Screening and Selection of a New Medium for Diosgenin Production via Microbial Biocatalysis of Fusarium sp.
Abstract
:1. Introduction
2. Results
2.1. Selection of Primary Medium Components
2.2. Optimization of Medium Compositions
2.2.1. Model Building
2.2.2. Mathematical Validation
2.2.3. Mutual Interactions Analysis
2.2.4. Optimum Condition Selection
2.3. Experimental Validation
3. Discussion
4. Materials and Methods
4.1. Materials and Strain
4.2. Microbial Biocatalysis
4.2.1. Cultivation of the Active Strain on a PDA Slant
4.2.2. Preparation of the PDB Seed Culture
4.2.3. Biocatalysis of DZW by Fusarium sp. CPCC 400226
4.3. Products Analysis
4.4. Design of Experiments
4.4.1. Plackett–Burman Design (PBD)
4.4.2. Box–Behnken Design (BBD)
4.5. Model Verification
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Jin, M.; Tadesse, N.; Dang, J.; Zhou, T.; Zhang, H.; Wang, S.; Guo, Z.; Ito, Y. Dioscorea zingiberensis C. H. Wright: An overview on its traditional use, phytochemistry, pharmacology, clinical applications, quality control, and toxicity. J. Ethnopharmacol. 2018, 220, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sener, B.; Kilic, M.; Sharifi-Rad, J.; Naz, R.; Yousaf, Z.; Mudau, F.N.; Fokou, P.V.T.; Ezzat, S.M.; El Bishbishy, M.H.; et al. Dioscorea plants: A genus rich in vital nutra-pharmaceuticals-a review. Iran. J. Pharm. Res. 2019, 18, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, W.; Wen, Y.; Gong, G.; Zhao, Q.; Yu, G. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright. Fitoterapia 2010, 81, 1147–1156. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, W.; Chen, J.; Ao, M.; Yu, L. Changes in saponin composition of Dioscorea zingiberensis ch wight tubers under different storage conditions. Pak. J. Agric. Sci. 2020, 57, 303–307. [Google Scholar] [CrossRef]
- Pang, X.; Huang, H.Z.; Zhao, Y.; Xiong, C.Q.; Yu, L.Y.; Ma, B.P. Conversion of furostanol saponins into spirostanol saponins improves the yield of diosgenin from Dioscorea zingiberensis by acid hydrolysis. RSC Adv. 2015, 5, 4831–4837. [Google Scholar] [CrossRef]
- Zhen, X.Q.; Yu, Q.; Fang, W.Y.; Zhou, X.C. Effects of dioscin in protection of myocardial ischemic reperfusion injury in wistar rats. Chin. J. Clin. Med. 2006, 13, 341–343. [Google Scholar] [CrossRef]
- Si, Q.; Zhou, D. Clinic observation of anti-platelet aggregation of dioscin. Chin. J. Clin. Pharm. 2006, 15, 238–239. [Google Scholar]
- Wang, B.; Kang, A.L. Protective effect of furostanol saponins from Dioscorea zingiberensis on Myocardial ischemia in dogs. Guid. J. Trad. Chin. Med. Pharm. 2013, 12, 48–54. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ito, Y.; Liang, J.; Liu, J.; He, J. Therapeutic effects of total steroid saponin extracts from the rhizome of Dioscorea zingiberensis C.H.Wright in Freund’s complete adjuvant induced arthritis in rats. Int. Immunopharmacol. 2014, 23, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Raina, A.P.; Misra, R. Evaluation of diosgenin, a bioactive compound from natural source of Dioscorea species: A wild edible tuber plant. J. Pharm. Phytochem. 2020, 9, 1120–1124. [Google Scholar]
