Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia?
Abstract
:1. Introduction
2. PD-1, PD-L1, and PD-L2 Biology
3. PD-1 and PD-L1 Inhibitors in Cancer
4. PD-1 and PD-L1 Inhibitors in AML
4.1. Introduction
4.2. Immune Checkpoint Blockade in AML—Why Was It Bound to Fail?
4.3. Immune Checkpoint Blockade in AML—Why Was It Bound to Succeed?
4.4. Results in AML
5. Toxicities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abul, K.; Abbas, A.H.L.; Shiv, P. Basic Immunology—Functions and Disorders of the Immune System, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, p. 327. [Google Scholar]
- Giannopoulos, K. Targeting Immune Signaling Checkpoints in Acute Myeloid Leukemia. J. Clin. Med. 2019, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 2004, 4, 336–347. [Google Scholar] [CrossRef]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, R.; Sugiura, D.; Shimizu, K.; Maruhashi, T.; Watada, M.; Okazaki, I.M.; Okazaki, T. PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Front. Immunol. 2019, 10, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, L.; Guan, R.; Yang, H.; Zhou, Y.; Hong, W.; Ma, L.; Zhao, G.; Yu, M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int. J. Cancer 2019, 147, 423–439. [Google Scholar] [CrossRef]
- De Sousa Linhares, A.; Leitner, J.; Grabmeier-Pfistershammer, K.; Steinberger, P. Not All Immune Checkpoints Are Created Equal. Front. Immunol. 2018, 9, 1909. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Rubinstein, R.; Lines, J.L.; Wasiuk, A.; Ahonen, C.; Guo, Y.; Lu, L.-F.; Gondek, D.; Wang, Y.; Fava, R.A.; et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 2011, 208, 577–592. [Google Scholar] [CrossRef]
- Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009, 10, 48–57. [Google Scholar] [CrossRef]
- Wu, X.; Gu, Z.; Chen, Y.; Chen, B.; Chen, W.; Weng, L.; Liu, X. Application of PD-1 Blockade in Cancer Immunotherapy. Comput. Struct. Biotechnol. J. 2019, 17, 661–674. [Google Scholar] [CrossRef]
- Salmaninejad, A.; Valilou, S.F.; Shabgah, A.G.; Aslani, S.; Alimardani, M.; Pasdar, A.; Sahebkar, A. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J. Cell. Physiol. 2019, 234, 16824–16837. [Google Scholar] [CrossRef]
- Akinleye, A.; Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 2019, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubata, T.; Yagita, H.; Honjo, T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 1996, 8, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Boussiotis, V.A. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway immune checkpoint blockade as cancer therapy. N. Engl. J. Med. 2017, 375, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Nishimura, H.; Minato, N.; Nakano, T.; Honjo, T. Immunological studies on PD-1-deficient mice: Implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 1998, 10, 1563–1572. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, H.; Okazaki, T.; Tanaka, Y.; Nakatani, K.; Hara, M.; Matsumori, A.; Sasayama, S.; Mizoguchi, A.; Hiai, H.; Minato, N.; et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001, 291, 319–322. [Google Scholar] [CrossRef]
- Kondělková, K.; Vokurková, D.; Krejsek, J.; Borská, L.; Fiala, Z.; Ctirad, A. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Med. (Hradec Králové) 2010, 53, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Sunshine, J.; Taube, J.M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 2015, 23, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999, 5, 1365–1369. [Google Scholar] [CrossRef]
- Okazaki, T.; Honjo, T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006, 27, 195–201. [Google Scholar] [CrossRef]
- Schönrich, G.; Raftery, M.J. The PD-1/PD-L1 axis and virus infections: A delicate balance. Front. Cell. Infect. Microbiol. 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef]
- Ilcus, C.; Bagacean, C.; Tempescul, A.; Popescu, C.; Parvu, A.; Cenariu, M.; Bocsan, C.; Zdrenghea, M. Immune checkpoint blockade: The role of PD-1-PD-L axis in lymphoid malignancies. Onco. Targets 2017, 10, 2349–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimura, K.; Teh, J.L.; Okayama, H.; Shiraishi, K.; Kua, L.F.; Koh, V.; Smoot, D.T.; Ashktorab, H.; Oike, T.; Suzuki, Y.; et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018, 109, 43–53. [Google Scholar] [CrossRef]
- Andorsky, D.J.; Yamada, R.E.; Said, J.; Pinkus, G.S.; Betting, D.J.; Timmerman, J.M. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin. Cancer Res. 2011, 17, 4232–4244. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Li, C.; Ke, X.Y. Contribution of PD-L1 to oncogenesis of lymphoma and its RNAi-based targeting therapy. Leuk. Lymphoma 2012, 53, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Yousef, S.; Marvin, J.; Steinbach, M.; Langemo, A.; Kovacsovics, T.; Binder, M.; Kröger, N.; Luetkens, T.; Atanackovic, D. Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J. 2015, 5, e285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewinsky, H.; Barak, A.F.; Huber, V.; Kramer, M.P.; Radomir, L.; Sever, L.; Orr, I.; Mirkin, V.; Dezorella, N.; Shapiro, M.; et al. CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia. J. Clin. Investig. 2018, 128, 5479–5488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodská, B.; Fuchs, O.; Otevřelová, P.; Salek, C.; Kuželová, K. PD-L1 Is Frequently Expressed in Acute Myeloid Leukemia Patients with Leukocytosis. Blood 2016, 128, 5229. [Google Scholar] [CrossRef]
- Zdrenghea, M.T.; Johnston, S.L. Role of PD-L1/PD-1 in the immune response to respiratory viral infections. Microbes Infect. 2012, 14, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010, 28, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Keynote, P. Pembrolizumab KEYNOTE-001: An adaptive study leading to accelerated approval for two indications and a companion diagnostic. Ann. Oncol. 2017, 28, 1388–1398. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; De La Mora Jimenez, E.; et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Chaft, J.E.; Gettinger, S.; Chao, B.H.; Dirix, L.; Schmid, P.; Chow, L.Q.M.; Hicks, R.J.; Leon, L.; Fredrickson, J.; et al. FIR: Efficacy, Safety, and Biomarker Analysis of a Phase II Open-Label Study of Atezolizumab in PD-L1–Selected Patients With NSCLC. J. Thorac. Oncol. 2018, 13, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- Castellano, D.; Duran, I.; Rodríguez-Vida, A.; Crabb, S.J.; van der Heijden, M.S.; Font Pous, A.; Gravis, G.; Anido Herranz, U.; Protheroe, A.; Ravaud, A.; et al. A phase II study investigating the safety and efficacy of neoadjuvent atezolizumab in muscle invasive bladder cancer (ABACUS). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, viii319. [Google Scholar] [CrossRef]
- Necchi, A.; Joseph, R.W.; Loriot, Y.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Petrylak, D.P.; Derleth, C.L.; Tayama, D.; Zhu, Q.; Ding, B.; et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: Post-progression outcomes from the phase II IMvigor210 study. Ann. Oncol. 2017, 28, 3044–3050. [Google Scholar] [CrossRef]
- Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 44–59. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Liu, K.; Chai, Y.; Zhang, C.W.H.; Gao, S.; Gao, G.F.; Qi, J. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell 2018, 9, 135–139. [Google Scholar] [CrossRef]
- Garassino, M.C.; Cho, B.C.; Kim, J.H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Corral Jaime, J.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; Curiel, T.J.; Colon-Otero, G.; Hamid, O.; Sanborn, R.E.; et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 2016, 34, 3119–3125. [Google Scholar] [CrossRef]
- Study of Azacitidine in Combination with Pembrolizumab in Relapsed/Refractory Acute Myeloid Leukemia (AML) Patients and in Newly Diagnosed Older (≥65 Years) AML Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT02845297?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=1 (accessed on 30 October 2020).
