Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. MMP Inhibition Assays
3.2. Chemical Methods
3.2.1. General Procedure for the Preparation of Sulfonamide Intermediates
3.2.2. General Procedure for the Preparation of Tetraethyl Bisphosphonates 16, 17, 25, and 26
3.2.3. General Procedure for Preparation of Amino Derivates 19 and 20
3.2.4. General Procedure for the Preparation of N-acylate Derivates
3.2.5. General Procedure for the Preparation of 1,1-bisphosphonic Acids
3.3. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, C.C. Matrix Metalloproteinases as Master Regulators of the Vicious Cycle of Bone Metastasis. Bone 2011, 48, 44–53. [Google Scholar] [CrossRef]
- Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix Metalloproteinases: A Challenging Paradigm of Cancer Management. Semin. Cancer Biol. 2019, 56, 100–115. [Google Scholar] [CrossRef]
- Malemud, C.J.; Schulte, M.E. Is There a Final Common Pathway for Arthritis. Fut. Rheumatol. 2008, 3, 253–268. [Google Scholar] [CrossRef]
- Azevedo, A.; Prado, A.F.; Feldman, S.; de Figueiredo, F.A.T.; dos Santos, M.C.G.; Issa, J.P.M. MMPs Are Involved in Osteoporosis and Are Correlated with Cardiovascular Diseases. Curr. Pharm. Des. 2018, 24, 1801–1810. [Google Scholar] [CrossRef]
- Coleman, R.E. Skeletal Complications of Malignancy. Cancer 1997, 80, 1588–1594. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic Bone Disease: Pathogenesis and Therapeutic Options: Up-Date on Bone Metastasis Management. J. Bone Oncol. 2019, 15. [Google Scholar] [CrossRef]
- Onken, J.S.; Fekonja, L.S.; Wehowsky, R.; Hubertus, V.; Vajkoczy, P. Metastatic Dissemination Patterns of Different Primary Tumors to the Spine and Other Bones. Clin. Exp. Metastasis 2019, 36, 493–498. [Google Scholar] [CrossRef]
- Mundy, G.R. Metastasis to Bone: Causes, Consequences and Therapeutic Opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef]
- Roodman, G.D. Mechanisms of Bone Metastasis. N. Engl. J. Med. 2004, 350, 1655–1664. [Google Scholar] [CrossRef]
- Guise, T.A.; Chirgwin, J.M. Transforming Growth Factor-Beta in Osteolytic Breast Cancer Bone Metastases. Clin. Orthop. Relat. Res. 2003, S32–S38. [Google Scholar] [CrossRef]
- Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix Metalloproteinase Inhibitors and Cancer: Trials and Tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef]
- Tauro, M.; McGuire, J.; Lynch, C.C. New Approaches to Selectively Target Cancer-Associated Matrix Metalloproteinase Activity. Cancer Metastasis Rev. 2014, 33, 1043–1057. [Google Scholar] [CrossRef]
- Dufour, A.; Overall, C.M. Missing the Target: Matrix Metalloproteinase Antitargets in Inflammation and Cancer. Trends Pharm. Sci. 2013, 34, 233–242. [Google Scholar] [CrossRef]
- Fields, G.B. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cell 2019, 8, 984. [Google Scholar] [CrossRef] [Green Version]
- Cerofolini, L.; Fragai, M.; Luchinat, C. Mechanism and Inhibition of Matrix Metalloproteinases. Curr. Med. Chem. 2018, 26, 2609–2633. [Google Scholar] [CrossRef]
- Campestre, C.; Agamennone, M.; Tauro, M.; Tortorella, P. Phosphonate Emerging Zinc Binding Group in Matrix Metalloproteinase Inhibitors. Curr. Drug Targets 2015, 16, 1634–1644. [Google Scholar] [CrossRef]
- Dive, V.; Andarawewa, K.L.; Boulay, A.; Matziari, M.; Beau, F.; Guerin, E.; Rousseau, B.; Yiotakis, A.; Rio, M.-C. Dosing and Scheduling Influence the Antitumor Efficacy of a Phosphinic Peptide Inhibitor of Matrix Metalloproteinases. Int. J. Cancer 2005, 113, 775–781. [Google Scholar] [CrossRef]
