Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives
Abstract
:1. Introduction
2. Results
2.1. Chemical Characteristics of the Obtained Materials
2.1.1. Elemental Analysis
2.1.2. Zeta Potential of the Systems Studied
2.1.3. GPC Chromatography Assessment of Molecular Weight and Its Distribution
2.1.4. Material Analysis Based on FT-IR Spectra
2.2. Initial Assessment of Biological Properties of New Materials
2.2.1. Antifungal Properties of the Obtained Polycations
2.2.2. Evaluation of the Toxicity of the Obtained Polycations In Vitro Using Fibroblast Cell Line
2.3. An In Vivo Model of Fungal Infection
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General Instrumentation and Materials
4.1.2. Culture Conditions for Saccharomyces Boulardii
4.1.3. Isolation of Polymers from Biological Material
Saccharomyces Boulardii
- Insulation of Raw Components of the Cell Wall
- Extraction of Beta-Glucans
- Material from Cetraria islandica
4.1.4. Synthesis of Polycations
Using Purified Beta-Glucans
Cationization of Saccharomyces boulardii Raw Cell Wall Components
4.1.5. Gel Permeation Chromatography (GPC) and Zeta Potential Measurements
4.2. Preliminary Assessment of Cytotoxicity on Mammalian Cells
4.3. Assessment of Antifungal Properties
4.3.1. General Instrumentation and Materials
4.3.2. Antifungal Activity Testing
Preparation of Stock Solutions and Working Solutions
Preparation of Microdilution Plates
Inocula Preparation
Preparation of Working Suspensions
Inoculation of Microdilution Plates
Incubation of Microdilution Plates
Reading Results
4.4. Galleria Mellonella Larvae Survival Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Brown, G.D.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Liang, G.; Liu, W. Fungal co-infections associated with global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia 2020, 185, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Pemán, J.; Ruiz-Gaitán, A.; García-Vidal, C.; Salavert, M.; Ramírez, P.; Puchades, F.; García-Hita, M.; Alastruey-Izquierdo, A.; Quindós, G. Fungal co-infection in COVID-19 patients: Should we be concerned? Rev. Iberoam. Micol. 2020, 37, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Gokhale, T.; Choudhury, S.S.; Deb, A.K. COVID-19 and orbital mucormycosis. Indian J. Ophthalmol. 2021, 69, 1002–1004. [Google Scholar] [PubMed]
- Revannavar, S.M.; Supriya, P.S.; Samaga, L.; Vineeth, K.V. COVID-19 triggering mucormycosis in a susceptible patient: A new phenomenon in the developing world? BMJ Case Rep. 2021, 14. [Google Scholar] [CrossRef]
- Mehta, S.; Pandey, A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020, 12, e10726. [Google Scholar] [CrossRef]
- Mekonnen, Z.K.; Ashraf, D.C.; Jankowski, T.; Grob, S.R.; Vagefi, M.R.; Kersten, R.C.; Simko, J.P.; Winn, B.J. Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plast. Reconstr. Surg. 2021, 37, 40–80. [Google Scholar] [CrossRef]
- Werthman-Ehrenreich, A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am. J. Emerg. Med. 2021, 42, 264.e5–264.e8. [Google Scholar] [CrossRef]
- Waizel-Haiat, S.; Guerrero-Paz, J.A.; Sanchez-Hurtado, L.; Calleja-Alarcon, S.; Romero-Gutierrez, L. A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19. Cureus 2021, 13, e13163. [Google Scholar]
- Pasero, D.; Sanna, S.; Liperi, C.; Piredda, D.; Branca, G.P.; Casadio, L.; Simeo, R.; Buselli, A.; Rizzo, D.; Bussu, F.; et al. A challenging complication following SARS-CoV-2 infection: A case of pulmonary mucormycosis. Infection 2020. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Kim, S.-H.; Hur, S.; Ha, J.; Huh, K.; Cha, W.C. Candidemia Risk Prediction (CanDETEC) Model for Patients with Malignancy: Model Development and Validation in a Single-Center Retrospective Study. JMIR Med. Inform. 2021, 9, e24651. [Google Scholar] [CrossRef]
