Potential Role of Methotrexate Polyglutamates in Therapeutic Drug Monitoring for Pediatric Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rampton, D.S. Methotrexate in Crohn′s Disease. Gut 2001, 48, 790–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, L.J.; Sandborn, W.J. Methotrexate for Inflammatory Bowel Disease: Pharmacology and Preliminary Results. Mayo Clin. Proc. 1996, 71, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobl, E.-L.; Jilma, B.; Erlacher, L.; Duhm, B.; Mustak, M.; Bröll, H.; Högger, P.; Rizovski, B.; Mader, R.M. A Short-Chain Methotrexate Polyglutamate as Outcome Parameter in Rheumatoid Arthritis Patients Receiving Methotrexate. Clin. Exp. Rheumatol. 2012, 30, 156–163. [Google Scholar] [PubMed]
- Smoleńska, Ż.; Kaznowska, Z.; Zarówny, D.; Simmonds, H.A.; Smoleński, R.T. Effect of Methotrexate on Blood Purine and Pyrimidine Levels in Patients with Rheumatoid Arthritis. Rheumatology 1999, 38, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rotte, M.C.F.J.; Den Boer, E.; De Jong, P.H.P.; Pluijm, S.M.F.; Ćalasan, M.B.; Weel, A.E.; Huisman, A.M.; Gerards, A.H.; Van Schaeybroeck, B.; Wulffraat, N.M.; et al. Methotrexate Polyglutamates in Erythrocytes are Associated with Lower Disease Activity in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2013, 74, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Ćalasan, M.B.; Den Boer, E.; De Rotte, M.C.F.J.; Vastert, S.J.; Kamphuis, S.; De Jonge, R.; Wulffraat, N.M. Methotrexate Polyglutamates in Erythrocytes Are Associated with Lower Disease Activity in Juvenile Idiopathic Arthritis Patients. Ann. Rheum. Dis. 2013, 74, 402–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, H.J.; Sorich, M.J.; Kowalski, S.M.; McKinnon, R.; Proudman, S.M.; Cleland, L.; Wiese, M.D. The Role and Utility of Measuring Red Blood Cell Methotrexate Polyglutamate Concentrations in Inflammatory Arthropathies—A Systematic Review. Eur. J. Clin. Pharmacol. 2015, 71, 411–423. [Google Scholar] [CrossRef]
- Funk, R.S.; Shakhnovich, V.; Cho, Y.K.; Polireddy, K.; Jausurawong, T.; Gress, K.; Becker, M.L. Factors Associated with Reduced Infliximab Exposure in the Treatment of Pediatric Autoimmune Disorders: A Cross-Sectional Prospective Convenience Sampling Study. Pediatr. Rheumatol. 2021, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Casteele, N.V.; Ferrante, M.; Van Assche, G.; Ballet, V.; Compernolle, G.; Van Steenet, K.; Simoens, S.; Rutgeerts, P.; Gils, A.; Vermeire, S. Trough Concentrations of Infliximab Guide Dosing for Patients With Inflammatory Bowel Disease. Gastroenterology 2015, 148, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Gaedigk, R.; Van Haandel, L.; Thomas, B.; Lasky, A.; Hoeltzel, M.; Dai, H.; Stobaugh, J.; Leeder, J.S. The Effect of Genotype on Methotrexate Polyglutamate Variability in Juvenile Idiopathic Arthritis and Association with Drug Response. Arthritis Rheum. 2010, 63, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Van Haandel, L.; Gaedigk, R.; Lasky, A.; Hoeltzel, M.; Stobaugh, J.; Leeder, J.S. Analysis of Intracellular Methotrexate Polyglutamates in Patients with Juvenile Idiopathic Arthritis: Effect of Route of Administration on Variability in Intracellular Methotrexate Polyglutamate Concentrations. Arthritis Rheum. 2010, 62, 1803–1812. [Google Scholar] [CrossRef] [PubMed]