- Zheng, T.; Yu, L.; Zhu, Y.; Zhao, B. Evaluation of different pretreatments on microbial transformation of saponins in Dioscorea zingiberensis for diosgenin production. Biotechnol. Biotechnol. Equip. 2014, 28, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Luken, R.A.; Van Berkel, R.L.; Leuenberger, H.; Schwager, P. A 20-year retrospective of the National Cleaner Production Centres programme. J. Clean. Prod. 2016, 112, 1165–1174. [Google Scholar] [CrossRef]
- Yang, H.; Yin, H.; Shen, Y.; Xia, G.; Zhang, B.; Wu, X.; Cai, B.; Tam, J.P. A more ecological and efficient approach for producing diosgenin from Dioscorea zingiberensis tubers via pressurized biphase acid hydrolysis. J. Clean. Prod. 2016, 131, 10–19. [Google Scholar] [CrossRef]
- Shen, B.; Yu, X.; Zhang, F.; Jiang, W.; Yuan, H.; Pan, Z.; Zhou, H. Green production of diosgenin from alcoholysis of Dioscorea zingiberensis CH wright by a magnetic solid acid. J. Clean. Prod. 2020, 271, 122297. [Google Scholar] [CrossRef]
- Zhang, L.; Zuo, B.; Wu, P.; Wang, Y.; Gao, W. Ultrasound effects on the acetylation of dioscorea starch isolated from Dioscorea zingiberensis CH Wright. Chem. Eng. Process. 2012, 54, 29–36. [Google Scholar] [CrossRef]
- Shaikh, S.; Shriram, V.; Khare, T.; Kumar, V. Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. Physiol. Mol. Biol. Plants 2020, 26, 593–604. [Google Scholar] [CrossRef]
- Liu, W.; Huang, W.; Sun, W.L.; Zhu, Y.L.; Ni, J.R. Production of diosgenin from yellow ginger (Dioscorea zingiberensis C. H. Wright) saponins by commercial cellulase. World J. Microb. Biotechnol. 2010, 26, 1171–1180. [Google Scholar] [CrossRef]
- Liu, H.M.; Yuan, S.J.; Liu, H.T.; Wang, G.Y. Application of integrated membrane process on ginger waste water treatment. Hebei Chem. Eng. Ind. 2006, 29, 60–63. [Google Scholar] [CrossRef]
- Li, Z.; Tao, H.; Liang, M.; Wei, L.; An, X. Dioscin production wastewater treatment by two-chamber microbial fuel cells with different inoculation. Res. Environ. Sci. 2009, 22, 462–466. [Google Scholar]
- Qiu, L.; Niu, H.; Huang, W. Ultrasonic and fermented pretreatment technology for diosgenin production from Diosorea zingiberensis C.H. Wright. Chem. Eng. Res. Des. 2011, 89, 239–247. [Google Scholar] [CrossRef]
- Han, F.; Li, W.; Li, D.; Tang, X.; Gao, R. Starch separation process for the extraction of diosgenin from Dioscorea zingiberensis CH Wright. Chem. Ind. Eng. Prog. 2007, 26, 1501. [Google Scholar]
- Liu, L.; Dong, Y.S.; Qi, S.S.; Wang, H.; Xiu, Z.L. Biotransformation of steriodal saponins in Dioscorea zingiberensis CH Wright to diosgenin by Trichoderma harzianum. Appl. Microb. Biotechnol. 2010, 85, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Wang, Z.; Chen, H. Screening and identification of probiotic Lactobacillus for the production of diosgenin from Dioscorea zingiberensis Wright by biotransformation. Biotechnol. Biotechnol. Equip. 2017, 31, 1026–1032. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, Z.; Shu, G. A cleaner production of diosgenin from Dioscorea zingiberensis Wright biotransformed by Lactobacillus casei. Emir. J. Food Agric. 2017, 29, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Zhang, T.; Pang, X.; Wei, Y.; Liu, H.; Zhang, Y.; Ma, B.; Yu, L. Isolation of endophytic fungi from Dioscorea zingiberensis CH Wright and application for diosgenin production by solid-state fermentation. Appl. Microb. Biotechnol. 2018, 102, 5519–5532. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xiang, H.; Zhang, T.; Pang, X.; Su, J.; Liu, H.; Ma, B.; Yu, L. Development of a new high-cell density fermentation strategy for enhanced production of a fungus β-glucosidase in Pichia pastoris. Front. Microbiol. 2020, 11, 1988. [Google Scholar] [CrossRef]