- Rauseo, A.M.; Aljorayid, A.; Olsen, M.A.; Larson, L.; Lipsey, K.L.; Powderly, W.G.; Spec, A. Clinical predictive models of invasive Candida infection: A systematic literature review. Med. Mycol. 2021, myab043. [Google Scholar] [CrossRef] [PubMed]
- Vetvicka, V.; Vannucci, L.; Sima, P.; Richter, J. Beta glucan: Supplement or drug? From Laboratory to Clinical Trials. Molecules 2019, 24, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frid, A.; Tura, A.; Pacini, G.; Ridderstrale, M. Effect of oral pre-meal administration of betaglucans on glycaemic control and variability in subjects with type 1 diabetes. Nutrients 2017, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- van Steenwijk, H.P.; Bast, A.; de Boer, A. Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients 2021, 13, 1333. [Google Scholar] [CrossRef]
- Moore, M.A. Diverse influences of dietary factors on cancer in Asia. Asian Pac. J. Cancer Prev. 2009, 10, 981–986. [Google Scholar]
- Camilli, G.; Tabouret, G.; Quintin, J. The Complexity of fungal β-glucan in health and disease: Effects on the mononuclear phagocyte system. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminski, K.; Plonka, M.; Ciejka, J.; Szczubiałka, K.; Nowakowska, M.; Lorkowska, B.; Korbut, R.; Lach, R. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists. J. Med. Chem. 2011, 54, 6586–6596. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Choi, H.-M.; Yoon, J.H. Synthesis of a quaternary ammonium derivative of chitosan and its application to a cotton antimicrobial finish. Text. Res. J. 1998, 68, 428–434. [Google Scholar] [CrossRef]
- Chen, A.; Peng, H.; Blakey, I.; Whittaker, A.K. Biocidal Polymers: A Mechanistic Overview. Polym. Rev. 2017, 57, 276–310. [Google Scholar] [CrossRef]
- Ikeda, T.; Hirayama, H.; Yamaguchi, H.; Tazuke, S.; Watanabe, M. Polycationic biocides with pendant active groups: Molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 1986, 30, 132–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramandeep, K.R.; Sharma, M.; Ji, D.; Xu, M.; Agyei, D. Structural features, modification, and functionalities of beta-glucan. Fibers 2020, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.; Browne, N.; Surlis, C.; Jukic, E.; Moser, P.; Kavanagh, K.; Lass-Florl, C.; Binder, U. Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance. Virulence 2015, 6, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slater, J.L.; Gregson, L.; Denning, D.W.; Warn, P.A. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med. Mycol. 2011, 49, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Durieux, M.-F.; Melloul, É.; Jemel, S.; Roisin, L.; Dardé, M.-L.; Guillot, J.; Dannaoui, É.; Botterel, F. Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence 2021, 12, 818–834. [Google Scholar] [CrossRef] [PubMed]
- Rahar, S.; Swami, G.; Nagpal, N.; Nagpal, M.A.; Singh, G.S. Preparation, characterization, and biological properties of β-glucans. J. Adv. Pharm. Technol. Res. 2011, 2, 94–103. [Google Scholar] [CrossRef]
- Chamidah, A.; Hardoko, H.; Prihanto, A.A. Antibacterial activities of β-glucan (laminaran) against gram-negative and gram-positive bacteria. In AIP Conference Proceedings, Proceedings of the 2nd International Conference on Composite Materials and Material Engineering (ICCMME 2017), Chengdu, China, 17–19 February 2017; AIP Publishing: Melville, NY, USA, 2017; Volume 1844. [Google Scholar] [CrossRef] [Green Version]
- Wan-Mohtar, W.A.; Young, L.; Abbott, G.M.; Clements, C.; Harvey, L.M.; McNeil, B. Antimicrobial properties and cytotoxicity of sulfated (1,3)-β-d-glucan from the mycelium of the mushroom Ganoderma lucidum. J. Microbiol. Biotechnol. 2016, 26, 999–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetland, G.; Ohno, N.; Aaberge, I.S.; Lovik, M. Protective effect of beta-glucan against systemic Streptococcus pneumoniae infection in mice. Immunol. Med. Microbiol. 2000, 27, 111–116. [Google Scholar]
