Lung Fibrosis after COVID-19: Treatment Prospects
Abstract
:1. Introduction
The single biggest threat to man’s continued dominance on the planet is the virus.
2. Clinical Trials of Therapies for Post-COVID Lung Fibrosis
2.1. Nintedanib and Pirfenidone
2.2. Treamid
2.3. LYT-100 (Deupirfenidon)
2.4. Collagen-Polyvinylpyrrolidone (FibroquelMR)
2.5. Glucocorticosteroids (Prednisone)
2.6. Bovhyaluronidase Azoximer (Longidase)
2.7. BIO 300 (Genistein)
2.8. Tetrandrine
2.9. Fuzheng Huayu Tablet (FZHY)
2.10. Anluohuaxian
2.11. Stromal Vascular Fraction (cSVF)
2.12. IN01 Vaccine
2.13. Chitotriosidase Inhibitor OATD-01
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bazdyrev, E.D. Coronavirus disease: A global problem of the 21st century. Complex Issues Cardiovasc. Dis. 2020, 9, 6–16. [Google Scholar] [CrossRef]
- Lechowicz, K.; Drożdżal, S.; Machaj, F.; Rosik, J.; Szostak, B.; Zegan-Barańska, M.; Biernawska, J.; Dabrowski, W.; Rotter, I.; Kotfis, K. COVID-19: The potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. JCM 2020, 9, 1917. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, C.; Wang, L.; Majumder, S.; Zhang, D.; Deen, M.J.; Li, Y.; Qing, L.; Zhang, Y.; Chen, C.; et al. Pulmonary fibrosis and its related factors in discharged patients with new corona virus pneumonia: A cohort study. Respir. Res. 2021, 22, 203. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.M.M.; Ghonimy, M.B.I. Post-COVID-19 pneumonia lung fibrosis: A worrisome sequelae in surviving patients. Egypt. J. Radiol. Nucl. Med. 2021, 52, 101. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Wells, A.U.; Devaraj, A.; Desai, S.R. Interstitial lung disease after COVID-19 infection: A catalog of uncertainties. Radiology 2021, 299, E216–E218. [Google Scholar] [CrossRef]
- Vadász, I.; Husain-Syed, F.; Dorfmüller, P.; Roller, F.C.; Tello, K.; Hecker, M.; Morty, R.E.; Gattenlöhner, S.; Walmrath, H.-D.; Grimminger, F.; et al. Severe organising pneumonia following COVID-19. Thorax 2021, 76, 201–204. [Google Scholar] [CrossRef]
- Cottin, V.; Lafitte, C.; Sénéchal, A.; Traclet, J. Interstitial lung disease after COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203, 1314–1315. [Google Scholar] [CrossRef]
- Udwadia, Z.F.; Pokhariyal, P.K.; Tripathi, A.K.R.; Kohli, A. Fibrotic interstitial lung disease occurring as sequelae of COVID-19 pneumonia despite concomitant steroids. Lung India 2021, 38, S61–S63. [Google Scholar] [CrossRef]
- Rai, D.; Kumar, S.; Sahay, N. Post-COVID-19 pulmonary fibrosis: A case series and review of literature. J. Fam. Med. Prim. Care 2021, 10, 2028. [Google Scholar] [CrossRef]
- Tale, S.; Ghosh, S.; Meitei, S.P.; Kolli, M.; Garbhapu, A.K.; Pudi, S. Post COVID-19 pneumonia pulmonary fibrosis. QJM 2020, 113, 837–838. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Fan, B.; Mao, J.; Wei, J.; Wang, P. The progression of computed tomographic (CT) images in patients with coronavirus disease (COVID-19) pneumonia: Running title: The CT progression of COVID-19 pneumonia. J. Infect. 2020, 80, e30–e31. [Google Scholar] [CrossRef]
- Fu, Z.; Tang, N.; Chen, Y.; Ma, L.; Wei, Y.; Lu, Y.; Ye, K.; Liu, H.; Tang, F.; Huang, G.; et al. CT features of COVID-19 patients with two consecutive negative RT-PCR tests after treatment. Sci. Rep. 2020, 10, 11548. [Google Scholar] [CrossRef]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vasarmidi, E.; Tsitoura, E.; Spandidos, D.A.; Tzanakis, N.; Antoniou, K.M. Pulmonary fibrosis in the aftermath of the COVID-19 era (Review). Exp. Med. 2020, 20, 2557–2560. [Google Scholar] [CrossRef]