- Loibl, S.; Untch, M.; Burchardi, N.; Huober, J.B.; Blohmer, J.U.; Grischke, E.-M.; Furlanetto, J.; Tesch, H.; Hanusch, C.; Rezai, M.; et al. A randomized phase II neoadjuvant study (GeparNuevo) to investigate the addition of durvalumab, a PD-L1 antibody, to a taxane-anthracycline containing chemotherapy in triple negative breast cancer (TNBC). J. Clin. Oncol. 2017, 35, 3062. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.W.; Lim, M.C.; Kim, S.; Kim, H.S.; Choi, C.H.; Yi, J.Y.; Park, S.Y.; Kim, B.G. A phase II study of neoadjuvant chemotherapy plus durvalumab and tremelimumab in advanced-stage ovarian cancer: A Korean gynecologic oncology group study (KGOG 3046), TRU-D. J. Gynecol. Oncol. 2019, 30, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Cimino-Mathews, A.; Peer, C.J.; Zimmer, A.; Lipkowitz, S.; Annunziata, C.M.; Cao, L.; Harrell, M.I.; Swisher, E.M.; Houston, N.; et al. Safety & clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with Poly (ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial growth factor Receptor 1-3 Inhibitor Cediranib in Women’s Cancers: A dose-escalati. J. Clin. Oncol. 2017, 35, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Boyerinas, B.; Jochems, C.; Fantini, M.; Heery, C.R.; Gulley, J.L.; Tsang, K.Y.; Schlom, J. Antibody-dependent cellular cytotoxicity activity of a Novel Anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res. 2015, 3, 1148–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, S.P.; Russell, J.; Lebbé, C.; Chmielowski, B.; Gambichler, T.; Grob, J.J.; Kiecker, F.; Rabinowits, G.; Terheyden, P.; Zwiener, I.; et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic merkel cell carcinoma a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018, 4, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, R.; Thomas, A.; Patel, M.R.; Nemunaitis, J.J.; Bennouna, J.; Powderly, J.D.; Taylor, M.H.; Dowlati, A.; Chen, F.; Leach, J.; et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced unresectable mesothelioma from the JAVELIN solid tumor phase Ib trial: Safety, clinical activity, and PD-L1 expression. J. Clin. Oncol. 2016, 34, 8503. [Google Scholar] [CrossRef]
- Disis, M.L.; Patel, M.R.; Pant, S.; Infante, J.R.; Lockhart, A.C.; Kelly, K.; Beck, J.T.; Gordon, M.S.; Weiss, G.J.; Ejadi, S.; et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with previously treated, recurrent or refractory ovarian cancer: A phase Ib, open-label expansion trial. J. Clin. Oncol. 2015, 33, 5509. [Google Scholar] [CrossRef]
- Gulley, J.L.; Spigel, D.; Kelly, K.; Chandler, J.C.; Rajan, A.; Hassan, R.; Wong, D.J.L.; Leach, J.; Edenfield, W.J.; Wang, D.; et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in advanced NSCLC patients: A phase 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy. J. Clin. Oncol. 2015, 33, 8034. [Google Scholar] [CrossRef]
- Chung, H.C.; Arkenau, H.-T.; Wyrwicz, L.; Oh, D.-Y.; Lee, K.-W.; Infante, J.R.; Lee, S.S.; Lee, J.; Keilholz, U.; Mita, A.C.; et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced gastric or gastroesophageal junction cancer from JAVELIN solid tumor phase Ib trial: Analysis of safety and clinical activity. J. Clin. Oncol. 2016, 34, 4009. [Google Scholar] [CrossRef]
- Apolo, A.B.; Infante, J.R.; Balmanoukian, A.; Patel, M.R.; Wang, D.; Kelly, K.; Mega, A.E.; Britten, C.D.; Ravaud, A.; Mita, A.C.; et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: Results from a multicenter, Phase Ib study. J. Clin. Oncol. 2017, 35, 2117–2124. [Google Scholar] [CrossRef]
- Kuo, C.H.; Hsieh, T.C.; Wang, C.H.; Chou, C.L.; Lai, Y.H.; Chen, Y.Y.; Lin, Y.L.; Wu, S.T.; Fang, T.C. Increased risks of mortality and atherosclerotic complications in incident hemodialysis patients subsequently with bone fractures: A nationwide case-matched cohort study. PLoS ONE 2015, 10, e0121705. [Google Scholar] [CrossRef]
- Lin, C.C.; Taylor, M.; Boni, V.; Brunsvig, P.F.; Geater, S.L.; Salvagni, S.; Garrido Lopez, P.; Özgüroğlu, M.; Sriuranpong, V.; Ponce Aix, S.; et al. Phase I/II study of spartalizumab (PDR001), an anti-PD1 mAb, in patients with advanced melanoma or non-small cell lung cancer. Ann. Oncol. 2018, 29, viii413. [Google Scholar] [CrossRef]
- Naing, A.; Gainor, J.F.; Gelderblom, H.; Forde, P.M.; Butler, M.O.; Lin, C.C.; Sharma, S.; Ochoa de Olza, M.; Varga, A.; Taylor, M.; et al. A first-in-human phase 1 dose escalation study of spartalizumab (PDR001), an anti-PD-1 antibody, in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, e000530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov. Study of PDR001 and/or MBG453 in Combination with Decitabine in Patients with AML or High Risk MDS. Available online: https://clinicaltrials.gov/ct2/show/NCT03066648 (accessed on 30 December 2020).