- Desamero, M.J.M.; Chung, S.H.; Kakuta, S. Insights on the functional role of beta-glucans in fungal immunity using receptor-deficient mouse models. Int. J. Mol. Sci. 2021, 22, 4778. [Google Scholar] [CrossRef] [PubMed]
- Vetvick, V.; Vetvickova, J. Anti-infectious and antitumor activities of β-glucans. Anticancer Res. 2020, 40, 3139–3145. [Google Scholar] [CrossRef]
- Babineau, T.J.; Hackford, A.; Kenler, A.; Bistrian, B.; Forse, R.A.; Fairchild, P.G.; Heard, S.; Keroack, M.; Caushaj, P.; Benotti, P. A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an immunomodulator (PGG-glucan) in high-risk surgical patients. Arch. Surg. 1994, 129, 1204–1210. [Google Scholar] [CrossRef]
- Babineau, T.J.; Marcello, P.; Swails, W.; Kenler, A.; Bistrian, B.; Forse, R.A. Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patients. Ann. Surg. 1994, 220, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, E.P.; Babineau, T.J.; Bleicher, P.; Kaiser, A.B.; Seibert, G.B.; Postier, R.G.; Vogel, S.B.; Norman, J.; Kaufman, D.; Galandiuk, S.; et al. Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high-risk gastrointestinal operations. Arch. Surg. 1999, 134, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Rice, P.J.; Adams, E.L.; Ozment-Skelton, T.; Gonzalez, A.J.; Goldman, M.P.; Lockhart, B.E.; Barker, L.A.; Breuel, K.F.; Deponti, W.K.; Kalbfleisch, J.H.; et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Ther. 2005, 314, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Anusuya, S.; Sathiyabama, M. Preparation of β-d-glucan nanoparticles and its antifungal activity. Int. J. Biol. Macromol. 2014, 70, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Shokri, H.; Asadi, F.; Khosravi, A.L. Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Nat. Prod. Res. 2008, 22, 414–421. [Google Scholar] [CrossRef]
- Surayot, U.; Yelithao, K.; Tabarsa, M.; Lee, D.H.; Palanisamy, S.; Prabhu, N.M.; Lee, J.; You, S. Structural characterization of a polysaccharide from Certaria islandica and assessment of immunostimulatory activity. Process Biochem. 2019, 83, 214–221. [Google Scholar] [CrossRef]
- Ingolfsdottir, K.; Jurcic, K.; Fischer, B.; Wagner, H. Immunologically active polysaccharide from Cetraria islandica. Planta Med. 1994, 60, 527–531. [Google Scholar] [CrossRef]
- Kaminski, K.; Stalińska, K.; Niziołek, A.; Wróbel, M.; Nowakowska, M.; Kaczor-Kaminska, M. Cell proliferation induced by modified cationic dextran. Bio-Algorithms Med-Syst. 2018, 14. [Google Scholar] [CrossRef] [Green Version]
- Williams, T. Gel permeation chromatography: A review. J. Mater. Sci. 1970, 5, 811–820. [Google Scholar] [CrossRef]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020, 11, 2337. [Google Scholar] [CrossRef] [PubMed]
- Janik-Hazuka, M.; Kaminski, K.; Kaczor-Kamińska, M.; Szafraniec-Szczesny, J.; Kmak, A.; Kassassir, H.; Watala, C.; Wróbel, M.; Zapotoczny, S. Hyaluronic Acid-Based Nanocapsules as Efficient Delivery Systems of Garlic Oil Active Components with Anticancer Activity. Nanomaterials 2021, 11, 1354. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Guarro, J.; Gene, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; Centraalbureau voor Schimmelcultures (CBS): Utrecht, The Netherlands, 2000. [Google Scholar]
- Marinach-Patricea, C.; Lethuillier, A.; Brossas, J.-Y.M.; Gené, J.; Symoens, F.; Datry, A.; Guarro, J.; Mazier, D.; Hennequin, C. Use of mass spectrometry to identify clinical Fusarium isolates. Clin. Microbiol. Infect. 2009, 15, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Modified MIC Method for Cationic Antimicrobial Peptides. Available online: http://cmdr.ubc.ca/bobh/method/modified-mic-method-for-cationic-antimicrobial-peptides (accessed on 5 August 2021).
