Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner
Abstract
:1. Introduction
2. Main Body of Review
2.1. Ataluren’s Identification and Structure
2.2. First Readthrough Experiments
2.3. Mechanism of Action
2.4. Pharmacokinetics
2.4.1. Absorption
2.4.2. Sigmoidal Dose–Response Curve
2.4.3. Distribution, Metabolism, and Elimination
2.4.4. Palatability
2.4.5. Toxicity
2.5. Phase 1 Studies
2.6. Clinical Studies in Duchenne Muscular Dystrophy
2.6.1. Duchenne Muscular Dystrophy
2.6.2. Phase 2 and 3 Trials as Well as Observational Studies
2.7. Clinical Studies in Cystic Fibrosis
2.7.1. Cystic Fibrosis
2.7.2. Phase 2 and 3 Trials
2.8. Ataluren Readthrough Activity in Other Diseases
2.8.1. Muscles
2.8.2. Heart
2.8.3. Eyes/Vision
2.8.4. Respiratory Tract
2.8.5. Metabolic Disorders
2.8.6. Neurological Disorders
2.8.7. Kidney
2.9. Ataluren in Polytherapy
2.10. Limitations of Readthrough Assays
2.11. Factors Determining the Response to Nonsense Suppression Therapy with Ataluren
2.12. Examples of Diseases at Treating Which Ataluren Was Not Effective
3. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, J.; Martin, R. Mutations to nonsense codons in human genetic disease: Implications for gene therapy by nonsense suppressor tRNAs. Nucleic Acids Res. 1994, 22, 1327–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, P.; Adachi, H.; Yu, Y.T. Suppression of nonsense mutations by new emerging technologies. Int. J. Mol. Sci. 2020, 21, 4394. [Google Scholar] [CrossRef]
- Soussi, T.; Wiman, K.G. TP53: An oncogene in disguise. Cell Death Differ. 2015, 22, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Michorowska, S.; Giebułtowicz, J.; Wolinowska, R.; Konopka, A.; Wilkaniec, A.; Krajewski, P.; Bulska, E.; Wroczyński, P. Detection of ALDH3B2 in Human Placenta. Int. J. Mol. Sci. 2019, 20, 6292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karijolich, J.; Yu, Y.T. Therapeutic suppression of premature termination codons: Mechanisms and clinical considerations (Review). Int. J. Mol. Med. 2014, 34, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Kellermayer, R. Translational readthrough induction of pathogenic nonsense mutations. Eur. J. Med. Genet. 2006, 49, 445–450. [Google Scholar] [CrossRef]
- Youngman, E.M.; McDonald, M.E.; Green, R. Peptide release on the ribosome: Mechanism and implications for translational control. Annu. Rev. Microbiol. 2008, 62, 353–373. [Google Scholar] [CrossRef]
- Peltz, S.W.; Morsy, M.; Welch, E.M.; Jacobson, A. Ataluren as an agent for therapeutic nonsense suppression. Annu. Rev. Med. 2013, 64, 407–425. [Google Scholar] [CrossRef] [Green Version]
- Palma, M.; Lejeune, F. Deciphering the molecular mechanism of stop codon readthrough. Biol. Rev. 2021, 96, 310–329. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.F.; Mogg, A.E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 1985, 13, 6265–6272. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N.; Chan, C.H.; Pearce, D.A. The role of nonsense-mediated decay in neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 2013, 22, 2723–2734. [Google Scholar] [CrossRef] [Green Version]
- Dranchak, P.K.; Di Pietro, E.; Snowden, A.; Oesch, N.; Braverman, N.E.; Steinberg, S.J.; Hacia, J.G. Nonsense suppressor therapies rescue peroxisome lipid metabolism and assembly in cells from patients with specific PEX gene mutations. J. Cell. Biochem. 2011, 112, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, C.; Mendonça, L.; Matos, C.A. Gene Therapy Strategies: Gene Augmentation. In A Handbook of Gene and Cell Therapy; Springer International Publishing: Cham, Switzerland, 2020; pp. 117–126. [Google Scholar] [CrossRef]
- Goldmann, T.; Overlack, N.; Wolfrum, U.; Nagel-Wolfrum, K. PTC124-mediated translational readthrough of a nonsense mutation causing usher syndrome type 1C. Hum. Gene Ther. 2011, 22, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, T.; Overlack, N.; Möller, F.; Belakhov, V.; van Wyk, M.; Baasov, T.; Wolfrum, U.; Nagel-Wolfrum, K. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol. Med. 2012, 4, 1186–1199. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Translarna Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/translarna-epar-product-information_en.pdf (accessed on 12 April 2021).
- PTC Therapeutics. PTC Therapeutics Receives Conditional Approval in the European Union for Translarna for the Treatment of Nonsense Mutation Duchenne Muscular Dystrophy. 2014. Available online: http://ir.ptcbio.com/releasedetail.cfm?releaseid=863914 (accessed on 12 April 2021).
- European Medicines Agency. Translarna: EPAR-Procedural Steps Taken and Sceintific Information after Authorisation. 2020. Available online: www.ema.europa.eu/contact (accessed on 2 May 2021).