- Duan, J.; Cui, L.; Zhao, X.; Bai, H.; Cai, S.; Wang, G.; Zhao, Z.; Zhao, J.; Chen, S.; Song, J.; et al. Use of Immunotherapy With Programmed Cell Death 1 vs. Programmed Cell Death Ligand 1 Inhibitors in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 375–384. [Google Scholar] [CrossRef]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. Massachussetts Med. Soc. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Lichtman, M.A. A historical perspective on the development of the cytarabine (7 days) and daunorubicin (3 days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7 + 3. Blood Cells Mol. Dis. 2013, 50, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Bohl, S.R.; Bullinger, L.; Rücker, F.G. New targeted agents in acute myeloid leukemia: New hope on the rise. Int. J. Mol. Sci. 2019, 20, 1983. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H. Acute myeloid leukemia-Major progress over four decades and glimpses into the future. Am. J. Hematol. 2016, 91, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Curran, E.K.; Godfrey, J.; Kline, J. Mechanisms of Immune Tolerance in Leukemia and Lymphoma. Trends Immunol. 2017, 38, 513–525. [Google Scholar] [CrossRef]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, X.; Liu, X.; Kline, D.E.; Teague, R.M.; Gajewski, T.F.; Kline, J. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. J. Clin. Investig. 2013, 123, 1999–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddu, P.; Kantarjian, H.; Garcia-Manero, G.; Allison, J.; Sharma, P.; Daver, N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk. Lymphoma 2018, 59, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Teague, J.K. Immune evasion in acute myeloid leukemia: Current concepts and future directions. J. Immunother. Cancer 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, A.; Fisher, S.I. Spontaneous remission of acute myeloid leukemia. Leuk. Lymphoma 2015, 56, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Philip, M.; Ferrell, P.B. Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 2020, 39, 3611–3619. [Google Scholar] [CrossRef]
- Wang, R.; Feng, W.; Wang, H.; Wang, L.; Yang, X.; Yang, F.; Zhang, Y.; Liu, X.; Zhang, D.; Ren, Q.; et al. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model. Cancer Lett. 2020, 469, 151–161. [Google Scholar] [CrossRef]
- Gutierrez, L.; Jang, M.; Zhang, T.; Akhtari, M.; Alachkar, H. Midostaurin reduces Regulatory T cells markers in Acute Myeloid Leukemia. Sci. Rep. 2018, 8, 17544. [Google Scholar] [CrossRef] [PubMed]
- Christopher, M.J.; Petti, A.A.; Rettig, M.P.; Miller, C.A.; Chendamarai, E.; Duncavage, E.J.; Klco, J.M.; Helton, N.M.; O’Laughlin, M.; Fronick, C.C.; et al. Immune Escape of Relapsed AML Cells after Allogeneic Transplantation. N. Engl. J. Med. 2018, 379, 2330–2341. [Google Scholar] [CrossRef]
- Jaiswal, S.; Jamieson, C.H.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009, 138, 271–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takimoto, C.H.; Chao, M.P.; Gibbs, C.; McCamish, M.A.; Liu, J.; Chen, J.Y.; Majeti, R.; Weissman, I.L. The Macrophage ‘Do not eat me’ signal, CD47, is a clinically validated cancer immunotherapy target. Ann. Oncol. 2019, 30, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Sikic, B.I.; Lakhani, N.; Patnaik, A.; Shah, S.A.; Chandana, S.R.; Rasco, D.; Colevas, A.D.; O’Rourke, T.; Narayanan, S.; Papadopoulos, K.; et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients with Advanced Cancers. J. Clin. Oncol. 2019, 37, 946–953. [Google Scholar] [CrossRef]
- Yang, H.; Bueso-Ramos, C.; Dinardo, C.; Estecio, M.R.; Davanlou, M.; Geng, Q.R.; Fang, Z.; Nguyen, M.; Pierce, S.; Wei, Y.; et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014, 28, 1280–1288. [Google Scholar] [CrossRef]
- Ørskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Grønbæk, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 2015, 6, 9612–9626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, A.; Whiteside, T.L.; Boyiadzis, M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin. Biol. Ther. 2015, 15, 1191–1203. [Google Scholar] [CrossRef] [Green Version]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Dohner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Boddu, P.; Wood, B.L.; Zelterman, D.; Little, R.F.; Ivy, S.P.; Caldwell, A.; Sanchez-Espiridion, B.; Alatrash, G.; Sharon, E.; et al. Blast MRD AML-2: Blockade of PD-1 Added to Standard Therapy to Target Measurable Residual Disease (MDR) in Acute Myeloid Leukemia (AML) 2- a Randomized Phase 2 Study of the Venetoclax, Azacitidine, and Pembrolizumab Versus Venetoclax and Azacitidine As First Line Therapy in Older Patients with AML Who Are Ineligible or Who Refuse Intensive Chemotherapy. Blood 2020, 136, 11–12. [Google Scholar] [CrossRef]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Boddu, P.C.; Alfayez, M.; Cortes, J.E.; Konopleva, M.; Ravandi-Kashani, F.; Jabbour, E.; Kadia, T.; et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/ refractory acute myeloid leukemia: A nonrandomized, open-label, phase II study. Cancer Discov. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindblad, K.E.; Thompson, J.; Gui, G.; Valdez, J.; Worthy, T.; Tekleab, H.; Hughes, T.; Goswami, M.; Oetjen, K.; Kim, D.-Y.; et al. Pembrolizumab and Decitabine for Refractory or Relapsed Acute Myeloid Leukemia. Blood 2018, 132, 1437. [Google Scholar] [CrossRef]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Cortes, J.E.; Ravandi, F.; Jabbour, E.J.; Assi, R.; Brandt, M.; Pierce, S.; Gordon, T.; et al. Nivolumab (Nivo) with Azacytidine (AZA) in Patients (pts) with Relapsed Acute Myeloid Leukemia (AML) or Frontline Elderly AML. Blood 2017, 130, 1345. [Google Scholar] [CrossRef]