- Rai, D.K.; Sharma, P.; Kumar, R. Post covid 19 pulmonary fibrosis. Is it real threat? Indian J. Tuberc. 2021, 68, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Combet, M.; Pavot, A.; Savale, L.; Humbert, M.; Monnet, X. Rapid onset honeycombing fibrosis in spontaneously breathing patient with COVID-19. Eur. Respir. J. 2020, 56, 2001808. [Google Scholar] [CrossRef]
- Ahmad Alhiyari, M.; Ata, F.; Islam Alghizzawi, M.; Bint I Bilal, A.; Salih Abdulhadi, A.; Yousaf, Z. Post COVID-19 fibrosis, an emerging complicationof SARS-CoV-2 infection. IDCases 2021, 23, e01041. [Google Scholar] [CrossRef] [PubMed]
- Dadhwal, R.; Sharma, M.; Surani, S. Restrictive lung disease in patients with subclinical coronavirus infection: Are we bracing ourselves for devastating sequelae? Cureus 2021, 13, e12501. [Google Scholar] [CrossRef]
- Udwadia, Z.F.; Koul, P.A.; Richeldi, L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake. Lung India 2021, 38, S41–S47. [Google Scholar] [CrossRef]
- Chun, H.J.; Coutavas, E.; Pine, A.; Lee, A.I.; Yu, V.; Shallow, M.; Giovacchini, C.X.; Mathews, A.; Stephenson, B.; Que, L.G.; et al. Immuno-fibrotic drivers of impaired lung function in post-acute sequelae of SARS-CoV-2 infection (PASC). medRxiv 2021. [Google Scholar] [CrossRef]
- Zhou, M.; Yin, Z.; Xu, J.; Wang, S.; Liao, T.; Wang, K.; Li, Y.; Yang, F.; Wang, Z.; Yang, G.; et al. Inflammatory profiles and clinical features of COVID-19 survivors three months after discharge in Wuhan, China. J. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Chen, S.; Zhang, Y.; Dong, F.; Zhang, Z.; Hu, B.; Zhu, Z.; Li, F.; Wang, X.; Wang, Y.; et al. Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at 3-month follow-up. Eur. Respir. J. 2021, 58, 2003677. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.T. Healing after COVID-19: Are survivors at risk for pulmonary fibrosis? Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L257–L265. [Google Scholar] [CrossRef]
- Hui, D.S.; Joynt, G.M.; Wong, K.T.; Gomersall, C.D.; Li, T.S.; Antonio, G.; Ko, F.W.; Chan, M.C.; Chan, D.P.; Tong, M.W.; et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 2005, 60, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.S.; Wong, K.T.; Ko, F.W.; Tam, L.S.; Chan, D.P.; Woo, J.; Sung, J.J.Y. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 2005, 128, 2247–2261. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.; Antonio, G.E.; Hui, D.S.C.; Ho, C.; Chan, P.; Ng, W.; Shing, K.; Wu, A.; Lee, N.; Yap, F.; et al. Severe acute respiratory syndrome: Thin-section computed tomography features, temporal changes, and clinicoradiologic correlation during the convalescent period. J. Comput. Assist. Tomogr. 2004, 28, 790–795. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; et al. Correction: Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Res. 2020, 8, 34. [Google Scholar] [CrossRef]
- Ngai, J.C.; Ko, F.W.; Ng, S.S.; To, K.; Tong, M.; Hui, D.S. The Long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology 2010, 15, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.B.; Jun, K.I.; Kim, G.; Choi, J.-P.; Rhee, J.-Y.; Cheon, S.; Lee, C.H.; Park, J.-S.; Kim, Y.; Joh, J.-S.; et al. Correlation between pneumonia severity and pulmonary complications in middle east respiratory syndrome. J. Korean Med. Sci. 2018, 33. [Google Scholar] [CrossRef]
- Rivera-Ortega, P.; Hayton, C.; Blaikley, J.; Leonard, C.; Chaudhuri, N. Nintedanib in the management of idiopathic pulmonary fibrosis: Clinical trial evidence and real-world experience. Adv. Respir. Dis. 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- George, P.M.; Wells, A.U. Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Rev. Clin. Pharm. 2017, 10, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Home—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 5 August 2021).