- Campbell, C.; Barohn, R.J.; Bertini, E.; Chabrol, B.; Comi, G.P.; Darras, B.T.; Finkel, R.S.; Flanigan, K.M.; Goemans, N.; Iannaccone, S.T.; et al. Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy. J. Comp. Eff. Res. 2020, 9, 973–984. [Google Scholar] [CrossRef]
- Mercuri, E.; Muntoni, F.; Osorio, A.N.; Tulinius, M.; Buccella, F.; Morgenroth, L.P.; Gordish-Dressman, H.; Jiang, J.; Trifillis, P.; Zhu, J.; et al. Safety and effectiveness of ataluren: Comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J. Comp. Eff. Res. 2020, 9, 341–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PTC Announces TranslarnaTM Approval in Russia for the Treatment of Duchenne Muscular Dystrophy. Available online: https://www.prnewswire.com/news-releases/ptc-announces-translarna-approval-in-russia-for-the-treatment-of-duchenne-muscular-dystrophy-301186438.html (accessed on 5 July 2021).
- PTC Therapeutics-Approved Medicines. Available online: https://www.ptcbio.com/our-pipeline/approved-medicines/ (accessed on 5 July 2021).
- Welch, E.M.; Barton, E.R.; Zhuo, J.; Tomizawa, Y.; Friesen, W.J.; Trifillis, P.; Paushkin, S.; Patel, M.; Trotta, C.R.; Hwang, S.; et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007, 447, 87–91. [Google Scholar] [CrossRef]
- Kayali, R.; Ku, J.M.; Khitrov, G.; Jung, M.E.; Prikhodko, O.; Bertoni, C. Read-through compound 13 restores dystrophin expression and improves muscle function in the MDX mouse model for duchenne muscular dystrophy. Hum. Mol. Genet. 2012, 21, 4007–4020. [Google Scholar] [CrossRef] [Green Version]
- Phelps, S.F.; Hauser, M.A.; Cole, N.M.; Rafael, J.A.; Hinkle, R.T.; Faulkner, J.A.; Chamberlain, J.S. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum. Mol. Genet. 1995, 4, 1251–1258. [Google Scholar] [CrossRef]
- Du, M.; Liu, X.; Welch, E.M.; Hirawat, S.; Peltz, S.W.; Bedwell, D.M. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc. Natl. Acad. Sci. USA 2008, 105, 2064–2069. [Google Scholar] [CrossRef] [Green Version]
- Welch, E.M.; Zhuo, J.; Tomizawa, Y.; Friesen, W.; Branstrom, A.; Hwang, S.; Babiak, J.; Miller, L.L.; Peltz, S.W. Characterization of PTC124 Activity, Specificity, and Mechanism of Action for Nonsense Mutation Suppression. In Neurology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. A175–A176. [Google Scholar]
- Hirawat, S.; Welch, E.M.; Elfring, G.L.; Northcutt, V.J.; Paushkin, S.; Hwang, S.; Leonard, E.M.; Almstead, N.G.; Ju, W.; Peltz, S.W.; et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J. Clin. Pharmacol. 2007, 47, 430–444. [Google Scholar] [CrossRef] [Green Version]
- Kerem, E.; Hirawat, S.; Armoni, S.; Yaakov, Y.; Shoseyov, D.; Cohen, M.; Nissim-Rafinia, M.; Blau, H.; Rivlin, J.; Aviram, M.; et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: A prospective phase II trial. Lancet 2008, 372, 719–727. [Google Scholar] [CrossRef]
- Moosajee, M.; Tracey-White, D.; Smart, M.; Weetall, M.; Torriano, S.; Kalatzis, V.; da Cruz, L.; Coffey, P.; Webster, A.R.; Welch, E. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsensemediated zebrafish model. Hum. Mol. Genet. 2016, 25, 3416–3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, N.E.; Wood, L.R.; Hamilton, N.J.; Bennett, M.J.; Peters, H.L. Treatment of a methylmalonyl-CoA mutase stopcodon mutation. Biochem. Biophys. Res. Commun. 2012, 427, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Barton, E.; Zadel, M.; Welch, E.; Trotta, C.; Paushkin, M.; Patel, M.; Zhuo, J.; Tomizawa, Y.; Weetall, M.; Northcutt, V.; et al. PTC124 Nonsense Mutation Supression Therapy of Duchenne Muscular Dystrophy (DMD). In Neurology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; p. A176. [Google Scholar]
- Kerem, E.; Konstan, M.W.; De Boeck, K.; Accurso, F.J.; Sermet-Gaudelus, I.; Wilschanski, M.; Elborn, J.S.; Melotti, P.; Bronsveld, I.; Fajac, I.; et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 2014, 2, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ng, M.Y.; Chen, Y.; Cooperman, B.S. Kinetics of initiating polypeptide elongation in an IRES-dependent system. eLife 2016, 5, e13429. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.Y.; Zhang, H.; Weil, A.; Singh, V.; Jamiolkowski, R.; Baradaran-Heravi, A.; Roberge, M.; Jacobson, A.; Friesen, W.; Welch, E.; et al. New in Vitro Assay Measuring Direct Interaction of Nonsense Suppressors with the Eukaryotic Protein Synthesis Machinery. ACS Med. Chem. Lett. 2018, 9, 1285–1291. [Google Scholar] [CrossRef]
- Nga, M.Y.; Lia, H.; Ghelfia, M.D.; Goldmanb, Y.E.; Coopermana, B.S. Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proc. Natl. Acad. Sci. USA 2021, 118, e2020599118. [Google Scholar] [CrossRef]