- Ravandi, F.; Assi, R.; Daver, N.; Benton, C.B.; Kadia, T.; Thompson, P.A.; Borthakur, G.; Alvarado, Y.; Jabbour, E.J.; Konopleva, M.; et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. Lancet Haematol. 2019, 6, e480–e488. [Google Scholar] [CrossRef]
- Zeidner, J.F.; Vincent, B.G.; Esparza, S.; Ivanova, A.; Moore, D.T.; Foster, M.C.; Coombs, C.C.; Jamieson, K.; Van Deventer, H.W.; Blanchard, L.; et al. Final Clinical Results of a Phase II Study of High Dose Cytarabine Followed By Pembrolizumab in Relapsed/Refractory AML. Blood 2019, 134, 831. [Google Scholar] [CrossRef]
- BLAST MRD AML-2: BLockade of PD-1 Added to Standard Therapy to Target Measurable Residual Disease in Acute Myeloid Leukemia 2- A Randomized Phase 2 Study of Anti-PD-1 Pembrolizumab in Combination With Azacitidine and Venetoclax as Frontline Therapy in Unfit Patients With Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT04284787?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=4 (accessed on 30 October 2020).
- BLAST MRD AML-1: BLockade of PD-1 Added to Standard Therapy to Target Measurable Residual Disease in Acute Myeloid Leukemia 1- A Randomized Phase 2 Study of Anti-PD-1 Pembrolizumab in Combination with Intensive Chemotherapy as Frontline Therapy in Patients With Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/record/NCT04214249?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=7 (accessed on 30 October 2020).
- Nivolumab in Eliminating Minimal Residual Disease and Preventing Relapse in Patients With Acute Myeloid Leukemia in Remission After Chemotherapy—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02275533?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=2 (accessed on 30 October 2020).
- Liao, D.; Wang, M.; Liao, Y.; Li, J.; Niu, T. A Review of Efficacy and Safety of Checkpoint Inhibitor for the Treatment of Acute Myeloid Leukemia. Front. Pharm. 2019, 10, 609. [Google Scholar] [CrossRef] [Green Version]
- Kline, J.; Liu, H.; Michael, T.; Artz, A.S.; Godfrey, J.; Curran, E.K.; Stock, W.; Smith, S.M.; Bishop, M.R. Pembrolizumab for the Treatment of Disease Relapse Following Allogeneic Hematopoietic Cell Transplantation. Blood 2018, 132, 3415. [Google Scholar] [CrossRef]
- Ijaz, A.; Khan, A.Y.; Malik, S.U.; Faridi, W.; Fraz, M.A.; Usman, M.; Tariq, M.J.; Durer, S.; Durer, C.; Russ, A.; et al. Significant Risk of Graft-versus-Host Disease with Exposure to Checkpoint Inhibitors before and after Allogeneic Transplantation. Biol. Blood Marrow Transplant. 2019, 25, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haverkos, B.M.; Abbott, D.; Hamadani, M.; Armand, P.; Flowers, M.E.; Merryman, R.; Kamdar, M.; Kanate, A.S.; Saad, A.; Mehta, A.; et al. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: High response rate but frequent GVHD. Blood 2017, 130, 221–228. [Google Scholar] [CrossRef]
- Godfrey, J.; Bishop, M.R.; Syed, S.; Hyjek, E.; Kline, J. PD-1 blockade induces remissions in relapsed classical Hodgkin lymphoma following allogeneic hematopoietic stem cell transplantation. J. Immunother. Cancer 2017, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Albring, J.C.; Inselmann, S.; Sauer, T.; Schliemann, C.; Altvater, B.; Kailayangiri, S.; Rossig, C.; Hartmann, W.; Knorrenschild, J.R.; Sohlbach, K.; et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone Marrow Transpl. 2017, 52, 317–320. [Google Scholar] [CrossRef]
- Oran, B.; Garcia-Manero, G.; Saliba, R.M.; Alfayez, M.; Al-Atrash, G.; Ciurea, S.O.; Jabbour, E.J.; Mehta, R.S.; Popat, U.R.; Ravandi, F.; et al. Posttransplantation cyclophosphamide improves transplantation outcomes in patients with AML/MDS who are treated with checkpoint inhibitors. Cancer 2020, 126, 2193–2205. [Google Scholar] [CrossRef] [PubMed]
- Rautenberg, C.; Germing, U.; Haas, R.; Kobbe, G.; Schroeder, T. Relapse of Acute Myeloid Leukemia after Allogeneic Stem Cell Transplantation: Prevention, Detection, and Treatment. Int. J. Mol. Sci. 2019, 20, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, N.; Ruess, D.A.; Kesselring, R.; Zeiser, R. The Role of Immune Checkpoint Molecules for Relapse After Allogeneic Hematopoietic Cell Transplantation. Front. Immunol. 2021, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Nivolumab and Ipilimumab After Donor Stem Cell Transplant in Treating Patients with High Risk Refractory or Relapsed Acute Myeloid Leukemia or Myelodysplastic Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT03600155?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=4 (accessed on 30 October 2020).
