of polyphenols. Orient. Pharm. Exp. Med. 2019, 19, 187–199. [Google Scholar] [CrossRef]
- Rasool Hassan, B. Medicinal Plants (Importance and Uses). Pharm. Anal. Acta 2012. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018, 7. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Mental Health; Our World in Data: Oxford, UK, 2018. [Google Scholar]
- Sewell, R.D.E.; Rafieian-Kopaei, M. The history and ups and downs of herbal medicines usage. J. Herbmed Pharmacol. 2014, 3, 1–3. [Google Scholar]
- Slater, D.; Kunnathil, S.; McBride, J.; Koppala, R. Pharmacology of nonsteroidal antiinflammatory drugs and opioids. In Seminars in Interventional Radiology; Thieme Medical Publishers: New York, NY, USA, 2010; Volume 27, pp. 400–411. [Google Scholar]
- Antman, E.M.; Bennett, J.S.; Daugherty, A.; Furberg, C.; Roberts, H.; Taubert, K.A. Use of nonsteroidal antiinflammatory drugs: An update for clinicians: A scientific statement from the American Heart Association. Circulation 2007, 115, 1634–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, R.N.; Navarro, D.S.; Barbosa-Filho, J.M. Plants with central analgesic activity. Phytomedicine 2001, 8, 310–322. [Google Scholar] [CrossRef]
- Swati, R.K.; Richa, K. A review on antidiarrhoeal activity of herbals. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 1357–1362. [Google Scholar]
- Snyder, J.D.; Merson, M.H. The magnitude of the global problem of acute diarrhoeal disease: A review of active surveillance data. Bull. World Health Organ. 1982, 60, 605. [Google Scholar]
- Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis; Medpharm GmbH Scientific Publishers: Stuttgart, Germany, 2004; ISBN 3887631005. [Google Scholar]
- Patel, S.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. An updated review on the parasitic herb of Cuscuta reflexa Roxb. J. Chin. Integr. Med. 2012, 10, 249–255. [Google Scholar] [CrossRef]
- Pandit, S.; Chauhan, N.S.; Dixit, V.K. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J. Cosmet. Dermatol. 2008, 7, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Hossan, M.S.; Hanif, A.; Khan, M.; Bari, S.; Jahan, R.; Rahmatullah, M. Ethnobotanical survey of the Tripura tribe of Bangladesh. Am. Eurasian J. Sustain. Agric. 2009, 3, 253–261. [Google Scholar]
- Siwakoti, M.; Siwakoti, S. Ethnomedicinal uses of plants among the Satar tribe of Nepal. J. Econ. Taxon. Bot. 2000, 24, 323–333. [Google Scholar]
- Gupta, M.; Mazumder, U.K.; Pal, D.K.; Bhattacharya, S. Anti-steroidogenic activity of methanolic extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed in mouse ovary. Indian J. Exp. Biol. 2003, 41, 641–644. [Google Scholar] [PubMed]
- Vijikumar, S. Cuscuta reflexa Roxb—A wonderful miracle plant in ethnomedicine. Indian J. Nat. Sci. Int. Bimon. 2011, 976, 997. [Google Scholar]
- Rahmatullah, M.; Sultan, S.; Toma, T.; Lucky, S.; Chowdhury, M.; Haque, W.; Annay, E.; Jahan, R. Effect of Cuscuta reflexa stem and Calotropis procera leaf extracts on glucose tolerance in glucose-induced hyperglycemic rats and mice. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 109–112. [Google Scholar] [CrossRef]
- Pal, D.K.; Mandal, M.; Senthilkumar, G.P.; Padhiari, A. Antibacterial activity of Cuscuta reflexa stem and Corchorus olitorius seed. Fitoterapia 2006, 77, 589–591. [Google Scholar] [CrossRef]
- Anis, E.; Anis, I.; Ahmed, S.; Mustafa, G.; Malik, A.; Afza, N.; Hai, S.M.A.; Choudhary, M.I. α-glucosidase inhibitory constituents from Cuscuta reflexa. Chem. Pharm. Bull. 2002, 50, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Pellow, S.; File, S.E. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacol. Biochem. Behav. 1986, 24, 525–529. [Google Scholar] [CrossRef]