- Wilschanski, M.; Miller, L.L.; Shoseyov, D.; Blau, H.; Rivlin, J.; Aviram, M.; Cohen, M.; Armoni, S.; Yaakov, Y.; Pugatch, T.; et al. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur. Respir. J. 2011, 38, 59–69. [Google Scholar] [CrossRef]
- Sermet-Gaudelus, I.; De Boeck, K.; Casimir, G.J.; Vermeulen, F.; Leal, T.; Mogenet, A.; Roussel, D.; Fritsch, J.; Hanssens, L.; Hirawat, S.; et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am. J. Respir. Crit. Care Med. 2010, 182, 1262–1272. [Google Scholar] [CrossRef]
- Finkel, R.S.; Flanigan, K.M.; Wong, B.; Bönnemann, C.; Sampson, J.; Sweeney, H.L.; Reha, A.; Northcutt, V.J.; Elfring, G.; Barth, J.; et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS ONE 2013, 8, e81302. [Google Scholar] [CrossRef]
- Li, M.; Andersson-Lendahl, M.; Sejersen, T.; Arner, A. Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by ataluren treatment. FASEB J. 2014, 28, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Bushby, K.; Finkel, R.; Wong, B.; Barohn, R.; Campbell, C.; Comi, G.P.; Connolly, A.M.; Day, J.W.; Flanigan, K.M.; Goemans, N.; et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014, 50, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Ma, J.; Hwang, S.; Moon, Y.C.; Welch, E.M.; Weetall, M.; Colacino, J.M.; Almstead, N.; Babiak, J.; Goodwin, E. In vitro metabolism, reaction phenotyping, enzyme kinetics, CYP inhibition and induction potential of ataluren. Pharmacol. Res. Perspect. 2020, 8, e00576. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Ma, J.; Hwang, S.; Goodwin, E.; Northcutt, V.; Babiak, J.; Almstead, N. Metabolism and disposition of ataluren after oral administration to mice, rats, dogs, and humans. Drug Metab. Dispos. 2020, 48, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Shipkova, M.; Armstrong, V.W.; Oellerich, M.; Wieland, E. Acyl glucuronide drug metabolites: Toxicological and analytical implications. Ther. Drug Monit. 2003, 25, 1–16. [Google Scholar] [CrossRef]
- Ma, J.; Risher, N.; Northcutt, V.; Moon, Y.C.; Weetall, M.; Welch, E.; Colacino, J.; Almstead, N.; Kong, R. Ataluren metabolism: Ataluren-O-1β-acyl glucuronide is a stable circulating metabolite in mouse, rat, dog and human. Drug Metab. Pharmacokinet. 2021, 38, 100393. [Google Scholar] [CrossRef]
- Kong, R.; Laskin, O.L.; Kaushik, D.; Jin, F.; Ma, J.; McIntosh, J.; Souza, M.; Almstead, N. Ataluren Pharmacokinetics in Healthy Japanese and Caucasian Subjects. Clin. Pharmacol. Drug Dev. 2019, 8, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Bedwell, D.M.; Welch, E.M.; Weetall, M.; Hwang, S. Preclinical pharmacology and toxicology of PTC124 as nonsense mutation supression therapy for cystic fibrosis. Ped. Pulm. 2004, 38, 195. [Google Scholar]
- Bushby, K.; Finkel, R.; Birnkrant, D.J.; Case, L.E.; Clemens, P.R.; Cripe, L.; Kaul, A.; Kinnett, K.; McDonald, C.; Pandya, S.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010, 9, 77–93. [Google Scholar] [CrossRef]
- Dent, K.M.; Dunn, D.M.; von Niederhausern, A.C.; Aoyagi, A.T.; Kerr, L.; Bromberg, M.B.; Hart, K.J.; Tuohy, T.; White, S.; den Dunnen, J.T.; et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am. J. Med. Genet. Part. A 2005, 134A, 295–298. [Google Scholar] [CrossRef]
- Grounds, M.D.; Radley, H.G.; Lynch, G.S.; Nagaraju, K.; De Luca, A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol. Dis. 2008, 31, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.M.; Prantl, L.; Geis, S.; Felthaus, O.; Dolderer, J.; Anker, A.M.; Zeitler, K.; Alt, E.; Vykoukal, J. Circulating serum CK level vs. muscle impairment for in situ monitoring burden of disease in Mdx-mice. Clin. Hemorheol. Microcirc. 2017, 65, 327–334. [Google Scholar] [CrossRef]
- Sicinski, P.; Geng, Y.; Ryder-Cook, A.S.; Barnard, E.A.; Darlison, M.G.; Barnard, P.J. The molecular basis of muscular dystrophy in the mdx mouse: A point mutation. Science 1989, 244, 1578–1580. [Google Scholar] [CrossRef] [PubMed]
- Petrof, B.J.; Shrager, J.B.; Stedman, H.H.; Kelly, A.M.; Sweeney, H.L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. USA 1993, 90, 3710–3714. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.M.; Campbell, C.; Torricelli, R.E.; Finkel, R.S.; Flanigan, K.M.; Goemans, N.; Heydemann, P.; Kaminska, A.; Kirschner, J.; Muntoni, F.; et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1489–1498. [Google Scholar] [CrossRef]