- McDuffee, E.; Aue, G.; Cook, L.; Ramos-Delgado, C.; Shalabi, R.; Worthy, T.; Vo, P.; Childs, R.W. Tumor regression concomitant with steroid-refractory GvHD highlights the pitfalls of PD-1 blockade following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2017, 52, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Krönig, H.; Kremmler, L.; Haller, B.; Englert, C.; Peschel, C.; Andreesen, R.; Blank, C.U. Interferon-induced programmed death-ligand 1 (PD-L1/B7-H1) expression increases on human acute myeloid leukemia blast cells during treatment. Eur. J. Haematol. 2014, 92, 195–203. [Google Scholar] [CrossRef]
- Berthon, C.; Driss, V.; Liu, J.; Kuranda, K.; Leleu, X.; Jouy, N.; Hetuin, D.; Quesnel, B. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol. Immunother. 2010, 59, 1839–1849. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Vadakekolathu, J.; Reeder, S.; Church, S.E.; Hood, T.; Aldoss, I.; Godwin, J.; Wieduwilt, M.J.; Arellano, M.; Muth, J.; et al. TP53 abnormalities correlate with immune infiltration and are associated with response to flotetuzumab, an investigational immunotherapy, in acute myeloid leukemia. bioRxiv 2020, 44. [Google Scholar] [CrossRef]
- Brodská, B.; Otevřelová, P.; Šálek, C.; Fuchs, O.; Gašová, Z.; Kuželová, K. High PD-L1 expression predicts for worse outcome of leukemia patients with concomitant NPM1 and FLT3 mutations. Int. J. Mol. Sci. 2019, 20, 2823. [Google Scholar] [CrossRef] [Green Version]
- Greiner, J.; Schneider, V.; Schrezenmeier, H.; Wiesneth, M.; Bullinger, L.; Döhner, H.; Hofmann, S.; Götz, M. Expression of PD-L1 in Leukemic Progenitor Cells Defines NPM1 Mutated AML as a Potential Subgroup for PD1/PD-L1 Directed Immunotherapy. Blood 2018, 132, 2734. [Google Scholar] [CrossRef]
- Testing Nivolumab in Combination with Decitabine and Venetoclax in Patients with Newly Diagnosed TP53 Gene Mutated Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT04277442?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=1 (accessed on 30 October 2020).
- Study of Idarubicin, Cytarabine, and Nivolumab in Patients with High-Risk Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02464657?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=3 (accessed on 30 October 2020).
- Haploidentical Lymphocytes with Nivolumab/Ara-C as Consolidation in Elderly AML Patients—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03381118?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=5 (accessed on 30 October 2020).
- Nivolumab and Azacitidine with or without Ipilimumab in Treating Patients with Refractory/Relapsed or Newly Diagnosed Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT02397720 (accessed on 30 October 2020).
- Nivolumab in AML in Remission at High Risk for Relapse—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02532231?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=9 (accessed on 30 October 2020).
- A Study of the IDH1 Inhibitor AG-120 in Combination with the Checkpoint Blockade Inhibitor, Nivolumab, for Patients with IDH1 Mutated Relapsed/Refractory AML and High Risk MDS. Available online: https://www.clinicaltrials.gov/ct2/results?cond=aml&term=ivosidenib+nivolumab&cntry=&state=&city=&dist= (accessed on 23 January 2021).
- Single Agent and Combined Inhibition after Allogeneic Stem Cell Transplant. Available online: https://clinicaltrials.gov/ct2/show/NCT02846376?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=3&rank=11 (accessed on 30 October 2020).
- DEC-205/NY-ESO-1 Fusion Protein CDX-1401, Poly ICLC, Decitabine, and Nivolumab in Treating Patients with Myelodysplastic Syndrome or Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT03358719?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=3&rank=12 (accessed on 30 October 2020).
- Ipilimumab or Nivolumab in Treating Patients with Relapsed Hematologic Malignancies after Donor Stem Cell Transplant. Available online: https://clinicaltrials.gov/ct2/show/NCT01822509?term=nivolumab&cond=Acute+Myeloid+Leukemia&draw=3&rank=15 (accessed on 30 October 2020).
- Tapan Kadia, H.K.; Elias, J.; Farhad, R.; Naval, D.; Priscilla, C.; Mark, B.; Marina, K.; Jorge, C. Nivolumab maintenance therapy for patients with high-risk acute myeloid leukemia (AML) in remission. In Proceedings of the EHA22, Amsterdam, The Netherland, 23 June 2017. [Google Scholar]
- Wei, A.H.; Fong, C.Y.; Montesinos, P.; Calbacho, M.; Gil, J.S.; Perez De Oteyza, J.; Rowe, J.M.; Wolach, O.; Ofran, Y.; Moshe, Y.; et al. A Phase 1 Study of Flotetuzumab, a CD123 x CD3 DART® Protein, Combined with MGA012, an Anti-PD-1 Antibody, in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood 2019, 134, 2662. [Google Scholar] [CrossRef]
- A Study Evaluating the Safety and Pharmacokinetics of Atezolizumab Administered in Combination with Hu5F9-G4 to Patients with Relapsed and/or Refractory Acute Myeloid Leukemia. Available online: https://clinicaltrials.gov/ct2/show/NCT03922477?term=atezolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=1 (accessed on 30 October 2020).
- A Study Evaluating the Safety and Pharmacology of Atezolizumab Administered in Combination with Immunomodulatory Agents in Participants with Acute Myeloid Leukemia (AML). Available online: https://clinicaltrials.gov/ct2/show/NCT02892318?term=atezolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=2 (accessed on 30 October 2020).
- A Phase Ib/II, Multicenter, Single Arm, Open-Label Study, To Evaluate the Safety, Tolerability and Efficacy of the BL-8040 and Atezolizumab Combination for Maintenance Treatment in Subjects with Acute Myeloid Leukemia Who Are 60 Years or Older—The BATTLE Study. Available online: https://clinicaltrials.gov/ct2/show/NCT03154827?term=atezolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=3 (accessed on 30 October 2020).
- A Study of ASP2215 (Gilteritinib) Combined with Atezolizumab in Patients with Relapsed or Treatment Refractory FMS-like Tyrosine Kinase (FLT3) Mutated Acute Myeloid Leukemia (AML). Available online: https://clinicaltrials.gov/ct2/show/NCT03730012?term=atezolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=4 (accessed on 30 October 2020).