- Efficacy and Safety of Nintedanib Ethanesulfonate Soft Capsule in the Treatment of Pulmonary Fibrosis in Patients with Moderate to Severe COVID-9(COVID 19): A Single-Center, Randomized, Placebo-Controlled Study; Identifier NCT04338802; Tongji Hospital: Tongji, China, 2020.
- Nintedanib for the Treatment of SARS-Cov-2 Induced Pulmonary Fibrosis; Identifier NCT04541680; Assistance Publique—Hôpitaux de Paris: Paris, France, 2020.
- Early Nintedanib Deployment in COVID-19 Interstitial Fibrosis; Identifier NCT04619680; Icahn School of Medicine at Mount Sinai: New York, NY, USA, 2020.
- A Randomized, Open-Label Study to Evaluate the Efficacy and Safety of Pirfenidone in Patients with Severe and Critical Novel Coronavirus Infection; Identifier NCT04282902; Tongji Hospital: Tongji, China, 2020.
- Phase-II Randomized Clinical Trial to Evaluate the Effect of Pirfenidone Compared to Placebo in Post-COVID19 Pulmonary Fibrosis; Identifier NCT04607928; Institut d’Investigació Biomèdica de Bellvitge: Barcelona, Spain, 2020.
- Multicenter, Randomized, Double-Blind, Placebo-Controlled Pilot Study of Treamid Efficacy and Safety in the Rehabilitation of Patients After COVID-19 Pneumonia; Identifier NCT04527354; Pharmenterprises: Moscow, Russia, 2020.
- A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial and Open Label Extension to Evaluate the Safety and Efficacy of Deupirfenidone (LYT-100) in Post-Acute COVID-19 Respiratory Disease; Identifier NCT04652518; PureTech: Boston, MA, USA, 2020.
- Effect of Collagen-Polyvinylpyrrolidone for the Treatment of Hyperinflammation and the Pulmonary Fibrosis in COVID-19 Patients. Double Blind Placebo-Controlled Pilot Trial; Identifier NCT04517162; Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran: Mexico, Mexico, 2020.
- Short Term Low Dose Corticosteroids for Management of Post COVID-19 Pulmonary Fibrosis; Identifier NCT04551781; South Valley University: Qena, Egypt, 2020.
- Multicenter, Open-Label Prospective Cohort Study of the Efficacy and Safety of the Inclusion of Longidaze in the Prevention and Treatment of Post-Inflammatory Pulmonary Fibrosis and Interstitial Lung Diseases Caused by COVID-19; Identifier NCT04645368; NPO Petrovax: Moscow, Russia, 2020.
- A Phase 2 Study of BIO 300 Oral Suspension in Discharged COVID-19 Patients; Identifier NCT04482595; Humanetics Corporation: Edina, MN, USA, 2020.
- Clinical Study of Tetrandrine Tablets Adjuvant Treatment with COVID-19; Identifier NCT04308317; Henan Provincial People’s Hospital: Zhengzhou, China, 2020.
- Jing, F.; Fan, H.; Zhao, Z.; Xing, F.; He, Y.; Liu, C. The efficacy of treating pulmonary fibrosis and pulmonary function injury in COVID-19 with the fuzheng huayu tablets: A multicenter randomized controlled trial. J. Dev. Drugs 2021, 10, 205. [Google Scholar]
- Zhang, C.; Li, J.; Wu, Z.; Wang, H.; Que, C.; Zhao, H.; Wang, G. Efficacy and safety of anluohuaxian in the treatment of rehabilitation patients with corona virus disease 2019-A multicenter, open, randomized controlled study. Trials 2020, 21, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Use of CSVF for Residual Lung Damage (COPD/Fibrotic Lung Disease After Symptomatic COVID-19 Infection for Residual Pulmonary Injury or Post-Adult Respiratory Distress Syndrome Following Viral (SARS-Co-2) Infection; Identifier NCT04326036; Black Tie Medical, Inc.: San Diego, CA, USA, 2020.
- Phase Ib Controlled Exploratory Trial for Treatment of Fibrosing Interstitial Lung Disease Patients Secondary to SARS-CoV-2 Infection with IN01 Vaccine (COVINVAC); Identifier NCT04537130; Instituto Oncológico Dr Rosell: Barcelona, Spain, 2020.