- Muntoni, F.; Desguerre, I.; Guglieri, M.; Osorio, A.N.; Kirschner, J.; Tulinius, M.; Buccella, F.; Elfring, G.; Werner, C.; Schilling, T.; et al. Ataluren use in patients with nonsense mutation Duchenne muscular dystrophy: Patient demographics and characteristics from the STRIDE Registry. J. Comp. Eff. Res. 2019, 8, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morkous, S.S. Treatment with Ataluren for Duchene Muscular Dystrophy. Pediatr. Neurol. Briefs 2020, 34, 12. [Google Scholar] [CrossRef]
- Ruggiero, L.; Iodice, R.; Esposito, M.; Dubbioso, R.; Tozza, S.; Vitale, F.; Santoro, L.; Manganelli, F. One-year follow up of three Italian patients with Duchenne musculardystrophy treated with ataluren: Is earlier better? Ther. Adv. Neurol. Disord. 2018, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi-Fakhari, D.; Dillmann, U.; Flotats-Bastardas, M.; Poryo, M.; Abdul-Khaliq, H.; Shamdeen, M.G.; Mischo, B.; Zemlin, M.; Meyer, S. Off-Label Use of Ataluren in Four Non-ambulatory Patients with Duchenne Muscular Dystrophy: Effects on Cardiac and Pulmonary Function and Muscle Strength. Front. Pediatr. 2018, 6, 316. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, P.; Orsini, C.; Nigro, V.; Politano, L. Therapeutic approach with Ataluren in Duchenne symptomatic carriers with nonsense mutations in dystrophin gene. Results of a 9-month follow-up in a case report. Acta Myol. 2018, 37, 272. [Google Scholar]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, D.N.; Ostedgaard, L.S. Understanding how cystic fibrosis mutations cause a loss of Cl- channel function. Mol. Med. Today 1996, 2, 290–297. [Google Scholar] [CrossRef]
- Wilschanski, M. Class 1 CF mutations. Front. Pharmacol. 2012, 3, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, C.F.G.A. Population variation of common cystic fibrosis mutations. Hum. Mutat. 1994, 4, 167–177. [Google Scholar] [CrossRef]
- Kerem, B.; Chiba-Falek, O.; Kerem, E. Cystic fibrosis in Jews: Frequency and mutation distribution. Genet. Test. 1997, 1, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, G.S.; Sellers, D.E.; Robinson, W.M. Self-Reported Physical and Psychological Symptom Burden in Adults with Cystic Fibrosis. J. Pain Symptom Manag. 2008, 35, 372–380. [Google Scholar] [CrossRef]
- Konstan, M.W.; Morgan, W.J.; Butler, S.M.; Pasta, D.J.; Craib, M.L.; Silva, S.J.; Stokes, D.C.; Wohl, M.E.B.; Wagener, J.S.; Regelmann, W.E.; et al. Risk Factors For Rate of Decline in Forced Expiratory Volume in One Second in Children and Adolescents with Cystic Fibrosis. J. Pediatr. 2007, 151, 134–139. [Google Scholar] [CrossRef]
- Tietze, K.J. Review of Laboratory and Diagnostic Tests. In Clinical Skills for Pharmacists; Elsevier: Amsterdam, The Netherlands, 2012; pp. 86–122. [Google Scholar]
- Lacomis, D. Respiratory Dysfunction. In Office Practice of Neurology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 137–145. ISBN 9780443065576. [Google Scholar]
- Zielenski, J.; Markiewicz, D.; Chen, H.S.; Schappert, K.; Seller, A.; Durie PCorey, M.; Tsui, L.-C. Identification of six mutations (R31L, 441delA, 681delC, 1461ins4, W1089R, E1104X) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum. Mutat. 1995, 5, 43–47. [Google Scholar] [CrossRef]
- Clancy, J.P.; Bebök, Z.; Ruiz, F.; King, C.; Jones, J.; Walker, L.; Greer, H.; Hong, J.; Wing, L.; Macaluso, M.; et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2001, 163, 1683–1692. [Google Scholar] [CrossRef]
- De Jong, P.A.; Nakano, Y.; Lequin, M.H.; Mayo, J.R.; Woods, R.; Paré, P.D.; Tiddens, H.A.W.M. Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur. Respir. J. 2004, 23, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Tepper, L.A.; Caudri, D.; Utens, E.M.W.J.; Van Der Wiel, E.C.; Quittner, A.L.; Tiddens, H.A.W.M. Tracking CF disease progression with CT and respiratory symptoms in a cohort of children aged 6-19 years. Pediatric Pulmonol. 2014, 49, 1182–1189. [Google Scholar] [CrossRef]
- Rosenow, T.; Oudraad, M.C.J.; Murray, C.P.; Turkovic, L.; Kuo, W.; de Bruijne, M.; Ranganathan, S.C.; Tiddens, H.A.W.M.; Stick, S.M. PRAGMA-CF. A Quantitative Structural Lung Disease Computed Tomography Outcome in Young Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2015, 191, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Tiddens, H.A.W.M.; Andrinopoulou, E.R.; McIntosh, J.; Elborn, J.S.; Kerem, E.; Bouma, N.; Bosch, J.; Kemner-Van deCorput, M. Chest computed tomography outcomes in a randomized clinical trial in cystic fibrosis: Lessons learned from the first ataluren phase 3 study. PLoS ONE 2020, 15, e0240898. [Google Scholar] [CrossRef]
- Konstan, M.W.; VanDevanter, D.R.; Rowe, S.M.; Wilschanski, M.; Kerem, E.; Sermet-Gaudelus, I.; DiMango, E.; Melotti, P.; McIntosh, J.; De Boeck, K. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J. Cyst. Fibros. 2020, 19, 595–601. [Google Scholar] [CrossRef]