- Cai, Y.; Liao, X.; Liang, X.; Ding, Y.; Sun, J.; Zhang, D. Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. New Biotechnol. 2011, 28, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Hajar, G.; Javad, A.; Ardeshir, H. Using response surface methodology in combination with Plackett–Burman design for optimization of culture media and extracellular expression of Trichoderma reesei synthetic endoglucanase II in Escherichia coli. Mol. Biol. Rep. 2018, 45, 1197–1208. [Google Scholar] [CrossRef]
- Oleksy-Sobczak, M.; Klewicka, E. Optimization of media composition to maximize the yield of exopolysaccharides production by Lactobacillus rhamnosus strains. Probiotics Antimicrob. 2019, 12, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Fan, Y.; Yang, L.; Tian, Y.; Zhang, J. Optimization of fermentation medium for acetoin production by Bacillus subtilis sf4-3 using statistical methods. Prep. Biochem. Biotechnol. 2014, 44, 529–543. [Google Scholar] [CrossRef]
- Anthony, T.; Rajesh, T.; Kayalvizhi, N.; Gunasekaran, P. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour. Technol. 2009, 100, 872–877. [Google Scholar] [CrossRef]
- Song, Q.; Huang, Y.; Yang, H. Optimization of fermentation conditions for antibiotic production by Actinomycetes YJ1 strain against Sclerotinia sclerotiorum. J. Agric. Sci. 2012, 4, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Longo, S.; Katsou, E.; Malamis, S.; Frison, N.; Renzi, D.; Fatone, F. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresour. Technol. 2015, 175, 436–444. [Google Scholar] [CrossRef]
- Wu, W.J.; Ahn, B.Y. Improved menaquinone (Vitamin K2) production in cheonggukjang by optimization of the fermentation conditions. Food Sci. Biotechnol. 2011, 20, 1585–1591. [Google Scholar] [CrossRef]
- Lu, Z.M.; Lei, J.Y.; Xu, H.Y.; Shi, J.S.; Xu, Z.H. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl. Microb. Biotechnol. 2011, 92, 371–379. [Google Scholar] [CrossRef]
- Liu, W.; Xiang, H.; Zhang, T.; Pang, X.; Su, J.; Liu, H.; Ma, B.; Yu, L. Development of a new bioprocess for clean diosgenin production through submerged fermentation of an endophytic fungus. ACS Omega 2021. [Google Scholar] [CrossRef]
- Deswal, D.; Khasa, Y.P.; Kuhad, R.C. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 2011, 102, 6065–6072. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Ahmed, S.; Liu, S.; Wang, S.; Lu, M.; Jiao, Y.J.C.P. Optimization of antioxidant exopolysaccharidess production by Bacillus licheniformis in solid state fermentation. Carbohydr. Polym. 2013, 98, 1377–1382. [Google Scholar] [CrossRef]