- George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir. Med. 2020, 8, 807–815. [Google Scholar] [CrossRef]
- Wollin, L.; Wex, E.; Pautsch, A.; Schnapp, G.; Hostettler, K.E.; Stowasser, S.; Kolb, M. Mode of Action of Nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 2015, 45, 1434–1445. [Google Scholar] [CrossRef]
- Raghu, G.; Richeldi, L. Current approaches to the management of idiopathic pulmonary fibrosis. Respir. Med. 2017, 129, 24–30. [Google Scholar] [CrossRef]
- Yue, X.; Shan, B.; Lasky, J.A. TGF-β: Titan of lung fibrogenesis. Curr. Enzyme Inhib. 2010, 6. [Google Scholar] [CrossRef]
- Margaritopoulos, G.A.; Vasarmidi, E.; Antoniou, K.M. Pirfenidone in the treatment of idiopathic pulmonary fibrosis: An evidence-based review of its place in therapy. Core Evid. 2016, 11, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.W.; Fidler, L.; Marcoux, V.; Johannson, K.A.; Assayag, D.; Fisher, J.H.; Hambly, N.; Kolb, M.; Morisset, J.; Shapera, S.; et al. Practical considerations for the diagnosis and treatment of fibrotic interstitial lung disease during the coronavirus disease 2019 pandemic. Chest 2020, 158, 1069–1078. [Google Scholar] [CrossRef]
- Moore, B.B.; Moore, T.A. Viruses in idiopathic pulmonary fibrosis. Etiology and exacerbation. Ann. Am. Thorac. Soc. 2015, 12, S186–S192. [Google Scholar] [CrossRef] [PubMed]
- Wootton, S.C.; Kim, D.S.; Kondoh, Y.; Chen, E.; Lee, J.S.; Song, J.W.; Huh, J.W.; Taniguchi, H.; Chiu, C.; Boushey, H.; et al. Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 1698–1702. [Google Scholar] [CrossRef]
- Treatment with Pirfenidone for COVID-19 Related Severe ARDS an Open Label Pilot Trial; Identifier NCT04653831; Soroka University Medical Center: Beer Sheva, Israel, 2020.
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Skurikhin, E.; Nebolsin, V.; Widera, D.; Ermakova, N.; Pershina, O.; Pakhomova, A.; Krupin, V.; Pan, E.; Zhukova, M.; Novikov, F.; et al. Antifibrotic and regenerative effects of treamid in pulmonary fibrosis. Int. J. Mol. Sci. 2020, 21, 8380. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Patent Summary for US-9504677-B2, Substituted N-aryl pyridinones. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9504677-B2 (accessed on 16 August 2021).
- Olmos-Zuñiga, J.R.; Silva-Martínez, M.; Jasso-Victoria, R.; Baltazares-Lipp, M.; Hernández-Jiménez, C.; Buendía-Roldan, I.; Jasso-Arenas, J.; Martínez-Salas, A.; Calyeca-Gómez, J.; Guzmán-Cedillo, A.E.; et al. Effects of pirfenidone and collagen-polyvinylpyrrolidone on macroscopic and microscopic changes, TGF-Β1 expression, and collagen deposition in an experimental model of tracheal wound healing. Biomed. Res. Int. 2017, 2017, 6471071. [Google Scholar] [CrossRef] [Green Version]
- Furuzawa-Carballeda, J.; Krötzsch, E.; Barile-Fabris, L.; Alcalá, M.; Espinosa-Morales, R. Subcutaneous administration of collagen-polyvinylpyrrolidone down regulates IL-1beta, TNF-Alpha, TGF-Beta1, ELAM-1 and VCAM-1 expression in scleroderma skin lesions. Clin. Exp. Derm. 2005, 30, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, E. RECOVERY Trial: The UK covid-19 study resetting expectations for clinical trials. BMJ 2020, 369. [Google Scholar] [CrossRef]
- Yu, W.; Guo, F.; Song, X. Effects and Mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models. Pharm. Biol. 2017, 55, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Lam, E.; Sayedy, N.; Anjum, F.; Akella, J.; Iqbal, J. Corticosteroid therapy in post-COVID-19 pulmonary fibrosis. In TP47. TP047 COVID and ARDS Case Reports; American Thoracic Society: New York, NY, USA, 2021; p. A2429. [Google Scholar]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent post–COVID-19 interstitial lung disease. An observational study of corticosteroid treatment. Ann. ATS 2021, 18, 799–806. [Google Scholar] [CrossRef]
- Novikova, L.N.; Zakharova, A.S.; Dzadzua, D.V.; Baranova, O.P.; Korzina, N.V.; Speranskaya, A.A.; Gichkin, A.Y.; Kameneva, M.Y.; Sukhovskaya, O.A. Effects of longidaza in patients with idiopathic pulmonary fibrosis. Doctor.ru 2011, 6, 50–54. [Google Scholar]
- BIO 300: A Promising Radiation Countermeasure under Advanced Development for Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32450051/ (accessed on 6 August 2021).