- Peabody Lever, J.; Mutyam, V.; Hathorne, H.; Peng, N.; Sharma, J.; Edwards, L.; Rowe, S. Ataluren/ivacaftor combination therapy: Two N-of-1 trials in cystic fibrosis patients with nonsense mutations. Pediatr. Pulmonol. 2020, 55, 1838–1842. [Google Scholar] [CrossRef]
- Liu, J.; Aoki, M.; Illa, I.; Wu, C.; Fardeau, M.; Angelini, C.; Serrano, C.; Andoni Urtizberea, J.; Hentati, F.; Hamida, M.B.; et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 1998, 20, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Vilchez, J.J.; Gallano, P.; Gallardo, E.; Lasa, A.; Rojas-García, R.; Freixas, A.; De Luna, N.; Calafell, F.; Sevilla, T.; Mayordomo, F.; et al. Identification of a novel founder mutation in the DYSF gene causing clinical variability in the spanish population. Arch. Neurol. 2005, 62, 1256–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Yang, Z.; Brisson, B.K.; Feng, H.; Zhang, Z.; Welch, E.M.; Peltz, S.W.; Barton, E.R.; Brown, R.H.; Sweeney, H.L. Membrane blebbing as an assessment of functional rescue of dysferlin-deficient human myotubes via nonsense suppression. J. Appl. Physiol. 2010, 109, 901–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Liu, X.; Huang, J.; Zhang, Y.; Hu, R.; Pu, J. Comparison of read-through effects of aminoglycosides and PTC124 on rescuing nonsense mutations of HERG gene associated with long QT syndrome. Int. J. Mol. Med. 2014, 33, 729–735. [Google Scholar] [CrossRef]
- Crotti, L.; Celano, G.; Dagradi, F.; Schwartz, P.J. Congenital long QT syndrome. Orphanet J. Rare Dis. 2008, 3, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Splawski, I.; Shen, J.; Timothy, K.W.; Lehmann, M.H.; Priori, S.; Robinson, J.L.; Moss, A.J.; Schwartz, P.J.; Towbin, J.A.; Vincent, G.M.; et al. Spectrum of mutations in Long-QT Syndrome genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000, 102, 1178–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbeel, L.; Freson, K. Rab proteins and Rab-associated proteins: Major actors in the mechanism of protein-trafficking disorders. Eur. J. Pediatr. 2008, 167, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Moosajee, M.; Ramsden, S.C.; Black, G.C.; Seabra, M.C.; Webster, A.R. Clinical utility gene card for: Choroideremia. Eur. J. Hum. Genet. 2014, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabra, M.C.; Mules, E.H.; Hume, A.N. Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 2002, 8, 23–30. [Google Scholar] [CrossRef]
- Schwarz, N.; Carr, A.-J.; Lane, A.; Moeller, F.; Chen, L.L.; Aguilà, M.; Nommiste, B.; Muthiah, M.N.; Kanuga, N.; Wolfrum, U.; et al. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum. Mol. Genet. 2015, 24, 972–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, W.; Freeman, S.A. Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Front. Immunol. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Ramsden, C.M.; Nommiste, B.; Lane, A.R.; Carr, A.-J.F.; Powner, M.B.; Smart, M.J.K.; Chen, L.L.; Muthiah, M.N.; Webster, A.R.; Moore, A.T.; et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vössing, C.; Owczarek-Lipska, M.; Nagel-Wolfrum, K.; Reiff, C.; Jüschke, C.; Neidhardt, J. Translational read-through therapy of rpgr nonsense mutations. Int. J. Mol. Sci. 2020, 21, 8418. [Google Scholar] [CrossRef]
- Fishman, G.A.; Farber, M.D.; Derlacki, D.J. X-linked retinitis pigmentosa. Profile of clinical findings. Arch. Ophthalmol. 1988, 106, 369–375. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, Q.; Uitto, J. Ectopic mineralization disorders of the extracellular matrix of connective tissue: Molecular genetics and pathomechanisms of aberrant calcification. Matrix Biol. 2014, 33, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Le Saux, O.; Martin, L.; Aherrahrou, Z.; Leftheriotis, G.; Váradi, A.; Brampton, C.N. The molecular and physiological roles of ABCC6: More than meets the eye. Front. Genet. 2012, 3, 289. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Jiang, Q.; Takahagi, S.; Shao, C.; Uitto, J. Premature Termination Codon Read-Through in the ABCC6 Gene: Potential Treatment for Pseudoxanthoma Elasticum. J. Invest. Dermatol. 2013, 133, 2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwaenepoel, I.; Verpy, E.; Blanchard, S.; Meins, M.; Apfelstedt-Sylla, E.; Gal, A.; Petit, C. Identification of three novel mutations in the USH1C gene and detection of thirty-one polymorphisms used for haplotype analysis. Hum. Mutat. 2001, 17, 34–41. [Google Scholar] [CrossRef]