- Sonavane, G.S.; Sarveiya, V.P.; Kasture, V.S.; Kasture, S.B. Anxiogenic activity of Myristica fragrans seeds. Pharmacol. Biochem. Behav. 2002, 71, 239–244. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Thérapie 1977, 229, 327–336. [Google Scholar]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Nazim Uddin Chy, M.; Mostafa Kamal, A.T.M.; Barlow, J.W.; Faruque, M.O.; Yang, X.; Uddin, S.B. Evaluation of anti-nociceptive and anti-inflammatory activities of the methanol extract of Holigarna caustica (Dennst.) Oken leaves. J. Ethnopharmacol. 2019, 236. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Chy, N.U.; Mostafa Kamal, A.T.M.; Azad, M.O.K.; Paul, A.; Uddin, S.B.; Barlow, J.W.; Faruque, M.O.; Park, C.H.; Cho, D.H. Investigation of the Biological Activities and Characterization of Bioactive Constituents of Ophiorrhiza rugosa var. prostrata (D. Don) & Mondal Leaves through In Vivo, In Vitro, and In Silico Approaches. Molecules 2019, 24, 1367. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S. The protein data bank. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Lenaeus, M.J.; Burdette, D.; Wagner, T.; Focia, P.J.; Gross, A. Structures of KcsA in complex with symmetrical quaternary ammonium compounds reveal a hydrophobic binding site. Biochemistry 2014, 53, 5365–5373. [Google Scholar] [CrossRef]
- Coleman, J.A.; Green, E.M.; Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 2016, 532, 334. [Google Scholar] [CrossRef] [Green Version]
- Harman, C.A.; Turman, M.V.; Kozak, K.R.; Marnett, L.J.; Smith, W.L.; Garavito, R.M. Structural basis of enantioselective inhibition of cyclooxygenase-1 by S-α-substituted indomethacin ethanolamides. J. Biol. Chem. 2007, 282, 28096–28105. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.J.; Simmons, D.M.; Malkowski, M.G. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J. Biol. Chem. 2010, 285, 22152–22163. [Google Scholar] [CrossRef] [Green Version]
- Thorsen, T.S.; Matt, R.; Weis, W.I.; Kobilka, B.K. Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 2014, 22, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Price, K.L.; Lillestol, R.K.; Ulens, C.; Lummis, S.C.R. Varenicline interactions at the 5-HT3 receptor ligand binding site are revealed by 5-HTBP. ACS Chem. Neurosci. 2015, 6, 1151–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, H.-J.; Bandelow, B.; Volz, H.-P.; Barnikol, U.B.; Seifritz, E.; Kasper, S. The relevance of ‘mixed anxiety and depression’as a diagnostic category in clinical practice. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 725–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kara, S.; Yazici, K.M.; Güleç, C.; Ünsal, I. Mixed anxiety–depressive disorder and major depressive disorder: Comparison of the severity of illness and biological variables. Psychiatry Res. 2000, 94, 59–66. [Google Scholar] [CrossRef]
- Berton, O.; Nestler, E.J. New approaches to antidepressant drug discovery: Beyond monoamines. Nat. Rev. Neurosci. 2006, 7, 137. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Pae, C.-U. Pain and depression: A neurobiological perspective of their relationship. Psychiatry Investig. 2015, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, D.M.; Shah, M.J.; Patkar, A.A.; Masand, P.S.; Park, G.-Y.; Pae, C.-U. Serotonin-norepinephrine reuptake inhibitors for pain control: Premise and promise. Curr. Neuropharmacol. 2009, 7, 331–336. [Google Scholar] [CrossRef]
- Küpeli Akkol, E.; Gürağaç Dereli, F.T.; Ilhan, M. Assessment of Antidepressant Effect of the Aerial Parts of Micromeria myrtifolia Boiss. & Hohen on Mice. Molecules 2019, 24, 1869. [Google Scholar] [CrossRef] [Green Version]