- Augmentation of the Graft vs. Leukemia Effect via Checkpoint Blockade with Pembrolizumab. Available online: https://clinicaltrials.gov/ct2/show/NCT03286114?term=NCT03286114&draw=2&rank=1 (accessed on 30 October 2020).
- Zheng, H.; Mineishi, S.; Claxton, D.F.; Zhu, J.; Zhao, C.; Jia, B.; Ehmann, W.C.; Naik, S.; Songdej, N.; Hohl, R.J. Effect of Avelumab to Immune Response in AML: A Phase I Study of Avelumab in Combination with Decitabine As First Line Treatment of Unfit Patients. Blood 2019, 134, 3939. [Google Scholar] [CrossRef]
- Avelumab and Azacitidine in Treating Patients with Refractory or Relapsed Acute Myeloid Leukemia. Available online: https://www.clinicaltrials.gov/ct2/show/study/NCT02953561?term=avelumab+azacitidine&cond=aml&draw=2&rank=2 (accessed on 23 January 2021).
- An Efficacy and Safety Study of Azacitidine Subcutaneous in Combination with Durvalumab (MEDI4736) in Previously Untreated Subjects with Higher-Risk Myelodysplastic Syndromes (MDS) or in Elderly Subjects with Acute Myeloid Leukemia (AML). Available online: https://clinicaltrials.gov/ct2/show/NCT02775903 (accessed on 30 October 2020).
- A Phase II Study of Pembrolizumab as Post-Remission Treatment of Patients ≥ 60 with AML. Available online: https://clinicaltrials.gov/ct2/show/NCT02708641?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=5 (accessed on 30 October 2020).
- High Dose Cytarabine Followed by Pembrolizumab in Relapsed/Refractory AML. Available online: https://clinicaltrials.gov/ct2/show/NCT02768792?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=6 (accessed on 30 October 2020).
- Pembrolizumab and Decitabine in Treating Patients with Acute Myeloid Leukemia or Myelodysplastic Syndrome That Is Newly-Diagnosed, Recurrent, or Refractory. Available online: https://clinicaltrials.gov/ct2/show/NCT03969446?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=8 (accessed on 30 October 2020).
- MRD-Guided Treatment in NPM1mut AML Patients. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03769532?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=9 (accessed on 30 October 2020).
- Lymphodepletion and Anti-PD-1 Blockade to Reduce Relapse in AML Patient Not Eligible for Transplant. Available online: https://clinicaltrials.gov/ct2/show/NCT02771197?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=2&rank=10 (accessed on 30 October 2020).
- Pilot Study of Pembrolizumab Treatment for Disease Relapse after Allogeneic Stem Cell Transplantation. Available online: https://clinicaltrials.gov/ct2/show/NCT02981914?term=pembrolizumab&cond=Acute+Myeloid+Leukemia&draw=3&rank=13 (accessed on 30 October 2020).
- Spiers, L.; Coupe, N.; Payne, M. Toxicities associated with checkpoint inhibitors—An overview. Rheumatology 2019, 58, vii7–vii16. [Google Scholar] [CrossRef]
- Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.; Chaft, J.E.; Segal, N.H.; Callahan, M.K.; Lesokhin, A.M.; et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. 2017, 35, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.Y.; Johnson, D.B.; Davis, E.J. Toxicities Associated With PD-1/PD-L1 Blockade. Cancer J. 2018, 24, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.-J.; Gangadhar, T.C.; et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384, 1109–1117. [Google Scholar] [CrossRef]
- Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 2015, 26, 2375–2391. [Google Scholar] [CrossRef]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer immunotherapy—Immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diem, S.; Keller, F.; Ruesch, R.; Maillard, S.A.; Speiser, D.E.; Dummer, R.; Siano, M.; Urner-Bloch, U.; Goldinger, S.M.; Flatz, L. Pembrolizumab-triggered Uveitis: An Additional Surrogate Marker for Responders in Melanoma Immunotherapy? J. Immunother. 2016, 39, 379–382. [Google Scholar] [CrossRef]
- Hottinger, A.F. Neurologic complications of immune checkpoint inhibitors. Curr. Opin. Neurol. 2016, 29, 806–812. [Google Scholar] [CrossRef]
- Wang, D.Y.; Okoye, G.D.; Neilan, T.G.; Johnson, D.B.; Moslehi, J.J. Cardiovascular Toxicities Associated with Cancer Immunotherapies. Curr. Cardiol. Rep. 2017, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., 3rd; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease Stage | Therapeutic Agents | Study Design | Participants | References |
---|---|---|---|---|
AML/HR MDS 18–60 years or >60 eligible for intense chemotherapy | cytarabine 1.5 g/m2 by 24 h continuous infusion daily on days 1–4 (3 days in patients > 60 years) and idarubicin 12 mg/m2 daily on days 1–3. nivolumab 3 mg/kg, day 24 every 2 weeks, 1 year for responders | Single-arm, phase II part of the phase I/II study | n = 44 | [86] |
R/R AML > 18 years | azacitidine iv/sc 75 mg/m2 days 1–7 + nivolumab iv 3 mg/kg days 1 and 14, every 4 to 6 weeks | Non-randomized, open-label, phase II study | n = 70 | [83] |
Newly diagnosed patients with TP53 mutated AML | Induction: nivolumab iv day 15 of cycle 1 and days 1 and 15 of subsequent cycles, decitabine 1–10 of induction cycle 1 and venetoclax orally daily on days 1–21 Maintenance: nivolumab iv: days 1 and 15, decitabine iv: days 1–5, and venetoclax po: days 1–21 | Non-randomized, open-label, pilot study | n = 13 | [107] |