- Reiners, J.; Reidel, B.; El-Amraoui, A.; Boëda, B.; Huber, I.; Petit, C.; Wolfrum, U. Differential Distribution of Harmonin Isoforms and Their Possible Role in Usher-1 Protein Complexes in Mammalian Photoreceptor Cells. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5006–5015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiners, J.; Nagel-Wolfrum, K.; Jürgens, K.; Märker, T.; Wolfrum, U. Molecular basis of human Usher syndrome: Deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res. 2006, 83, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Stingl, K.; Kohl, S.; Nagel-Wolfrum, K.; Ries, J.; Linnert, J. Ataluren for the treatment of usher syndrome 2A caused by nonsense mutations. Int. J. Mol. Sci. 2019, 20, 6274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisodiya, S.M.; Free, S.L.; Williamson, K.A.; Mitchell, T.N.; Willis, C.; Stevens, J.M.; Kendall, B.E.; Shorvon, S.D.; Hanson, I.M.; Moore, A.T.; et al. PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat. Genet. 2001, 28, 214–216. [Google Scholar] [CrossRef]
- Gregory-Evans, C.Y.; Wang, X.; Wasan, K.M.; Zhao, J.; Metcalfe, A.L.; Gregory-Evans, K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J. Clin. Invest. 2014, 124, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djayet, C.; Bremond-Gignac, D.; Touchard, J.; Secretan, P.H.; Vidal, F.; Robert, M.P.; Daruich, A.; Cisternino, S.; Schlatter, J. Formulation and stability of ataluren eye drop oily solution for aniridia. Pharmaceutics 2021, 13, 7. [Google Scholar] [CrossRef]
- Drake, K.M.; Dunmore, B.J.; McNelly, L.N.; Morrell, N.W.; Aldred, M.A. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2013, 49, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, R.; Hata, K.; Ikeda, F.; Matsubara, T.; Yamashita, K.; Ichida, F.; Yoneda, T. The role of Smads in BMP signaling. Front. Biosci. 2003, 8, s275–s284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, L.; Yang, X.; Southwood, M.; Moore, S.; Crosby, A.; Upton, P.D.; Dunmore, B.J.; Morrell, N.W. Targeting translational read-through of premature terminationmutations in BMPR2 with PTC124 for pulmonary arterialhypertension. Pulm. Circ. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, M.; Bukowy-Bieryllo, Z.; Jackson, C.L.; Zietkiewicz, E. Properties of non-aminoglycoside compounds used to stimulate translational readthrough of ptc mutations in primary ciliary dyskinesia. Int. J. Mol. Sci. 2021, 22, 4923. [Google Scholar] [CrossRef] [PubMed]
- Legendre, M.; Zaragosi, L.E.; Mitchison, H.M. Motile cilia and airway disease. Semin. Cell Dev. Biol. 2021, 110, 19–33. [Google Scholar] [CrossRef]
- Knowles, M.R.; Ostrowski, L.E.; Loges, N.T.; Hurd, T.; Leigh, M.W.; Huang, L.; Wolf, W.E.; Carson, J.L.; Hazucha, M.J.; Yin, W.; et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am. J. Hum. Genet. 2013, 93, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Haltia, M. The neuronal ceroid-lipofuscinoses. J. Neuropathol. Exp. Neurol. 2003, 62, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.E.; Mole, S.E. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology 2012, 79, 183–191. [Google Scholar] [CrossRef]
- Sarkar, C.; Zhang, Z.; Mukherjee, A.B. Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol. Genet. Metab. 2011, 104, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Kousi, M.; Lehesjoki, A.E.; Mole, S.E. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum. Mutat. 2012, 33, 42–63. [Google Scholar] [CrossRef]
- Lojewski, X.; Staropoli, J.F.; Biswas-legrand, S.; Simas, A.M.; Haliw, L.; Selig, M.K.; Coppel, S.H.; Goss, K.A.; Petcherski, A.; Chandrachud, U.; et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum. Mol. Genet. 2014, 23, 2005–2022. [Google Scholar] [CrossRef]
- Stramm, L.; Li, W.; Haskins, M.; Aguirre, G. Glycosaminoglycan and collagen metabolism in arylsulfatase B-deficient retinal pigment epithelium in vitro. Invest. Ophthalmol Vis. Sci. 1991, 32, 2035–2041. [Google Scholar]
- Bartolomeo, R.; Polishchuk, E.V.; Volpi, N.; Polishchuk, R.S.; Auricchio, A. Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI. J. Inherit. Metab. Dis. 2013, 36, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.J.; Boriack, R.L.; Narayan, S.; Rutledge, S.L.; Raff, M.L. Novel mutations in CPT 1A define molecular heterogeneity of hepatic carnitine palmitoyltransferase I deficiency. Mol. Genet. Metab. 2004, 82, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Santani, A.B. Carnitine Palmitoyltransferase 1A Deficiency. In GeneReviews®; University of Washington: Seattle, WA, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1527/ (accessed on 8 July 2021).