- Penn, E.; Tracy, D.K. The drugs don’t work? Antidepressants and the current and future pharmacological management of depression. Ther. Adv. Psychopharmacol. 2012, 2, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef]
- Thoeringer, C.K.; Erhardt, A.; Sillaber, I.; Mueller, M.B.; Ohl, F.; Holsboer, F.; Keck, M.E. Long-term anxiolytic and antidepressant-like behavioural effects of tiagabine, a selective GABA transporter-1 (GAT-1) inhibitor, coincide with a decrease in HPA system activity in C57BL/6 mice. J. Psychopharmacol. 2010, 24, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.J.; Cao, B.-J.; Dalvi, A.; Holmes, A. Animal models of anxiety: An ethological perspective. Brazilian J. Med. Biol. Res. 1997, 30, 289–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sillaber, I.; Panhuysen, M.; Henniger, M.S.H.; Ohl, F.; Kühne, C.; Pütz, B.; Pohl, T.; Deussing, J.M.; Paez-Pereda, M.; Holsboer, F. Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine. Psychopharmacology 2008, 200, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Sarris, J.; Teschke, R.; Stough, C.; Scholey, A.; Schweitzer, I. Re-introduction of kava (Piper methysticum) to the EU: Is there a way forward? Planta Med. 2011, 77, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Mennini, T.; Caccia, S.; Garattini, S. Mechanism of action of anxiolytic drugs. In Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des Recherches Pharmaceutiques; Springer: Berlin/Heidelberg, Germany, 1987; pp. 315–347. [Google Scholar]
- Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal medicine for depression, anxiety and insomnia: A review of psychopharmacology and clinical evidence. Eur. Neuropsychopharmacol. 2011, 21, 841–860. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, J.; Wang, X.; Xie, K.; Luan, Q.; Wan, N.; Zhang, Q.; Jiang, H.; Liu, D. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: The HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol. Biochem. Behav. 2013, 112, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Barrot, M.; DiLeone, R.J.; Eisch, A.J.; Gold, S.J.; Monteggia, L.M. Neurobiology of depression. Neuron 2002, 34, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Arborelius, L.; Owens, M.J.; Plotsky, P.M.; Nemeroff, C.B. The role of corticotropin-releasing factor in depression and anxiety disorders. J. Endocrinol. 1999, 160, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plast. 2017, 2017. [Google Scholar] [CrossRef]
- Chy, M.N.U.; Adnan, M.; Rauniyar, A.K.; Amin, M.M.; Majumder, M.; Islam, M.S.; Afrin, S.; Farhana, K.; Nesa, F.; Sany, M.A. Evaluation of anti-nociceptive and anti-inflammatory activities of Piper sylvaticum (Roxb.) stem by experimental and computational approaches. Orient. Pharm. Exp. Med. 2019, 1–15. [Google Scholar] [CrossRef]
- Shoibe, M.; Chy, M.N.U.; Alam, M.; Adnan, M.; Islam, M.Z.; Nihar, S.W.; Rahman, N.; Suez, E. In vitro and in vivo biological activities of Cissus adnata (Roxb.). Biomedicines 2017, 5, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auniq, R.B.J.; Chy, M.N.U.; Adnan, M.; Roy, A.; Islam, M.A.; Khan, T.N.; Hasan, M.Z.; Ahmed, S.; Khan, M.F.; Islam, N. Assessment of anti-nociceptive and anthelmintic activities of Vitex Peduncularis Wall. leaves and in silico molecular docking, ADME/T, and PASS prediction studies of its isolated compounds. J. Complement. Med. Res. 2019, 10, 170–185. [Google Scholar] [CrossRef]