- Rubino, M.T.; Agamennone, M.; Campestre, C.; Campiglia, P.; Cremasco, V.; Faccio, R.; Laghezza, A.; Loiodice, F.; Maggi, D.; Panza, E.; et al. Biphenyl Sulfonylamino Methyl Bisphosphonic Acids as Inhibitors of Matrix Metalloproteinases and Bone Resorption. ChemMedChem 2011, 6, 1258–1268. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Loiodice, F.; Agamennone, M.; Campestre, C.; Tortorella, P. Arylamino Methylene Bisphosphonate Derivatives as Bone Seeking Matrix Metalloproteinase Inhibitors. Bioorganic Med. Chem. 2013, 21, 6456–6465. [Google Scholar] [CrossRef]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Arylamino Bisphosphonates: Potent and Selective Inhibitors of the Tumor-Associated Carbonic Anhydrase XII. Bioorganic Med. Chem. Lett. 2014, 24, 1941–1943. [Google Scholar] [CrossRef]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Dual Carbonic Anhydrase/Matrix Metalloproteinase Inhibitors Incorporating Bisphosphonic Acid Moieties Targeting Bone Tumors. Bioorganic Med. Chem. Lett. 2014, 24, 2617–2620. [Google Scholar] [CrossRef] [PubMed]
- Shay, G.; Tauro, M.; Loiodice, F.; Tortorella, P.; Sullivan, D.M.; Hazlehurst, L.A.; Lynch, C.C. Selective Inhibition of Matrix Metalloproteinase-2 in the Multiple Myeloma-Bone Microenvironment. Oncotarget 2017, 8, 41827–41840. [Google Scholar] [CrossRef] [PubMed]
- Tauro, M.; Shay, G.; Sansil, S.S.; Laghezza, A.; Tortorella, P.; Neuger, A.M.; Soliman, H.; Lynch, C.C. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol. Cancer 2017, 16, 494–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauro, M.; Lynch, C.C. Cutting to the Chase: How Matrix Metalloproteinase-2 Activity Controls Breast-Cancer-to-Bone Metastasis. Cancers (Basel) 2018, 10, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purushothaman, A.; Chen, L.; Yang, Y.; Sanderson, R.D. Heparanase Stimulation of Protease Expression Implicates It as a Master Regulator of the Aggressive Tumor Phenotype in Myeloma. J. Biol. Chem. 2008, 283, 32628–32636. [Google Scholar] [CrossRef] [Green Version]
- Owyong, M.; Chou, J.; van den Bijgaart, R.J.; Kong, N.; Efe, G.; Maynard, C.; Talmi-Frank, D.; Solomonov, I.; Koopman, C.; Hadler-Olsen, E.; et al. MMP9 Modulates the Metastatic Cascade and Immune Landscape for Breast Cancer Anti-Metastatic Therapy. Life Sci. Alliance 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.A.; Mundy, G.R.; Lwin, S.T.; Lynch, C.C.; Edwards, C.M. A Murine Model of Myeloma That Allows Genetic Manipulation of the Host Microenvironment. Dmm Dis. Model. Mech. 2009, 2, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Pochetti, G.; Gavuzzo, E.; Campestre, C.; Agamennone, M.; Tortorella, P.; Consalvi, V.; Gallina, C.; Hiller, O.; Tschesche, H.; Tucker, P.A.; et al. Structural Insight into the Stereoselective Inhibition of MMP-8 by Enantiomeric Sulfonamide Phosphonates. J. Med. Chem. 2006, 49, 923–931. [Google Scholar] [CrossRef]
- Campestre, C.; Agamennone, M.; Tortorella, P.; Preziuso, S.; Biasone, A.; Gavuzzo, E.; Pochetti, G.; Mazza, F.; Hiller, O.; Tschesche, H.; et al. N-Hydroxyurea as Zinc Binding Group in Matrix Metalloproteinase Inhibition: Mode of Binding in a Complex with MMP-8. Bioorganic Med. Chem. Lett. 2006, 16, 20–24. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Loiodice, F.; Piemontese, L.; Caradonna, A.; Capelli, D.; Montanari, R.; Pochetti, G.; Di Pizio, A.; Agamennone, M.; et al. Catechol-Based Matrix Metalloproteinase Inhibitors with Additional Antioxidative Activity. J. Enzym. Inhib. Med. Chem. 2016, 31, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger LLC. Schrödinger Suite 2018-3: MacroModel, Glide, SiteMap, Maestro; Schrödinger LLC: New York, NY, USA, 2018. [Google Scholar]