- Stamp, L.K.; O’Donnell, J.L.; Chapman, P.T.; Zhang, M.; Frampton, C.; James, J.; Barclay, M.L. Determinants of Red Blood Cell Methotrexate Polyglutamate Concentrations in Rheumatoid Arthritis Patients Receiving Long-Term Methotrexate Treatment. Arthritis Rheum. 2009, 60, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.H.; Steenholdt, C.; Juhl, C.B.; Rogler, G. Efficacy and safety of methotrexate in the management of inflammatory bowel disease: A systematic review and meta-analysis of randomized, controlled trials. EClinicalMedicine 2020, 20, 100271. [Google Scholar] [CrossRef] [PubMed]
- Herfarth, H.; Barnes, E.L.; Valentine, J.F.; Hanson, J.; Higginset, P.D.R.; Isaacs, K.L.; Jackson, S.; Osterman, M.T.; Anton, K.; Ivanova, A.; et al. Methotrexate Is Not Superior to Placebo in Maintaining Steroid-Free Response or Remission in Ulcerative Colitis. Gastroenterology 2018, 155, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; McDonald, J.W.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; MacIntosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology 2014, 146, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; Mastrangelo, G.; Barone, P.; La Torre, F.; Martino, S.; Pappagallo, G.; Ravelli, A.; Taddio, A.; Zulian, F.; Cimaz, R. Methotrexate in Juvenile Idiopathic Arthritis: Advice and Recommendations from the MARAJIA Expert Consensus Meeting. Pediatr. Rheum. 2018, 16, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Siva, S.; Cook, G.K.; Jones, D.R.; Fadda, H.M. Methotrexate Polyglutamate Monitoring in Patients With Crohn′s Disease. Clin. Pharmacol. Drug Dev. 2017, 6, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.J.; Begg, E.J.; Zhang, M.; Frampton, C.M.; Barclay, M.L. Red Blood Cell Methotrexate Polyglutamate Concentrations in Inflammatory Bowel Disease. Ther. Drug Monit. 2007, 29, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Stamp, L.K.; O’Donnell, J.L.; Chapman, P.T.; Zhang, M.; James, J.; Frampton, C.; Barclay, M.L. Methotrexate Polyglutamate Concentrations Are Not Associated with Disease Control in Rheumatoid Arthritis Patients Receiving Long-Term Methotrexate Therapy. Arthritis Rheum. 2010, 62, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Van Haandel, L.; Becker, M.L.; Williams, T.D.; Leeder, J.S.; Stobaugh, J.F. Measurement of Methotrexate Polyglutamates in Human Erythrocytes by Ion-Pair UPLC–MS/MS. Bioanalysis 2011, 3, 2783–2796. [Google Scholar] [CrossRef] [PubMed]
Remission (n = 11) | A1a 36% | L1 25% | B1 50% | G0 100% |
L2 0% | B2 0% | |||
L3 50% | B3p 50% | G1 0% | ||
L4b 25% | S1 0% | |||
A1b 64% | L1 17% | B1 57% | G0 43% | |
L2L4a 17% | B2B3 14% | |||