- Mathias, J.R.; Martin, J.L.; Burns, T.W.; Carlson, G.M.; Shields, R.P. Ricinoleic acid effect on the electrical activity of the small intestine in rabbits. J. Clin. Investig. 1978, 61, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Tunaru, S.; Althoff, T.F.; Nüsing, R.M.; Diener, M.; Offermanns, S. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 9179–9184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racusen, L.C.; Binder, H.J. Ricinoleic acid stimulation of active anion secretion in colonic mucosa of the rat. J. Clin. Investig. 1979, 63, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Nazir, M.; Raiz, N.; Saleem, M.; Zengin, G.; Fazal, G.; Saleem, H.; Mukhtar, M.; Tousif, M.I.; Tareen, R.B. Phytochemical profiling, in vitro biological properties and in silico studies on Caragana ambigua stocks (Fabaceae): A comprehensive approach. Ind. Crops Prod. 2019, 131, 117–124. [Google Scholar] [CrossRef]
- Calderon-Montano, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Maalik, A.; Khan, F.A.; Mumtaz, A.; Mehmood, A.; Azhar, S.; Atif, M.; Karim, S.; Altaf, Y.; Tariq, I. Pharmacological applications of quercetin and its derivatives: A short review. Trop. J. Pharm. Res. 2014, 13, 1561–1566. [Google Scholar] [CrossRef]
- Kandakumar, S.; Manju, D.V. Pharmacological applications of isorhamnetin: A short review. Int. J. Trend Sci. Res. Dev. 2017, 1, 672–678. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem. 2009, 16, 4236–4260. [Google Scholar] [CrossRef] [PubMed]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Monteiro, É.M.H.; Chibli, L.A.; Yamamoto, C.H.; Pereira, M.C.S.; Vilela, F.M.P.; Rodarte, M.P.; de Oliveira Pinto, M.A.; Da Penha Henriques do Amaral, M.; Silvério, M.S.; de Matos Araújo, A.L.S. Antinociceptive and anti-inflammatory activities of the sesame oil and sesamin. Nutrients 2014, 6, 1931–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo Pérez, C.; Camarero, C.; del Mar, M.; Alonso de la Torre, S. Role of oleic acid in immune system; mechanism of action; a review. Nutr. Hosp. 2012, 27, 978–990. [Google Scholar]
- Shoba, F.G.; Thomas, M. Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. J. Ethnopharmacol. 2001, 76, 73–76. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Y.; Fang, Q.; Zhong, P.; Li, W.; Wang, L.; Fu, W.; Zhang, Y.; Xu, Z.; Li, X. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat. Commun. 2017, 8, 13997. [Google Scholar] [CrossRef]
- Aziz, N.; Kim, M.-Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Duffy, F.J.; Devocelle, M.; Shields, D.C. Computational approaches to developing short cyclic peptide modulators of protein–protein interactions. In Computational Peptidology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 241–271. [Google Scholar]
Treatment (mg/kg) | Licking Time (s) (Mean ± SEM) | |||
---|---|---|---|---|
Early Phase (0–5 min) | Inhibition (%) | Late Phase (15–30 min) | Inhibition (%) | |
Control | 57.00 ± 1.14 | - | 41.60 ± 1.02 | - |
RSD 10 | 14.90 ± 0.71*** | 73.85 | 13.60 ± 0.92*** | 67.30 |
MECR 200 | 38.00 ± 2.02 *** | 33.33 | 26.00 ± 1.09*** | 37.50 |
MECR 400 | 31.00 ± 0.70*** | 45.61 | 20.80 ± 1.77*** | 50.00 |
Treatment (mg/kg) | Total Number of Dry Feces | % of Inhibition of Defecation | Total Number of Diarrheal Feces | % of Inhibition of Diarrhea |
---|---|---|---|---|
Control | 14.40 ± 0.74 | - | 15.60 ± 0.74 | - |
RSD 5 | 3.80 ± 1.01*** | 73.61 | 7.20 ± 0.37*** | 53.84 |
MECR 200 | 9.60 ± 0.67** | 33.33 | 13.20 ± 1.15 | 15.38 |
MECR 400 | 7.00 ± 0.44*** | 51.38 | 7.00 ± 0.83*** | 55.12 |
Compounds | PubChem ID | Docking Score 1 | |||||
---|---|---|---|---|---|---|---|
2OYE | 6COX | 4UUJ | 5I6X | 4U14 | 5AIN | ||
Kaempferol | 5280863 | −8.61 | −6.70 | −5.55 | −6.94 | −7.90 | −5.53 |
Astragalin | 5282102 | −6.15 | - | −4.94 | −9.23 | −9.88 | - |
Myricetin | 5281672 | −7.03 | −4.94 | −6.42 | −7.60 | −7.68 | −5.18 |
Quercetin | 5280343 | −8.52 | −7.11 | −5.75 | −7.13 | −7.78 | −6.13 |