- Ammazzalorso, A.; De Filippis, B.; Campestre, C.; Laghezza, A.; Marrone, A.; Amoroso, R.; Tortorella, P.; Agamennone, M. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies. Int. J. Mol. Sci. 2016, 17, 1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pizio, A.; Agamennone, M.; Laghezza, A.; Loiodice, F.; Tortorella, P. Mimic Catechins to Develop Selective MMP-2 Inhibitors. Mon. Chem. 2018, 149, 1293–1300. [Google Scholar] [CrossRef]
- Pochetti, G.; Montanari, R.; Gege, C.; Chevrier, C.; Taveras, A.G.; Mazza, F. Extra Binding Region Induced by Non-Zinc Chelating Inhibitors into the S 1 Subsite of Matrix Metalloproteinase 8 (MMP-8). J. Med. Chem. 2009, 52, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Fabre, B.; Ramos, A.; de Pascual-Teresa, B. Targeting Matrix Metalloproteinases: Exploring the Dynamics of the S1’ Pocket in the Design of Selective, Small Molecule Inhibitors. J. Med. Chem. 2014, 57, 10205–10219. [Google Scholar] [CrossRef]
- Southall, N.T.; Dill, K.A.; Haymet, A.D.J. A View of the Hydrophobic Effect. J. Phys. Chem. B 2002, 521–533. [Google Scholar] [CrossRef]
1,4–13 | 2 | 3 | |||
Compd. | R | MMP-2 | MMP-8 | MMP-9 | MMP-13 |
1 | NH2 | 19 ± 3 | 66 ± 8 | >100 | 68.9 ± 10.17 |
ML 115 | 4-Ph | 0.14 ± 0.04 | 0.40 ± 0.03 | >100 | 0.74 ± 0.06 |
2 | - | 18.7 ± 0.8 | 26.8 ± 0.9 | >100 | 9.6 ± 0.4 |
3 | - | 15.2 ± 0.5 | 31.3 ± 1.2 | 57 ± 2 | 14.6 ± 0.8 |
4 | 4-NHCONHPh | 2.8 ± 0.6 | 48 ± 15 | 13.8 ± 0.6 | 15 ± 6 |
5 | 4-N-Phthalimido | 5.3 ± 0.4 | 45 ± 5 | 15 ± 6 | 18.1 ± 1.5 |
6 | 4-NHCOPh | 2.75 ± 0.35 | 1.88 ± 0.03 | 2.3 ± 0.1 | 2.0 ± 0.7 |
7 | 3-NHCOPh | 9.0 ± 0.8 | 79.0 ± 8.0 | 50 ± 11 | 28 ± 4 |
8 | 4-NHCOPh-4’-CH3 | 0.958 ± 0.018 | 0.78 ± 0.18 | 0.67 ± 0.25 | 3.3 ± 0.7 |
9 | 4-NHCOPh-4’-Br | 0.67 ± 0.16 | 0.66 ± 0.13 | 0.088 ± 0.012 | 0.14 ± 0.05 |
10 | 4-NHCOPh-3’-Br | 4.2 ± 1.3 | 17 ± 4 | >100 | 15.9 ± 1.9 |
11 | 4-NHCOPh-4’-NO2 | 1.7 ± 0.3 | 0.46 ± 0.11 | 0.43 ± 0.10 | 0.61 ± 0.16 |
12 | 4-NHCO-1-naphthyl | 2.7 ± 1.0 | 25 ± 12 | 21.5 ± 0.7 | 12 ± 5 |
13 | 4-NHCO-2-naphthyl | 3.9 ± 0.5 | 16.6 ± 1.9 | 76 ± 8 | 9.3 ± 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laghezza, A.; Piemontese, L.; Brunetti, L.; Caradonna, A.; Agamennone, M.; Di Pizio, A.; Pochetti, G.; Montanari, R.; Capelli, D.; Tauro, M.; et al. Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals 2020, 13, 113. https://doi.org/10.3390/ph13060113
Laghezza A, Piemontese L, Brunetti L, Caradonna A, Agamennone M, Di Pizio A, Pochetti G, Montanari R, Capelli D, Tauro M, et al. Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals. 2020; 13(6):113. https://doi.org/10.3390/ph13060113
Chicago/Turabian StyleLaghezza, Antonio, Luca Piemontese, Leonardo Brunetti, Alessia Caradonna, Mariangela Agamennone, Antonella Di Pizio, Giorgio Pochetti, Roberta Montanari, Davide Capelli, Marilena Tauro, and et al. 2020. "Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy" Pharmaceuticals 13, no. 6: 113. https://doi.org/10.3390/ph13060113
APA StyleLaghezza, A., Piemontese, L., Brunetti, L., Caradonna, A., Agamennone, M., Di Pizio, A., Pochetti, G., Montanari, R., Capelli, D., Tauro, M., Loiodice, F., & Tortorella, P. (2020). Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals, 13(6), 113. https://doi.org/10.3390/ph13060113