L3 33% | G1 43% | |||
L3L4aL4b 17% | B3 14% | Missing Data 14% | ||
L4aL4b 17% | ||||
E2 17% | S1 14% | |||
Active (n = 10) | A1a 40% | L1L4a 25% | B1 50% | G0 50% |
L3 25% | B2 25% | G1 25% | ||
L3L4aL4b 25% | B3 0% | Missing Data 25% | ||
E4 25% | S1 25% | |||
A1b 60% | L1 33% | B1 66% | G0 100% | |
L2 17% | B2B3p 17% | |||
L3L4a 33% | B3 17% | G1 0% | ||
L3L4aL4b 17% | S1 0% |
Remission (n = 10) | Active (n = 9) | ||
---|---|---|---|
Median [IQR] | Median [IQR] | p-Value | |
Age (years) | 16.0 [13.0, 17.0] | 17.0 [11.0, 19.0] | 0.902 |
Weight (kg) | 54.6 [50.2, 75.1] | 52.3 [39.9, 80.1] | 0.653 |
Hemoglobin (g/dL) | 13.0 [12.1, 13.8] | 12.2 [11.3, 13.8] | 0.438 |
White Blood Cell Count (×103/mcL) | 5.8 [5.0, 6.7] | 7.4 [5.0, 10.1] | 0.347 |
Platelet Count (×103/mcL) | 264 [237, 299] | 325 [243, 394] | 0.713 |
ESR (mm/h) | 8.0 [6.0, 10.0] | 41.0 [18.0, 42.0] | 0.006 |
CRP (mg/dL) | 0.5 [0.5, 0.8] | 1.4 [0.8, 2.2] | 0.028 |
Albumin (g/dL) | 4.2 [3.6, 4.3] | 4.0 [3.8, 4.1] | 0.657 |
IBD duration (years) | 3.05 [1.93, 5.21] | 4.18 [1.14, 4.53] | 0.775 |
IFX trough (μg/mL) | 25.28 [5.35, 38.96] | 15.54 [7.11, 24.15] | 0.540 |
IFX dose (mg) | 500 [500, 700] | 500 [400, 600] | 0.738 |
IFX dose (mg/kg) | 9.24 [7.45, 10.04] | 9.56 [8.49, 10.03] | 0.838 |
IFX interval (weeks) | 4.0 [4.0, 6.0] | 5.0 [4.0, 6.0] | 0.554 |
Days since IFX dose (days) | 32.0 [28.0, 42.0] | 35.0 [28.0, 42.0] | 0.967 |
adjIFX dose (mg/kg/day) | 0.30 [0.18, 0.33] | 0.24 [0.22, 0.36] | 0.967 |
adjIFX Trough (μg/mL per mg/kg/day IFX) | 69.06 [36.56, 127.63] | 55.03 [36.04, 66.78] | 0.653 |
Weekly MTX dose (mg) | 12.50 [10.00, 17.50] | 10.00 [10.00, 17.50] | 0.701 |
Weekly MTX dose (mg/kg) | 0.20 [0.17, 0.23] | 0.23 [0.15, 0.45] | 0.653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrow, R.; Funk, R.; Becker, M.; Sherman, A.; Van Haandel, L.; Hudson, T.; Casini, R.; Shakhnovich, V. Potential Role of Methotrexate Polyglutamates in Therapeutic Drug Monitoring for Pediatric Inflammatory Bowel Disease. Pharmaceuticals 2021, 14, 463. https://doi.org/10.3390/ph14050463
Morrow R, Funk R, Becker M, Sherman A, Van Haandel L, Hudson T, Casini R, Shakhnovich V. Potential Role of Methotrexate Polyglutamates in Therapeutic Drug Monitoring for Pediatric Inflammatory Bowel Disease. Pharmaceuticals. 2021; 14(5):463. https://doi.org/10.3390/ph14050463
Chicago/Turabian StyleMorrow, Ryan, Ryan Funk, Mara Becker, Ashley Sherman, Leon Van Haandel, Taina Hudson, Rebecca Casini, and Valentina Shakhnovich. 2021. "Potential Role of Methotrexate Polyglutamates in Therapeutic Drug Monitoring for Pediatric Inflammatory Bowel Disease" Pharmaceuticals 14, no. 5: 463. https://doi.org/10.3390/ph14050463
APA StyleMorrow, R., Funk, R., Becker, M., Sherman, A., Van Haandel, L., Hudson, T., Casini, R., & Shakhnovich, V. (2021). Potential Role of Methotrexate Polyglutamates in Therapeutic Drug Monitoring for Pediatric Inflammatory Bowel Disease. Pharmaceuticals, 14(5), 463. https://doi.org/10.3390/ph14050463