Isorhamnetol | 5281654 | −7.75 | −8.27 | −5.56 | −7.56 | −7.81 | −5.39 |
Linoleic acid | 5280934 | −2.12 | −0.76 | 0.71 | −2.44 | −3.63 | −1.19 |
Oleic acid | 445639 | −2.84 | −1.88 | - | −2.39 | −3.39 | −0.96 |
Stearic acid | 5281 | −2.02 | −2.69 | - | −1.49 | −2.00 | −0.63 |
Palmitic acid | 985 | −1.66 | 0.18 | - | −0.94 | −1.88 | 0.66 |
β-sitosterol | 222284 | - | - | −3.63 | −6.97 | - | - |
Luteolin | 5280445 | −8.35 | −8.58 | −5.35 | −6.94 | −8.44 | −5.11 |
Coumarin | 323 | −7.91 | −7.01 | −4.56 | −6.84 | −7.09 | −5.94 |
n-Hentriacontane | 12410 | - | - | −2.18 | - | - | - |
α-amyrin | 73170 | - | - | −2.70 | −6.34 | - | - |
Sesamin | 72307 | −8.52 | −6.43 | −3.88 | −7.15 | −6.93 | −3.90 |
Standard drug: | |||||||
Diclofenac-Na/Diazepam/ Imipramine/Loperamide | −7.31 | −7.71 | −3.73 | −8.11 | −7.39 | - |
Proteins | Ligands | Hydrogen Bond Interactions | Hydrophobic Interactions | ||
---|---|---|---|---|---|
Amino Acid Residue | Distance (Å) | Amino Acid Residue | Distance (Å) | ||
2OYE | Kaempferol | SER-530 | 3.93 | ILE-523 VAL-349 ALA-527 LEU-352 GLY-526 TYR-385 | 5.41 6.15 4.83 5.11 4.45 6.79 2.43 |
6COX | Luteolin | SER-530 ARG-120 LEU-352 GLN-192 | 3.14 5.80 3.83 5.82 | VAL-349 ALA-527 VAL-523 SER-353 | 4.61 5.40 5.21 4.03 4.68 4.11 4.03 |
4UUJ | Myricetin | GLU-62 GLY-53 ARG-57 LEU-86 | 5.53 4.15 4.88 7.62 4.80 | PRO-55 ALA-54 | 4.97 5.07 4.79 |
5I6X | Astragalin | THR-497 TYR-175 ASP-98 | 3.94 3.45 5.77 4.69 | TYR-176 TYR-95 | 7.30 5.18 6.40 |
4U14 | Astragalin | CYS-532 TYR-529 TYR-148 THR-231 ASN-507 ASN-152 | 4.15 3.10 4.85 4.45 3.82 3.36 | TYR-529 ALA-523 CYS-532 TRP-503 | 7.30 6.80 6.08 4.67 6.03 5.55 |
5AIN | Quercetin | GLU-191 TRP-145 | 3.76 4.55 | TYR193 TYR186 TRP-145 | 6.84 7.22 6.68 4.81 |
Compounds | Lipinski Rules | Lipinski’s Violations | |||
---|---|---|---|---|---|
MW | HBA | HBD | Log P | ||
<500 | <10 | ≤5 | ≤5 | ≤ 1 | |
Kaempferol | 286.24 | 6 | 4 | 1.58 | 0 |
Astragalin | 448.38 | 11 | 7 | -0.25 | 2 |
Myricetin | 318.24 | 8 | 6 | 0.79 | 1 |
Quercetin | 302.24 | 7 | 5 | 1.23 | 0 |
Luteolin | 286.24 | 6 | 4 | 1.73 | 0 |
Parameters | Compound Name | ||||
---|---|---|---|---|---|
Kaempferol | Luteolin | Myricetin | Astragalin | Quercetin | |
Ames toxicity | NAT | NAT | NAT | AT | NAT |
Carcinogens | NC | NC | NC | NC | NC |
Acute oral toxicity | II | II | II | III | II |
Rat acute toxicity | 3.0825 | 3.0200 | 3.0200 | 2.3869 | 3.0200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, M.; Chy, M.N.U.; Kamal, A.T.M.M.; Chowdhury, M.R.; Islam, M.S.; Hossain, M.A.; Tareq, A.M.; Bhuiyan, M.I.H.; Uddin, M.N.; Tahamina, A.; et al. Unveiling Pharmacological Responses and Potential Targets Insights of Identified Bioactive Constituents of Cuscuta reflexa Roxb. Leaves through In Vivo and In Silico Approaches. Pharmaceuticals 2020, 13, 50. https://doi.org/10.3390/ph13030050
Adnan M, Chy MNU, Kamal ATMM, Chowdhury MR, Islam MS, Hossain MA, Tareq AM, Bhuiyan MIH, Uddin MN, Tahamina A, et al. Unveiling Pharmacological Responses and Potential Targets Insights of Identified Bioactive Constituents of Cuscuta reflexa Roxb. Leaves through In Vivo and In Silico Approaches. Pharmaceuticals. 2020; 13(3):50. https://doi.org/10.3390/ph13030050
Chicago/Turabian StyleAdnan, Md., Md. Nazim Uddin Chy, A.T.M. Mostafa Kamal, Md. Riad Chowdhury, Md. Shariful Islam, Md. Amzad Hossain, Abu Montakim Tareq, Md. Imam Hossain Bhuiyan, Md Nasim Uddin, Afroza Tahamina, and et al. 2020. "Unveiling Pharmacological Responses and Potential Targets Insights of Identified Bioactive Constituents of Cuscuta reflexa Roxb. Leaves through In Vivo and In Silico Approaches" Pharmaceuticals 13, no. 3: 50. https://doi.org/10.3390/ph13030050