Study of In Vitro and In Vivo Carbamazepine Release from Coarse and Nanometric Pharmaceutical Emulsions Obtained via Ultra-High-Pressure Homogenization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SIO/Water Interface Physicochemical Characterization
2.2.1. SIO/Water Partition Assay
2.2.2. SIO/Water Interface Effect
2.3. Elaboration of Emulsified Formulations
2.3.1. Coarse Emulsions
2.3.2. Nanoemulsions
2.4. Thermal Stability Assay of Emulsions and Nanoemulsions
2.4.1. Creaming Index
2.4.2. Droplet Size
2.4.3. Viscosity
2.4.4. Zeta Potential, Electrical Conductivity, and pH Measurements
2.5. Analytical Methodology for Drug Quantification
2.5.1. Stock Solutions and Standards
2.5.2. Equipment and Chromatographic Conditions
2.6. In Vitro Drug Release
2.7. In Vivo Drug Release
2.8. Statistical Analysis
3. Results
3.1. SIO/Water Interface Physicochemical Characterization
3.2. Elaboration of Emulsified Formulations
3.3. Emulsion Stability Assay
3.4. Analytical Methodology for Drug Quantification
3.5. In Vitro Drug Release
3.6. In Vivo Drug Release
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shekhawat, P.B.; Pokharkar, V.B. Understanding peroral absorption: Regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm. Sin. B 2017, 7, 260–280. [Google Scholar] [CrossRef] [Green Version]
- Siya, M.; Kunde, D.S.; Bhilegaonkar, S.; Godbole, A.M.; Gajre, M.P. Biopharmaceutical classification system: A brief account. Int. J. Res. Methodol. 2015, 1, 20–46. [Google Scholar]
- Yasir, M.; Asif, M.; Kumar, A.; Aggarval, A. Biopharmaceutical classification system: An account. Int. J. PharmTech Res. 2010, 2, 1681–1690. [Google Scholar]
- Ku, M.S. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008, 10, 208–212. [Google Scholar] [CrossRef]
- Kansara, H.; Panola, R.; Mishra, A. Techniques used to enhance bioavailability of bcs class II drugs: A review. Int. J. Drug Dev. Res. 2015, 7, 82–93. [Google Scholar]
- Buckley, S.T.; Frank, K.J.; Fricker, G.; Brandl, M. Biopharmaceutical classification of poorly soluble drugs with respect to “enabling formulations”. Eur. J. Pharm. Sci. 2013, 50, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmeshad, A.N.; Mortazavi, S.M.; Mozafari, M.R. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J. Liposome Res. 2014, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.O.; Guo, Z.; Hayes, M.E.; Marks, J.D.; Park, J.W.; Benz, C.C.; Kirpotin, D.B.; Drummond, D.C. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemother. Pharmacol. 2009, 64, 741–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozafari, M.R. Nanoliposomes: Preparation and analysis. Methods Mol. Biol. 2010, 605, 29–50. [Google Scholar] [CrossRef]
- Du, B.; Li, Y.; Li, X.; A, Y.; Chen, C.; Zhang, Z. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. Int. J. Pharm. 2010, 384, 140–147. [Google Scholar] [CrossRef]
- Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomedicine Biotechnol. 2017, 45, 788–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoghi, A.; Khosravi-Darani, K.; Omri, A. Process variables and design of experiments in liposome and nanoliposome research. Mini Rev. Med. Chem. 2018, 18, 324–344. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Yang, S.; Wang, Y.; Qian, H. Nanoscale drug delivery systems: A current review on the promising paclitaxel formulations for future cancer therapy. Nano Br. Rep. Rev. 2015, 10, 150310190305009. [Google Scholar] [CrossRef]
- Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001, 70, 1–20. [Google Scholar] [CrossRef]
- Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009, 26, 1025–1058. [Google Scholar] [CrossRef]
- Patel, T.; Zhou, J.; Piepmeier, J.M.; Saltzman, W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 701–705. [Google Scholar] [CrossRef] [Green Version]
- Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Yadav, N.; Khatak, S.; Sara, U.V.S. Solid lipid nanoparticles—A review. Int. J. Appl. Pharm. 2013, 5, 8–18. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci. 2015, 104, 872–905. [Google Scholar] [CrossRef]
- Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm. 2010, 1, 24–32. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, K.B.; Amin, L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomedicine 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Pagar, K.R.; Darekar, A.B. Nanoemulsion: A new concept of delivery system. Asian J. Res. Pharm. Sci. 2019, 9, 39. [Google Scholar] [CrossRef]
- Nanoemulsions: A review on various pharmaceutical application. Glob. J. Pharmacol. 2012, 6, 222–225.