- Tan, L.; Narayan, S.B.; Chen, J.; Meyers, G.D.; Bennett, M.J. PTC124 improves readthrough and increases enzymatic activity of the CPT1A R160X nonsense mutation. J. Inherit. Metab. Dis. 2011, 34, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; van Karnebeek, C.D.M. Inborn errors of metabolism. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 162, pp. 449–481. [Google Scholar]
- Acquaviva, C.; Benoist, J.; Pereira, S.; Callebaut, I.; Koskas, T.; Porquet, D.; Elion, J. Molecular basis of methylmalonyl-CoA mutase apoenzyme defect in 40 European patients affected by mut(o) and mut- forms of methylmalonic acidemia: Identification of 29 novel mutations in the MUT gene. Hum. Mutat. 2005, 25, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Alcudia, R.; Pérez, B.; Ugarte, M.; Desviat, L.R. Feasibility of nonsense mutation readthrough as a novel therapeutical approach in propionic acidemia. Hum. Mutat. 2012, 33, 973–980. [Google Scholar] [CrossRef]
- Du, L.; Jung, M.E.; Damoiseaux, R.; Completo, G.; Fike, F.; Ku, J.M.; Nahas, S.; Piao, C.; Hu, H.; Gatti, R.A. A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol. Ther. 2013, 21, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.-W.; Yang, S.-S.; Chau, T.; Nakamura, M.; Yamazaki, O.; Seki, G.; Yamada, H.; Hsu, H.-M.; Cheng, C.-J.; Lin, S.-H. Therapeutic effect of prenatal alkalization and PTC124 in Na+/HCO3− cotransporter 1 p.W516* knock-in mice. Gene Ther. 2015, 22, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Demirci, F.; Chang, M.; Mah, T.; Romero, M.; Gorin, M. Proximal renal tubular acidosis and ocular pathology: A novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol. Vis. 2006, 12, 324–330. [Google Scholar]
- Lo, Y.; Yang, S.; Seki, G.; Yamada, H.; Horita, S.; Yamazaki, O.; Fujita, T.; Usui, T.; Tsai, J.; Yu, S.; et al. Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int. 2011, 79, 730–741. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hilarion, S.; Beghyn, T.; Jia, J.; Debreuck, N.; Berte, G.; Mamchaoui, K.; Mouly, V.; Gruenert, D.C.; Déprez, B.; Lejeune, F. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J. Rare Dis. 2012, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Auld, D.S.; Thorne, N.; Maguire, W.F.; Inglese, J. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc. Natl. Acad. Sci. USA 2009, 106, 3585–3590. [Google Scholar] [CrossRef] [Green Version]
- Auld, D.S.; Lovell, S.; Thorne, N.; Lea, W.A.; Maloney, D.J.; Shen, M.; Rai, G.; Battaile, K.P.; Thomas, C.J.; Simeonov, A.; et al. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proc. Natl. Acad. Sci. USA 2010, 107, 4878–4883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne, N.; Inglese, J.; Auld, D.S. Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in Chemical Biology. Chem. Biol. 2010, 17, 646–657. [Google Scholar] [CrossRef] [Green Version]
- McElroy, S.P.; Nomura, T.; Torrie, L.S.; Warbrick, E.; Gartner, U.; Wood, G.; McLean, W.H.I. A Lack of Premature Termination Codon Read-Through Efficacy of PTC124 (Ataluren) in a Diverse Array of Reporter Assays. PLoS Biol. 2013, 11, e1001593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentini, L.; Melfi, R.; Di Leonardo, A.; Spinello, A.; Barone, G.; Pace, A.; Piccionello, A.P.; Pibiri, I. Toward a Rationale for the PTC124 (Ataluren) Promoted Readthrough of Premature Stop Codons: A Computational Approach and GFP-Reporter Cell-Based Assay. Mol. Pharm. 2014, 11, 653–664. [Google Scholar] [CrossRef]
- Roy, B.; Friesen, W.J.; Tomizawa, Y.; Leszyk, J.D.; Zhuo, J.; Johnson, B.; Dakka, J.; Trotta, C.R.; Xue, X.; Mutyam, V.; et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc. Natl. Acad. Sci. USA 2016, 113, 12508–12513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devinsky, O.; King, L.T.; Bluvstein, J.; Friedman, D. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann. Clin. Transl. Neurol. 2021, 8, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Marques da Silva, L.F.; Siqueira Turolla, G.; Marques Orteg, M.; Pires de Aguiar, P.H. Dravet Syndrome and SCN1A gene mutations: A review. J. Neurol. Stroke 2020, 10, 61–65. [Google Scholar] [CrossRef]
- Fazzari, M.; Frasca, A.; Bifari, F.; Landsberger, N. Aminoglycoside drugs induce efficient read-through of CDKL5 nonsense mutations, slightly restoring its kinase activity. RNA Biol. 2019, 16, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Scriver, C.R.; Hurtubise, M.; Konecki, D.; Phommarinh, M.; Prevost, L.; Erlandsen, H.; Stevens, R.; Waters, P.J.; Ryan, S.; McDonald, D.; et al. PAHdb 2003: What a locus-specific knowledgebase can do. Hum. Mutat. 2003, 21, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.; Reichardt, J.; Christodoulou, J. In vitro read-through of phenylalanine hydroxylase (PAH) nonsense mutations using aminoglycosides: A potential therapy for phenylketonuria. J. Inherit. Metab. Dis. 2013, 36, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Harmer, S.C.; Mohal, J.S.; Kemp, D.; Tinker, A. Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel. Biochem. J. 2012, 443, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Koopmann, T.T.; Verkerk, A.O.; Bezzina, C.R.; De Bakker, J.M.T.; Wilde, A.A.M. The chemical compound PTC124 does not affect cellular electrophysiology of cardiac ventricular myocytes. Cardiovasc. Drugs Ther. 2012, 26, 41–45. [Google Scholar] [CrossRef]