- Zhu, Y.; Ni, J.; Huang, W. Process optimization for the production of diosgenin with Trichoderma reesei. Bioprocess. Biosyst. Eng. 2010, 33, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Monta Ez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, S.; Demain, A.L. Metabolic regulation of fermentation processes. Enzym. Microb. Technol. 2002, 31, 895–906. [Google Scholar] [CrossRef]
- Rokem, J.S.; Lantz, A.E.; Nielsen, J. Systems biology of antibiotic production by microorganisms. Nat. Prod. Rep. 2007, 24, 1262–1287. [Google Scholar] [CrossRef]
- Pimentel, M.C.B.; Araújo, A.I.; Figueiredo, Z.M.B.; Silva, R.A.; Cavalcanti, M.T.H.; Moreira, K.A.; Filho, J.L.L.; Porto, A.L.F. Aqueous two-phase system for citrinin extraction from fermentation broth. Sep. Purif. Technol. 2013, 110, 158–163. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, Y.; Wang, Y.; Zhang, B.B.; Xu, G.R. Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata. Biochem. Eng. J. 2013, 79, 194–199. [Google Scholar] [CrossRef]
- Xu, X.; Wu, P.; Wang, T.; Yan, L.; Lin, M.; Chen, C. Synergistic effects of surfactant-assisted biodegradation of wheat straw and production of polysaccharides by Inonotus obliquus under submerged fermentation. Bioresour. Technol. 2019, 278, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Jain, V. Screening of process variables using Plackett–Burman design in the fabrication of gedunin-loaded liposomes. Artif. Cells 2017, 45, 1011–1022. [Google Scholar] [CrossRef]
- Moghannem, S.A.M.; Farag, M.M.S.; Shehab, A.M.; Azab, M.S. Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Braz. J. Microbiol. 2018, 49, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Hu, W.; Ma, B.; Wang, Y.; Huang, H.; Wang, S.; Qian, X. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Appl. Microb. Biotechnol. 2007, 76, 1329–1338. [Google Scholar] [CrossRef]
- Liu, W.; Gong, T.; Wang, Q.H.; Liang, X.; Chen, J.J.; Zhu, P. Scaling-up fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci. Rep. 2016, 6, 18439. [Google Scholar] [CrossRef] [Green Version]
Run Order | A: Tween | B: Vit | C: AA | D: PTM | E: YE | F: WHB | G: PS | H: DV1 | J: DV2 | K: DV3 | L: DV4 | Diosgenin Yield (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Value | Experimental Value | ||||||||||||
1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | 2.06 | 1.99 |
2 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | 0.63 | 0.49 |
3 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | 1.41 | 1.32 |
4 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | 1.71 | 1.78 |
5 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | 1.08 | 1.03 |
6 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | 1.02 | 1.08 |
7 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 0.10 | 0.11 |
8 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | 1.76 | 1.82 |
9 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | 1.25 | 1.34 |
10 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | 1.13 | 1.16 |
11 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | 0.30 | 0.29 |
12 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | 0.06 | 0.12 |
Source | SS | Df | MS | F-Value | p-Value | C% |
---|---|---|---|---|---|---|
Model | 4.75 | 7 | 0.6788 | 47.1 | 0.0011 | - |
A (Tween) | 0.2783 | 1 | 0.2783 | 19.3 | 0.0117 | 5.79 |
B (Vit) | 0.0001 | 1 | 0.0001 | <1.0 | 0.9540 | 0.0011 |