- Jackson, I.L.; Zodda, A.; Gurung, G.; Pavlovic, R.; Kaytor, M.D.; Kuskowski, M.A.; Vujaskovic, Z. BIO 300, a nanosuspension of genistein, mitigates pneumonitis/fibrosis following high-dose radiation exposure in the C57L/J murine model. Br. J. Pharm. 2017, 174, 4738–4750. [Google Scholar] [CrossRef]
- Para, A.E.; Bezjak, A.; Yeung, I.W.T.; Dyk, J.V.; Hill, R.P. Effects of genistein following fractionated lung irradiation in mice. Radiother. Oncol. 2009, 92, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ippolito, E.; Fiore, M.; Greco, C.; D’Angelillo, R.M.; Ramella, S. COVID-19 and radiation induced pneumonitis: Overlapping clinical features of different diseases. Radiother. Oncol. 2020, 148, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Rios, C.I.; Cassatt, D.R.; Hollingsworth, B.A.; Satyamitra, M.M.; Tadesse, Y.S.; Taliaferro, L.P.; Winters, T.A.; DiCarlo, A.L. Commonalities between COVID-19 and radiation injury. Radiat. Res. 2021, 195, 1–24. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Narasaraju, T.; Tang, B.M.; Herrmann, M.; Muller, S.; Chow, V.T.K.; Radic, M. Neutrophilia and NETopathy as key pathologic drivers of progressive lung impairment in patients with COVID-19. Front. Pharm. 2020, 11, 870. [Google Scholar] [CrossRef]
- Hanania, A.N.; Mainwaring, W.; Ghebre, Y.T.; Hanania, N.A.; Ludwig, M. Radiation-induced lung injury: Assessment and management. Chest 2019, 156, 150–162. [Google Scholar] [CrossRef]
- Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, F.H. Inactivation of NF-KappaB by genistein is mediated via akt signaling pathway in breast cancer cells. Oncogene 2003, 22, 4702–4709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2016, 7, 40800–40815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagya, N.; Chandrashekar, K.R. Tetrandrine—A molecule of wide bioactivity. Phytochemistry 2016, 125, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Park, C.M.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.-H.; et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 2019, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Liu, Y.; Zhang, J.; Zhong, W.; Chen, W.; Cai, S. Tetrandrine attenuates pulmonary fibrosis through Rheb/mTOR/p70S6k signaling mediated activation of autophagy. In B64. Mechanistic Advances in Lung Fibrosis; American Thoracic Society: New York, NY, USA, 2020; p. 4051. [Google Scholar]
- Su, W.; Liang, Y.; Meng, Z.; Chen, X.; Lu, M.; Han, X.; Deng, X.; Zhang, Q.; Zhu, H.; Fu, T. Inhalation of tetrandrine-hydroxypropyl-β-cyclodextrin inclusion complexes for pulmonary fibrosis treatment. Mol. Pharm. 2020, 17, 1596–1607. [Google Scholar] [CrossRef] [PubMed]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic Processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, Z.; Sun, Z.; Xu, Y.; Wang, S.; Hu, Y.; Peng, J. The components data of Fuzheng Huayu extracts, cordyceps sinensis mycelia polysaccharide, gypenosides and amygdalin. Data Brief 2019, 25, 104087. [Google Scholar] [CrossRef]
- Dong, S.; Chen, Q.-L.; Su, S.-B. Curative effects of Fuzheng Huayu on liver fibrosis and cirrhosis: A meta-analysis. Evid. Based Complementary Altern. Med. 2015, 2015, e125659. [Google Scholar] [CrossRef]
- Tomaru, A.; Gabazza, E.; Kobayashi, T.; Kobayashi, H.; Taguchi, O.; Takagi, T.; Oonishi, M.; Fujiwara, K.; Gabazza, C.D.; Takahashi, Y.; et al. Matrix metalloproteinase-2 is protective in bleomycin-induced pulmonary fibrosis. Eur. Respir. J. 2015, 46. [Google Scholar] [CrossRef]