- Kaplan-Meier, A.; Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Rasmussen, L.; Pratt, N.; Hansen, M.R.; Hallas, J.; Pottegård, A. Using the “proportion of patients covered” and the Kaplan-Meier survival analysis to describe treatment persistence. Pharmacoepidemiol. Drug Saf. 2018, 27, 867–871. [Google Scholar] [CrossRef]
The Elemental Composition of the Obtained Material (%) | ||||
---|---|---|---|---|
N | C | H | S | |
Freeze-dried Saccharomyces boulardii (SB) | 6.02 ± 0.03 | 44.44 ± 0.03 | 6.80 ± 0.04 | 0.00 ± 0.01 |
Dry lysed SB pellet (lSBp) | 5.33 ± 0.04 | 42.18 ± 0.18 | 6.75 ± 0.01 | 0.00 ± 0.01 |
Purified beta-glucan from SB (SBB) | 0.32 ± 0.01 | 38.60 ± 0,01 | 6.31 ± 0.10 | 0.00 ± 0.01 |
SBB cationized using GTMAC (SBBGTMAC) | 1.44 ± 0.03 | 41.65 ± 0.05 | 7.04 ± 0.02 | 0.00 ± 0.01 |
SB raw cell wall components cationized using GTMAC (SBBGTMAC2) | 6.68 ± 0.17 | 45.76 ± 0.24 | 7.60 ± 0.01 | 0.00 ± 0.01 |
Dried and well ground Cetraria islandica (CI) | 0.22 ± 0.01 | 40.55 ± 0.01 | 6.58 ± 0.06 | 0.70 ± 0.02 |
CI after ethanol impurities extraction (EPCI) | 1.45 ± 0.02 | 43.81 ± 0.23 | 6.45 ± 0.09 | 0.00 ± 0.01 |
Product of initial CI warm water extraction (IECI) | 0.03 ± 0.01 | 36.21 ± 0.13 | 6.27 ± 0.12 | 0.00 ± 0.01 |
Purified beta-glucan from CI (BCI) | 0.00 ± 0.01 | 36.16 ± 0.23 | 6.75 ± 0.14 | 0.00 ± 0.01 |
CI cationized using GTMAC | ||||
(CIGTMAC) | 2.35 ± 0.02 | 41.92 ± 0.11 | 7.53 ± 0.01 | 0.00 ± 0.01 |
SBB | SBBGTMAC | SBBGTMAC2 | CIGTMAC | |
---|---|---|---|---|
Zeta potential (mV) | −5.31 ± 0.56 | 32.93 ± 0.35 | 43.77 ± 1.05 | 36.16 ± 0.40 |
SBB | SBBGTMAC | SBBGTMAC2 | CIGTMAC | |
---|---|---|---|---|
Average molecular weight (kDa) (based on GPC) | 24.95 * | 29.30 ** | 23.92 ** | 53.48 ** |
Mass dispersion index | 1.1 | 1.2 | 1.5 | 1.5 |
Name of Fungal Strain | MIC (mg/L) | ||
---|---|---|---|
CIGTMAC | SBBGTMAC2 | SBBGTMAC | |
Candida albicans ATCC 90028 | >1000 | >1000 | >1000 |
Candida glabrata ATCC 15454 | >1000 | >1000 | >1000 |
Candida krusei ATCC 6258 | >1000 | >1000 | >1000 |
Aspergillus flavus ATCC 204304 | >1000 | >1000 | >1000 concentration ≥ 125–500 mg/L—diminished growth compared with control |
Aspergillus fumigatus | >1000 | >1000 | >1000 |
Aspergillus brasiliensis ATCC 16404 | >1000 | >1000 concentration ≥ 125 mg/L—diminished growth compared with control | 62.5–125 |
Trichophyton mentagrophytes ATCC 18748 | >1000 | >1000 | >1000 |
Fusarium solani | >1000 | >1000 concentration ≥ 250 mg/L—diminished growth compared with control | >1000 |
Scopulariopsis brevicaulis | >1000 concentration ≥ 3.9 mg/L—diminished growth compared with control | 62.5 | 250–1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaminski, K.; Skora, M.; Krzyściak, P.; Stączek, S.; Zdybicka-Barabas, A.; Cytryńska, M. Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives. Pharmaceuticals 2021, 14, 838. https://doi.org/10.3390/ph14090838
Kaminski K, Skora M, Krzyściak P, Stączek S, Zdybicka-Barabas A, Cytryńska M. Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives. Pharmaceuticals. 2021; 14(9):838. https://doi.org/10.3390/ph14090838
Chicago/Turabian StyleKaminski, Kamil, Magdalena Skora, Paweł Krzyściak, Sylwia Stączek, Agnieszka Zdybicka-Barabas, and Małgorzata Cytryńska. 2021. "Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives" Pharmaceuticals 14, no. 9: 838. https://doi.org/10.3390/ph14090838
APA StyleKaminski, K., Skora, M., Krzyściak, P., Stączek, S., Zdybicka-Barabas, A., & Cytryńska, M. (2021). Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives. Pharmaceuticals, 14(9), 838. https://doi.org/10.3390/ph14090838