C (AA) | 0.0066 | 1 | 0.0066 | <1.0 | 0.5369 | 0.14 |
D (PTM) | 0.0210 | 1 | 0.0210 | 1.45 | 0.2942 | 0.44 |
E (YE) | 0.0145 | 1 | 0.0145 | 1.00 | 0.3732 | 0.30 |
F (WHB) | 3.0300 | 1 | 3.0300 | 210.1 | 0.0001 | 62.93 |
G (PS) | 1.4000 | 1 | 1.4000 | 97.5 | 0.0006 | 29.21 |
Residual | 0.0576 | 4 | 0.0144 | |||
Cor Total | 4.81 | 11 |
Run Order | X1: WHB | X2: PS | X3: Tween | Diosgenin Yield (%) | |
---|---|---|---|---|---|
Predicted Value | Experimental Value | ||||
1 | 0 | −1 | −1 | 1.40 | 1.42 |
2 | 0 | +1 | +1 | 1.99 | 1.97 |
3 | 0 | −1 | +1 | 1.51 | 1.51 |
4 | +1 | 0 | +1 | 1.48 | 1.50 |
5 | −1 | +1 | 0 | 1.22 | 1.23 |
6 | +1 | −1 | 0 | 1.72 | 1.71 |
7 | −1 | −1 | 0 | 0.39 | 0.39 |
8 | 0 | 0 | 0 | 1.96 | 1.96 |
9 | +1 | +1 | 0 | 1.95 | 1.95 |
10 | −1 | 0 | +1 | 0.72 | 0.73 |
11 | 0 | 0 | 0 | 1.96 | 1.93 |
12 | 0 | +1 | −1 | 1.97 | 1.97 |
13 | 0 | 0 | 0 | 1.96 | 1.98 |
14 | +1 | 0 | −1 | 1.69 | 1.68 |
15 | −1 | 0 | −1 | 0.39 | 0.37 |
Source | SS | Df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4.52 | 9 | 0.5026 | 812.8 | <0.0001 |
X1-WHB | 2.12 | 1 | 2.12 | 3431.2 | <0.0001 |
X2-PS | 0.5460 | 1 | 0.5460 | 883.0 | <0.0001 |
X3-Tween | 0.0091 | 1 | 0.0091 | 14.5 | 0.0121 |
X1X2 | 0.0900 | 1 | 0.0900 | 145.6 | <0.0001 |
X1X3 | 0.0729 | 1 | 0.0729 | 117.9 | 0.0001 |
X2X3 | 0.0020 | 1 | 0.0020 | 3.3 | 0.1301 |
X12 | 1.5200 | 1 | 1.5200 | 2461.8 | <0.0001 |
X22 | 0.0001 | 1 | 0.0001 | <1.0 | 0.6929 |
X32 | 0.2209 | 1 | 0.2209 | 357.2 | <0.0001 |
Residual | 0.0031 | 5 | 0.0006 | ||
Lack of Fit | 0.0018 | 3 | 0.0006 | 1.0 | 0.5465 |
Pure Error | 0.0013 | 2 | 0.0006 | ||
Cor Total | 4.53 | 14 |
Variables | Symbol | Actual Experimentation Value | |
---|---|---|---|
Low (−1) | High (+1) | ||
Tween-80 | A (Tween) | 1.5 | 2.5 |
Vitamin | B (Vit) | 0.8 | 1.2 |
Amino acid | C (AA) | 0.8 | 1.2 |
PTM4 | D (PTM) | 1.0 | 1.5 |
Yeast extract | E (YE) | 8 | 12 |
Wheat bran | F (WHB) | 16 | 24 |
Phosphate | G (PS) | 6.4 | 9.6 |
Variables | Symbol | Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Wheat bran | X1 (WHB) | 16 | 20 | 24 |
Phosphate | X2 (PS) | 6.4 | 10.0 | 9.6 |
Tween-80 | X3 (Tween) | 1.5 | 2.0 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xiang, H.; Zhang, T.; Pang, X.; Su, J.; Liu, H.; Ma, B.; Yu, L. Screening and Selection of a New Medium for Diosgenin Production via Microbial Biocatalysis of Fusarium sp. Pharmaceuticals 2021, 14, 390. https://doi.org/10.3390/ph14050390
Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L. Screening and Selection of a New Medium for Diosgenin Production via Microbial Biocatalysis of Fusarium sp. Pharmaceuticals. 2021; 14(5):390. https://doi.org/10.3390/ph14050390
Chicago/Turabian StyleLiu, Wancang, Haibo Xiang, Tao Zhang, Xu Pang, Jing Su, Hongyu Liu, Baiping Ma, and Liyan Yu. 2021. "Screening and Selection of a New Medium for Diosgenin Production via Microbial Biocatalysis of Fusarium sp." Pharmaceuticals 14, no. 5: 390. https://doi.org/10.3390/ph14050390
APA StyleLiu, W., Xiang, H., Zhang, T., Pang, X., Su, J., Liu, H., Ma, B., & Yu, L. (2021). Screening and Selection of a New Medium for Diosgenin Production via Microbial Biocatalysis of Fusarium sp. Pharmaceuticals, 14(5), 390. https://doi.org/10.3390/ph14050390