- Tan, S.-Z.; Liu, C.-H.; Zhang, W.; Lu, X.; Ye, W.-C.; Cai, Z.-Z.; Liu, P. Effects of Fuzheng Huayu recipe on MMP-2 activity and type IV collagen expression at fibrotic lung. Zhongguo Zhong Yao Za Zhi 2007, 32, 835–839. [Google Scholar]
- Wu, R.; Dong, S.; Cai, F.-F.; Chen, X.-L.; Yang, M.-D.; Liu, P.; Su, S.-B. Active compounds derived from Fuzheng Huayu formula protect hepatic parenchymal cells from apoptosis based on network pharmacology and transcriptomic analysis. Molecules 2019, 24, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Huang, Q.; Xiong, G.; Deng, L.; He, Y. The protective effect of hederagenin on pulmonary fibrosis by regulating the Ras/JNK/NFAT4 axis in rats. Biosci. Biotechnol. Biochem. 2020, 84, 1131–1138. [Google Scholar] [CrossRef]
- Walker, N.M.; Mazzoni, S.M.; Vittal, R.; Fingar, D.C.; Lama, V.N. C-Jun N-terminal kinase (JNK)-mediated induction of MSin1 expression and MTORC2 activation in mesenchymal cells during fibrosis. J. Biol. Chem. 2018, 293, 17229–17239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Huang, H.; Jiao, Y.; Ai, G.; Huang, T.; Li, L.; Yu, H.; Ma, K.; Xiao, F. Effect of Anluohuaxian tablet combined with gamma-IFN on schistosomal liver fibrosis. J. Huazhong Univ. Sci. Technol. Med. Sci. 2009, 29, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Makarev, E.; Izumchenko, E.; Aihara, F.; Wysocki, P.T.; Zhu, Q.; Buzdin, A.; Sidransky, D.; Zhavoronkov, A.; Atala, A. Common pathway signature in lung and liver fibrosis. Cell Cycle 2016, 15, 1667–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, R.W. Overview of COVID-19 lung damage clinical trial using Cellular Stromal Vascular Fraction (CSVF) and Functional Respiratory Imaging (FRI) analysis of pulmonary injury & post-viral (SARS=Cov-2) adult respiratory distress syndrome (ARDS). Ann. Stem Cell Res. Ther. 2020, 4, 1–10. [Google Scholar]
- Alexander, R.W. Potential use of cellular stromal vascular fraction in Post-COVID-19 pulmonary injury and adult respiratory distress syndrome. J. Curr. Med. Res. Opin. 2020, 3, 468–474. [Google Scholar] [CrossRef]
- Ntolios, P.; Manoloudi, E.; Tzouvelekis, A.; Bouros, E.; Steiropoulos, P.; Anevlavis, S.; Bouros, D.; Froudarakis, M.E. Longitudinal outcomes of patients enrolled in a phase Ib Clinical trial of the adipose-derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Clin. Respir. J. 2018, 12, 2084–2089. [Google Scholar] [CrossRef]
- Michalek, J.; Dudasova, Z.; Brown, C. Stromal vascular fraction cell therapy for idiopathic pulmonary fibrosis—Cure without side effects. Ann. Clin. Case Rep. 2019, 4, 1698. [Google Scholar]
- Tzouvelekis, A.; Ntolios, P.; Karameris, A.; Vilaras, G.; Boglou, P.; Koulelidis, A.; Archontogeorgis, K.; Kaltsas, K.; Zacharis, G.; Sarikloglou, E.; et al. Increased expression of epidermal growth factor receptor (EGF-R) in patients with different forms of lung fibrosis. Biomed. Res. Int. 2013, 2013, 654354. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, T.; Frieman, M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antivir. Res. 2017, 143, 142–150. [Google Scholar] [CrossRef]
- Kućma, M. Drug Candidate OATD-01 May Find Use in Treatment of Pulmonary Fibrosis in Patients Who Have Survived a New Coronavirus Infection (COVID-19). OncoArendi Ther. 2020. Available online: https://oncoarendi.com/en/oncoarendi-therapeutics-has-received-the-final-report-from-the-phase-ib-clinical-trial-of-innovative-drug-candidate-oatd-01/ (accessed on 11 August 2021).