- Steinberg, S.; Chen, L.; Wei, L.; Moser, A.; Moser, H.; Cutting, G.; Braverman, N. The PEX Gene Screen: Molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol. Genet. Metab. 2004, 83, 252–263. [Google Scholar] [CrossRef]
- Braverman, N.; Chen, L.; Lin, P.; Obie, C.; Steel, G.; Douglas, P.; Chakraborty, P.K.; Clarke, J.T.R.; Boneh, A.; Moser, A.; et al. Mutation analysis of PEX7 in 60 probands with rhizomelic chondrodysplasia punctata and functional correlations of genotype with phenotype. Hum. Mutat. 2002, 20, 284–297. [Google Scholar] [CrossRef]
- Motley, A.M.; Brites, P.; Gerez, L.; Hogenhout, E.; Haasjes, J.; Benne, R.; Tabak, H.F.; Wanders, R.J.A.; Waterham, H.R. Mutational spectrum in the PEX7 gene and functional analysis of mutant alleles in 78 patients with rhizomelic chondrodysplasia punctata type 1. Am. J. Hum. Genet. 2002, 70, 612–624. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, I.S.; Keogh, J.M.; Yeo, G.S.H.; Lank, E.J.; Cheetham, T.; O’Rahilly, S. Clinical Spectrum of Obesity and Mutations in the Melanocortin 4 Receptor Gene. N. Engl. J. Med. 2003, 348, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.X. The melanocortin-4 receptor: Physiology, pharmacology, and pathophysiology. Endocr. Rev. 2010, 31, 506–543. [Google Scholar] [CrossRef] [Green Version]
- Brumm, H.; Mühlhaus, J.; Bolze, F.; Scherag, S.; Hinney, A.; Hebebrand, J.; Wiegand, S.; Klingenspor, M.; Grüters, A.; Krude, H.; et al. Rescue of melanocortin 4 receptor (MC4R) nonsense mutations by aminoglycoside-mediated read-through. Obesity 2012, 20, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Morena, C.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Mesas, A.E.; Pozuelo-Carrascosa, D.; Martínez-Vizcaíno, V. Restorative treatments of dystrophin expression in Duchenne muscular dystrophy: A systematic review. Ann. Clin. Transl. Neurol. 2020, 7, 1738. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug. Administration Application Number 20688Orig1s000: Summary Review. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/206488_summary%20review_redacted.pdf (accessed on 30 July 2021).
- In Proceedings of the FDA Briefing Document Peripheral and Central Nervous System Drugs Advisory Committee Meeting. 2015. Available online: https://www.fda.gov/files/advisory%20committees/published/FDA-Briefing-Information-for-the-January-22--2016-Meeting-of-the-Peripheral-and-Central-Nervous-System-Drugs-Advisory-Committee.pdf (accessed on 29 July 2021).
- US Food Drug Administration. FDA Grants Accelerated Approval to First Drug for Duchenne Muscular Dystrophy. Available online: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-drug-duchenne-muscular-dystrophy (accessed on 27 July 2021).
- Lim, K.R.Q.; Maruyama, R.; Yokota, T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Devel. Ther. 2017, 11, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mutation | mRNA Nucleotide Sequence | Mutation Frequency (%) |
---|---|---|
R1275X | UGA-C | <1 |
R1164X | UGA-C | 10 |
R1141X | UGA-A | 54 |
Q378X | UAG-A | <1 |
Q1143X | UAG-G | <1 |
R518X | UGA-G | 1.2 |
R1398X | UGA-G | 1.2 |
Cell line | Construct | Nonsense Mutation and Its Position | Read-Out | Ataluren Concentration (μg/mL) |
---|---|---|---|---|
ADXC8 | Fluc2P (stable) | TGA-G at 223 | luciferase | 0.0000028–28.4 |
AD293 | β-galactosidase (stable) | TGA-G at 320 | β-gal | 0.028–28.4 |
Rluc (transient) | TGA-G at 21 | luciferase | 0.00028–28.4 | |
AD293 | FLAG-tagged collagen VII (transient) | TAG-T (Q251X) | ELISA | 0.028–28.4 |
FLAG-tagged collagen VII (transient) | TGA-G (R578X) | ELISA | 0.028–28.4 | |
AD293 | Keratin 6a-YFP fusion (transient) | TGA/TAG/TAA at 533 | Western blot | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michorowska, S. Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals 2021, 14, 785. https://doi.org/10.3390/ph14080785
Michorowska S. Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals. 2021; 14(8):785. https://doi.org/10.3390/ph14080785
Chicago/Turabian StyleMichorowska, Sylwia. 2021. "Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner" Pharmaceuticals 14, no. 8: 785. https://doi.org/10.3390/ph14080785
APA StyleMichorowska, S. (2021). Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals, 14(8), 785. https://doi.org/10.3390/ph14080785