AML patients in first CR/CRi after intense chemotherapy not candidates for HSCT | nivolumab iv every 2 weeks for 46 cycles vs. clinical observation | Randomized, open-label, phase II study | n = 82 | [90] |
AML/HR MDS 18–60 years or >60 eligible for intense chemotherapy or R/R AML/MDS for phase I | Phase I: nivolumab iv 1 mg/kg on day 24 of a 28 days cycle and after cycle 2, nivolumab iv every 2 weeks, 1 year + idarubicin 12 mg/m2 IV days 1–3 + cytarabine iv 1.5 g/m2 days 1–4 + solumedrol 50 mg/dexamethasone iv 10 mg days with 1–4. Phase II: nivolumab maximum tolerated dose | Non-randomized, open label, phase I/II study | n = 75 | [108] |
R/R AML or MDS patients following allogenic HSCT | nivolumab iv, days 1 and 15 vs. ipilimumab iv day 1 vs. nivolumab iv, days 1, 14, and 28 + ipilimumab iv, day 1 | Non-randomized, open label, phase I study | n = 55 | [95] |
AML patients ≥ 55–85 years, in first/second CR, suitable for haploidentical transplant | cytarabine iv 500–1000 mg/m2 bid days-2–4 + G-CSF, day 0 + nivolumab 40 mg, day 5 vs. cytarabine iv 500–1000 mg/m2 bid days 1–3 + nivolumab 40 mg day 1 | Randomized, open-label, phase II study | n = 16 | [109] |
R/R AML/biphenotypic patients or newly diagnosed ≥ 65 years AML patients, unfit for in high dose chemotherapy | azacitidine iv/sc, days 1–7 or days 1–4 and 7–9 + nivolumab iv, days 1 and 14 (cycle 1–4) and day 1 (cycle 5 and subsequent) vs. same regimen + ipilimumab iv day 1 and then every 6–12 weeks | Non-randomized, open label, phase II study | n = 182 | [110] |
HR of relapse in AML patients in CR/CRi/CRp/PR | nivolumab iv, days 1 and 15. (cycles 1–5) and nivolumab iv, day 1, (cycle 6–12), and nivolumab iv, day 1(every 3 cycles starting from cycle 12) or continue nivolumab days 1 and 15 if progressive disease | Non-randomized, open label, phase II study | n = 30 | [111] |
R/R AML/HR-MDS, IDH1 mutated | ivosidenib PO 500 mg/day + nivolumab 480mg on day 1 cycle 2. | Non-randomized, open label, phase II study | n = 45 | [112] |
18–70 years AML/HR MDS eligible for HSCT | nivolumab iv (1 mg/kg or 3 mg/kg), 12 doses, day 1 every 3 weeks, 12 cycles vs. Ipilimumab (0.3 mg/kg/1.0 mg/kg/3.0 mg/kg), day 1, every 3 weeks, 6 cycles vs. nivolumab iv (3 mg/kg), 12 doses, day 1 every 3 weeks, 12 cycles + ipilimumab (0.3 mg/kg/0.6 mg/kg/1.0 mg/kg), day 1, every 3 weeks, 6 cycles | Non-randomized, open label, phase I study | n = 21 | [113] |
IPSS-1, IPSS-2, HR MDS, low blast count AML | DEC-205/NY-ESO-1 fusion protein CDX-1401 intracutaneously + poly ICLC sc, day-14 and day 15 (cycle 1–4), and day 1 of every 4 courses (cycle 5 and after) + nivolumab iv days 1 and 15 and decitabine iv, days 1–5 | Non-randomized, open label, phase I study | n = 8 | [114] |
Recurrent AML/ALL/CLL/CML BCR-ABL+/HL/MM/non-Hodgkin Lymphoma/MDS/MPN/Other hematologic malignancies after allo-HSCT | Induction: ipilimumab iv, day 1+ nivolumab iv, day 1. (cycles of 21 days). Maintenance: ipilimumab iv every 12 weeks + nivolumab iv every 2 weeks in the absence of progressive disease or toxicity. | Non-randomized, open label, phase I/IB study | n = 71 | [115] |
HR AML in remission not eligible for HSCT | nivolumab 3 mg/kg iv every 2 weeks for 6 months. After 6 months nivolumab was given every 4 weeks until 12 months on the study, and every 3 months until relapse | Non-randomized, open label, phase II study | n = 8 | [116] |
R/R AML who have exhausted standard of care options | flotetuzumab in step-up dose, followed by continuous infusion flotetuzumab, starting at week 2 of cycle 1 and continuing through each 28-day cycle. MGA012 every two weeks. | Non-randomized phase I study | [117] | |
R/R AML | atezolizumab iv on day 22 of cycle 1 and on days 8 and 22 on subsequent cycles + Hu5F9-G4 1 mg/kg on days 1 and 4, 15 mg/kg on day 8, 30 mg/kg on day 11, and continue with 30 mg/kg every week | Non randomized, Open-label phase Ib study | n = 21 | [118] |
R/R or newly diagnosed patients with AML unfit for intensive chemotherapy | atezolizumab 840 mg iv on days 8 and 22 + guadecitabine 60 mg/m2 sc on Days 1–5 | Non randomized, open-label phase Ib study | n = 40 | [119] |
≥60 years AML patients in CR/CRi, MRD+ not eligible for HSCT | BL-8040 SC 1.25 mg/kg days 1–3 of each cycle + atezolizumab 1200 mg iv on Day 2 of every cycle. | Non-randomized, phase Ib/II, Multicenter, single arm, open-label study | n = 60 | [120] |
R/R AML patients FLT3+ | Phase I: establishing the right dose for gilteritinib Phase II: gilteritinib + atezolizumab | Non-randomized, phase I/II, open-label study | n = 61 | [121] |
Relapsed AML/MDS/ALL after allo-HSCT | pembrolizumab 200 mg iv every 3 weeks | Non-randomized, open-label, phase IB study | n = 20 | [122] |
Untreated AML, unfit for intensive chemotherapy | decitabine 20 mg/m2 iv day 1–5, every 28 days and avelumab was given at 10 mg/kg iv day 1, every 14 days | Non-randomized, single arm, open label phase I study | n = 7 | [123] |
R/R AML | azacitidine sc/iv days 1–7 or on days 1–5 and 8–9 + avelumab iv days 1 and 14 for 4 courses or until CR and on day 1 for subsequent courses. | Non-randomized, open-label phase Ib/II study | n = 19 | [124] |