- Lee, C.-M.; He, C.-H.; Park, J.W.; Lee, J.H.; Kamle, S.; Ma, B.; Akosman, B.; Cotez, R.; Chen, E.; Zhou, Y.; et al. Chitinase 1 regulates pulmonary fibrosis by modulating TGF-β/SMAD7 pathway via TGFBRAP1 and FOXO3. Life Sci Alliance 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Dymek, B.; Sklepkiewicz, P.; Mlacki, M.; Zagozdzon, A.; Koralewski, R.; Mazur, M.; Paplinska-Goryca, M.; Nejman-Gryz, P.; Proboszcz, M.; Gorska, K.; et al. CHIT1 Is a novel therapeutic target in Idiopathic Pulmonary Fibrosis (IPF): Anti-fibrotic efficacy of OATD-01, a potent and selective chitinase inhibitor in the mouse model of pulmonary fibrosis. Eur. Respir. J. 2018, 52. [Google Scholar] [CrossRef]
Treatment | NCT Number | Phase | Number Enrolled | Study Design | |
---|---|---|---|---|---|
Nintedanib | NCT04338802 | [34] | II | 96 | Single-center, randomized, placebo-controlled 150 mg POBID for 8 weeks |
NCT04541680 | [35] | III | 250 | Single-center, randomized, placebo-controlled 150 mg POBID for 12 months | |
NCT04619680 | [36] | IV | 120 | Multicenter, randomized, placebo-controlled 150 mg POBID for 180 days | |
Pirfenidone | NCT04282902 | [37] | III | 294 | Single-center, randomized, placebo-controlled 2 × 267 mg POTID for 4 weeks |
NCT04607928 | [38] | II | 148 | Multicenter, randomized, placebo-controlled 2 × 267 mg POTID, 7 days after 4 × 267 mg TID for 24 weeks | |
Treamid | NCT04527354 | [39] | II | 60 | Multicenter, randomized, placebo-controlled study 50 mg daily PO for 4 weeks |
LYT-100 | NCT04652518 | [40] | II | 168 | Multicenter, randomized, placebo-controlled PO BID for 91 days |
Collagen-Polyvinylpyrrolidone | NCT04517162 | [41] | I | 90 | Single-center, randomized, placebo-controlled 1.5 mL IM BID for 3 days, then 1.5 mL QD for 4 days |
Prednisone | NCT04551781 | [42] | – | 450 | Single-center, randomized, placebo-controlled 20 mg daily for 14 IM |
Bovhyaluronidase azoximer | NCT04645368 | [43] | – | 160 | Multicenter, randomized, placebo-controlled 3000 ME IM once in 5 days for 15 IM |
BIO 300 (genistein) | NCT04482595 | [44] | II | 66 | Single-center, randomized, placebo-controlled 1500 mg daily PO for 12 weeks |
Tetrandrine | NCT04308317 | [45] | IV | 60 | Single-center, randomized, compared to standard therapy 60 mg daily PO for a week |
Fuzheng Huayu Tablet | NCT04279197 | [46] | II | 160 | Single-center, randomized, placebo-controlled 1.6 g TID PO for 24 weeks |
Anluohuaxian | NCT04334265 | [47] | – | 750 | Multicenter, randomized, compared to standard therapy 6 g BIDPO for 3 months |
Stromal Vascular Fraction | NCT04326036 | [48] | I | 10 | Single-center, randomized, placebo-controlled IV for 6 months, No data for injection frequency |
IN01Vaccine | NCT04537130 | [49] | Ib | 40 | On first stage, IN01 is injected on days 1, 14, 28, 42, and 56, On support stage, vaccination is carried out every 2 months with the same dosage and regimen as during introduction, compared to the patients receiving standard therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazdyrev, E.; Rusina, P.; Panova, M.; Novikov, F.; Grishagin, I.; Nebolsin, V. Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals 2021, 14, 807. https://doi.org/10.3390/ph14080807
Bazdyrev E, Rusina P, Panova M, Novikov F, Grishagin I, Nebolsin V. Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals. 2021; 14(8):807. https://doi.org/10.3390/ph14080807
Chicago/Turabian StyleBazdyrev, Evgeny, Polina Rusina, Maria Panova, Fedor Novikov, Ivan Grishagin, and Vladimir Nebolsin. 2021. "Lung Fibrosis after COVID-19: Treatment Prospects" Pharmaceuticals 14, no. 8: 807. https://doi.org/10.3390/ph14080807
APA StyleBazdyrev, E., Rusina, P., Panova, M., Novikov, F., Grishagin, I., & Nebolsin, V. (2021). Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals, 14(8), 807. https://doi.org/10.3390/ph14080807