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaya, K.; Kohata, T.; Doisaki, N.; Ushio, H.; Ohshima, T. Effect of oil droplet sizes of oil-in-water emulsion on the taste impressions of added tastants. Fish. Sci. 2006, 72, 877–883. [Google Scholar] [CrossRef]
- Donsì, F.; Sessa, M.; Mediouni, H.; Mgaidi, A.; Ferrari, G. Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Sci. 2011, 1, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Emulsion Stability and Testing–Particle Sciences. Available online: https://mafiadoc.com/emulsion-stability-and-testing-particle-sciences_5b93a41a097c4760198b4605.html (accessed on 25 March 2020).
- McClements, D.J.; Li, Y. Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Funct. 2010, 1, 32–59. [Google Scholar] [CrossRef]
- Ashara, K.C.; Paun, J.S.; Soniwala, M.M.; Chavada, J.R.; Mori, N.M. Micro-emulsion based emulgel: A novel topical drug delivery system. Asian Pac. J. Trop. Dis. 2014, 4, S27–S32. [Google Scholar] [CrossRef]
- Dumay, E.; Chevalier-Lucia, D.; Picart-Palmade, L.; Benzaria, A.; Gràcia-Julià, A.; Blayo, C. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci. Technol. 2013, 31, 13–26. [Google Scholar] [CrossRef]
- Briviba, K.; Gräf, V.; Walz, E.; Guamis, B.; Butz, P. Ultra high pressure homogenization of almond milk: Physico-chemical and physiological effects. Food Chem. 2016, 192, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Pereda, J.; Ferragut, V.; Quevedo, J.M.; Guamis, B.; Trujillo, A.J. Effects of ultra-high pressure homogenization on microbial and physicochemical shelf life of milk. J. Dairy Sci. 2007, 90, 1081–1093. [Google Scholar] [CrossRef]
- Poliseli-Scopel, F.H.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT Food Sci. Technol. 2012, 43, 42–48. [Google Scholar] [CrossRef]
- Zamora, A.; Ferragut, V.; Jaramillo, P.D.; Guamis, B.; Trujillo, A.J. Effects of ultra-high pressure homogenization on the cheese-making properties of milk. J. Dairy Sci. 2007, 90, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Rave, M.C.; Echeverri, J.D.; Salamanca, C.H. Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. J. Food Eng. 2020, 273, 109801. [Google Scholar] [CrossRef]
- Penagos-Calvete, D.; Duque, V.; Marimon, C.; Parra, D.M.; Restrepo-Arango, S.K.; Scherf-Clavel, O.; Holzgrabe, U.; Montoya, G.; Salamanca, C.H. Glycerolipid composition and advanced physicochemical considerations of sacha inchi oil toward cosmetic products formulation. Cosmetics 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Coupland, J.N.; McClements, D.J. Droplet size determination in food emulsions: Comparison of ultrasonic and light scattering methods. J. Food Eng. 2001, 50, 117–120. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm. 2000, 193, 137–146. [Google Scholar] [CrossRef]
- Ruckenstein, E. Thermodynamic insights on macroemulsion stability. Adv. Colloid Interface Sci. 1999, 79, 59–76. [Google Scholar] [CrossRef]
- Pal, R. Effect of droplet size on the rheology of emulsions. AIChE J. 1996, 42, 3181–3190. [Google Scholar] [CrossRef]
- Wiącek, A.; Chibowski, E. Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids Surf. Physicochem. Eng. Asp. 1999, 159, 253–261. [Google Scholar] [CrossRef]
- Blaug, S.M.; Grant, D.E. Kinetics of degradation of the parabens. J. Soc. Cosmet. Chem. Jpn. 1974, 25, 495–506. [Google Scholar]
- Shabir, G.A. Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conf. J. Chromatogr. A 2003, 987, 57–66. [Google Scholar] [CrossRef]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
- Tan, S.; Stanslas, J.; Basri, M.; A, A.K.R.; Kirby, B.; Sani, D.; Basri, H. Nanoemulsion-based parenteral drug delivery system of carbamazepine: Preparation, characterization, stability evaluation and blood-brain pharmacokinetics. Curr. Drug Deliv. 2015, 12, 795–804. [Google Scholar] [CrossRef]