MDS patients ≥ 18 years with IPSS-R intermediate, high, and very high or AML patients ≥ 65 years ineligible for intense chemotherapy | azacitidine 75 mg/m2 sc, days 1–7 and durvalumab 1500 mg iv on Day 1 every four weeks vs. azacitidine alone | Randomized, open-label, international, multicenter, phase II study | n = 213 | [125] |
R/R AML | pembrolizumab iv 200 mg, day 1 of every three-week cycle + decitabine 20 mg/m2, days 8–12 and 15–19 | Single-arm open-label, phase I/II study | n = 10 | [84] |
R/R AML patients and newly diagnosed elderly (≥65 Years) AML patients | azacitidine 75 mg/m2 iv/sc on days 1–7 every 28 days + pembrolizumab 200 mg iv every 3 weeks starting on day 8 of cycle 1 | Multicenter, nonrandomized, open-label phase II study | n = 40 | [43] |
≥60 years AML patients ineligible/refuse intensive chemotherapy | azacitadine iv/sc days 1–7 and venetoclax po days 1–28 of cycle 1 and days 21–28 vs. pembrolizumab iv day 8 cycle 1 and every 3 weeks in cycle 2–6 + azacitadine iv/sc days 1–7 + venetoclax po days 1–28 of cycle 1 and days 21–28 of subsequent cycles. | Randomized phase II, open-label trial | n = 76 | [88] |
≥60 years AML patients in CR not eligible for HSCT | pembrolizumab 200 mg iv once every three weeks | Non-randomized, open-label, phase II trial | n = 40 | [126] |
18–70 years R/R AML patients | Age-adjusted HiDAC followed by pembrolizumab 200 mg iv on day 14 in R/R AML patients | Non-randomized, open-label, phase II trial | n = 37 | [127] |
Newly-diagnosed AML patients | Induction phase: 3 + 7 + pembrolizumab (day 8) vs. 3 + 7. Consolidation phase: HiDAC + pembrolizumab vs. HiDAC. Maintenance phase: pembrolizumab every 3 weeks for up to 2 years | Randomized phase II, open-label trial | n = 124 | [89] |
R/R AML patients or newly diagnosed AML patients not suitable for high-dose chemotherapy or HR MDS or newly diagnosed MDS | AML: pembrolizumab iv days 1 and 22 and decitabine iv days 1–10 MDS: Pembrolizumab iv days 1 and 22 and decitabine on days 1–5. | Non-randomized, open-label, phase Ib trial | n = 54 | [128] |
NPM1 mutated AML patients in CR or MRD positivity or patients not eligible for high-dose chemotherapy or HSCT | pembrolizumab 200 mg iv + azacitidine 75 mg/m2 sc | Non-randomized, open-label, phase II trial | n = 28 | [129] |
HR AML (18–78 years) | fludarabine + melphalan+ Autologous HSCT followed by pembrolizumab on day +1 | Non-randomized, open-label, phase II trial | n = 20 | [130] |
AML/MDS/cHL, B cell NHL relapsed after alloHSCT | pembrolizumab 200 mg iv every 3 weeks | Non-randomized, open-label, phase I pilot study | n = 26 | [131] |
Affected Organ/System | Adverse Event | Symptoms | References |
---|---|---|---|
Lung | Pneumonitis | asymptomatic, cough, dyspnea, chest pain, wheezing | [132,133] |
Sarcoidosis | asymptomatic, cough, dyspnea | ||
Gastrointestinal | Colitis | diarrhea, bloody stools, abdominal discomfort or pain, | [132,134] |
Esophagitis | anorexia, nausea loss of appetite, abdominal pain, nausea, vomiting | ||
Gastritis | |||
Mucositis | |||
Pancreatitis | Fever, nausea, vomiting, abdominal pain with irradiation in the back | [135] | |
Liver | Hepatitis | asymptomatic, fever, nausea, vomiting | [134] |
Skin | Skin Rash | [136] | |
Pruritus | |||
Vitiligo | |||
Endocrine | Hypophysitis | fatigue, headache, nausea, postural hypotension, anorexia, tachycardia | [132,134] |
Hypothyroidism | asymptomatic, fatigue, constipation, bradycardia, cold intolerance | [132,137] | |
Hypertiroidism | tachycardia, tremor | ||
Diabetes mellitus type I | Asymptomatic, polyuria, polydipsia | [132,137] | |
Ocular | Uveitis | eye redness and pain, decreased vision | [138] |
Neurologic | Meningitis, encephalitis, Guillain Barre syndrome, myastenia gravis, polyradiculitis, | nausea, fatigue, headache, blurred vision, dysesthesia, fever, hallucinations, confusion, muscle weakness, tetraplegia, paraplegia | [139] |
Cardiac | Myocarditis, pericarditis hypertension, arrhythmias, myocardial infarction | palpitations, dyspnea, chest pain, fatigue | [134,140] |
Hematological | Aplastic anemia, hemolytic anemia, immune thrombocytopenia | fatigue, bleeding, infections | [132] |
Rheumatologic | Vasculitis, Sicca syndrome, polymiositis, systemic lupus erythematosus | mialgia, joint swelling and pain, dryness of mouth and eye | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimbu, L.; Mesaros, O.; Popescu, C.; Neaga, A.; Berceanu, I.; Dima, D.; Gaman, M.; Zdrenghea, M. Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia? Pharmaceuticals 2021, 14, 288. https://doi.org/10.3390/ph14040288
Jimbu L, Mesaros O, Popescu C, Neaga A, Berceanu I, Dima D, Gaman M, Zdrenghea M. Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia? Pharmaceuticals. 2021; 14(4):288. https://doi.org/10.3390/ph14040288
Chicago/Turabian StyleJimbu, Laura, Oana Mesaros, Cristian Popescu, Alexandra Neaga, Iulia Berceanu, Delia Dima, Mihaela Gaman, and Mihnea Zdrenghea. 2021. "Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia?" Pharmaceuticals 14, no. 4: 288. https://doi.org/10.3390/ph14040288
APA StyleJimbu, L., Mesaros, O., Popescu, C., Neaga, A., Berceanu, I., Dima, D., Gaman, M., & Zdrenghea, M. (2021). Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia? Pharmaceuticals, 14(4), 288. https://doi.org/10.3390/ph14040288