- Meyer, M.C.; Straughn, A.B.; Jarvi, E.J.; Wood, G.C.; Pelsor, F.R.; Shah, V.P. The bioinequivalence of carbamazepine tablets with a history of clinical failures. Pharm. Res. Off. J. Am. Assoc. Pharm. Sci. 1992, 9, 1612–1616. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Quan, G.; Li, F.; Wu, Q.; Dian, L.; Dong, Y.; Li, G.; Wu, C. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica. Int. J. Nanomedicine 2012, 7, 5807–5818. [Google Scholar] [CrossRef] [Green Version]
- Olling, M.; Mensinga, T.T.; Barends, D.M.; Groen, C.; Lake, O.A.; Meulenbelt, J. Bioavailability of carbamazepine from four different products and the occurrence of side effects. Biopharm. Drug Dispos. 1999, 20, 19–28. [Google Scholar] [CrossRef]
- HARTLEY, R.; ALEKSANDROWICZ, J.; BOWMER, C.J.; CAWOOD, A.; FORSYTHE, W.I. Dissolution and relative bioavailability of two carbamazepine preparations for children with epilepsy. J. Pharm. Pharmacol. 1991, 43, 117–119. [Google Scholar] [CrossRef]
- Howorka, S.; Siwy, Z. Nanopores: Generation, engineering, and single-molecule applications. In Handbook of Single-Molecule Biophys; Springer: New York, NY, USA, 2009; pp. 293–339. [Google Scholar] [CrossRef]
- Omidi, Y.; Gumbleton, M. Biological membranes and barriers. In Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids; CRC Press: New York, NY, USA, 2004; pp. 231–274. ISBN 9780203492321. [Google Scholar]
- Chaudhary, A.; Nagaich, U.; Gulati, N.; Sharma, V.; Khosa, R.; Partapur, M. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J. Adv. Pharm. Educ. Res. 2012, 2, 32–67. [Google Scholar]
- Cotter, L.M.; Smith, G.; Hooper, W.D. The bioavailability of carbamazepine. Proc. Aust. Assoc. Neurol. 1975, 12, 123–128. [Google Scholar] [CrossRef]
Physicochemical Parameter | Coarse Emulsion | Nanoemulsion |
---|---|---|
Droplet size | 3.63 ± 0.40 µm | 320.90 ± 1.00 nm |
Viscosity | 1.93 ± 0.02 cP | 2.27 ± 0.05 cP |
Zeta potential | −13.69 ± 1.20 mV | −11.29 ± 0.20 mV |
Conductivity | 35.50 ± 0.50 µS/cm | 44.30 ± 0.70 µS/cm |
pH | 6.10 ± 0.05 | 5.90 ± 0.06 |
Parameter | In Vitro Correlation Curve | In Vivo Correlation Curve |
---|---|---|
Linear equation X (µg/mL) | Y = 0.026X + 0.0875 | Y = 0.042X + 0.0219 |
Correlation coefficient | 0.9973 | 0.9997 |
Detection limit (µg/mL) | 0.015 | 0.020 |
Quantitation limit (µg/mL) | 0.15 | 0.20 |
Intra-day method RSD (%) | 0.40 | 1.40 |
Inter-day method RSD (%) | 1.59 | 2.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverri, J.D.; Alhajj, M.J.; Montero, N.; Yarce, C.J.; Barrera-Ocampo, A.; Salamanca, C.H. Study of In Vitro and In Vivo Carbamazepine Release from Coarse and Nanometric Pharmaceutical Emulsions Obtained via Ultra-High-Pressure Homogenization. Pharmaceuticals 2020, 13, 53. https://doi.org/10.3390/ph13040053
Echeverri JD, Alhajj MJ, Montero N, Yarce CJ, Barrera-Ocampo A, Salamanca CH. Study of In Vitro and In Vivo Carbamazepine Release from Coarse and Nanometric Pharmaceutical Emulsions Obtained via Ultra-High-Pressure Homogenization. Pharmaceuticals. 2020; 13(4):53. https://doi.org/10.3390/ph13040053
Chicago/Turabian StyleEcheverri, Juan D., Maria J. Alhajj, Nicolle Montero, Cristhian J. Yarce, Alvaro Barrera-Ocampo, and Constain H. Salamanca. 2020. "Study of In Vitro and In Vivo Carbamazepine Release from Coarse and Nanometric Pharmaceutical Emulsions Obtained via Ultra-High-Pressure Homogenization" Pharmaceuticals 13, no. 4: 53. https://doi.org/10.3390/ph13040053
APA StyleEcheverri, J. D., Alhajj, M. J., Montero, N., Yarce, C. J., Barrera-Ocampo, A., & Salamanca, C. H. (2020). Study of In Vitro and In Vivo Carbamazepine Release from Coarse and Nanometric Pharmaceutical Emulsions Obtained via Ultra-High-Pressure Homogenization. Pharmaceuticals, 13(4), 53. https://doi.org/10.3390/ph13040053