The Present and Future of Yellow Fever Vaccines
Abstract
:1. Introduction
2. Yellow Fever Is a Re-Emerging Disease
2.1. Epidemiology and Re-Emergence
2.2. WHO EYE Initiative
3. Virology
4. Live-Attenuated 17D Vaccine
4.1. 17D Vaccine Substrains Used Today
4.2. The 17D Vaccine: Molecular Mechanisms and Immune Responses
4.3. Current WHO Recommendations
4.4. Dose Sparing
4.5. Animal Models
5. The Future of YF Vaccines
5.1. Other Platforms in Development for Candidate YF Vaccines
5.1.1. Inactivated Vaccines
5.1.2. Vaccinia Constructs
5.1.3. Plasmid-Launched Live-Attenuated Vaccines (PLLAV)
5.1.4. Other Plasmid-Vectored DNA Vaccines
5.1.5. Virus-Like Particles (VLPs)
5.1.6. mRNA Vaccines
5.1.7. Codon-Deoptimized Live-Attenuated Vaccines
5.1.8. Plant-Produced Subunit Vaccines
5.2. New Manufacturing Protocols
5.3. Rationally-Designed Chimeric Vaccines
5.4. The 17D Vaccine as a Vector for Foreign Antigens as Vaccines
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Transmission of Yellow Fever Virus. Available online: https://www.cdc.gov/yellowfever/transmission/index.html (accessed on 11 June 2021).
- Jentes, E.S.; Poumerol, G.; Gershman, M.D.; Hill, D.R.; Lemarchand, J.; Lewis, R.F.; Staples, J.E.; Tomori, O.; Wilder-Smith, A.; Monath, T.P.; et al. The revised global yellow fever risk map and recommendations for vaccination, 2010: Consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect. Dis. 2011, 11, 622–632. [Google Scholar] [CrossRef]
- Monath, T.P.; Gershman, M.; Erin Staples, J.; Barrett, A.D.T. 38-Yellow fever vaccine. In Vaccines, 6th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; W.B. Saunders: London, UK, 2013; pp. 870–968. [Google Scholar]
- Beck, A.S.; Barrett, A.D. Current status and future prospects of yellow fever vaccines. Expert Rev. Vaccines 2015, 14, 1479–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, A.D.T. Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease. Vaccine 2017, 35, 5951–5955. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.D.T. The reemergence of yellow fever. Science 2018, 361, 847–848. [Google Scholar] [CrossRef]
- Gaythorpe, K.A.; Hamlet, A.; Jean, K.; Ramos, D.G.; Cibrelus, L.; Garske, T.; Ferguson, N. The global burden of yellow fever. Elife 2021, 10, e64670. [Google Scholar] [CrossRef]
- Hughes, H.R.; Kayiwa, J.; Mossel, E.C.; Lutwama, J.; Staples, J.E.; Lambert, A.J. Phylogeny of Yellow Fever Virus, Uganda, 2016. Emerg. Infect. Dis. 2018, 24, 1598. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Anka, A.U.; Emeribe, A.U.; Umar, K.; Adekola, H.A.; Uzairue, L.; Ghmaba, P.E.; Okwume, C.C. The interplay between environmental factors, vector competence and vaccine immunodynamics as possible explanation of the 2019 yellow fever re-emergence in Nigeria. New Microbes New Infect. 2021, 41, 100858. [Google Scholar] [CrossRef]
- WHO. Epidemiological Update: Yellow Fever. 20 March 2018 Pan American Health Organization; World Health Organization: Washington, DC, USA, 2018. [Google Scholar]
- World Health Organization. A Global Strategy to Eliminate Yellow Fever Epidemics 2017–2026; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Davis, E.H.; Barrett, A.D.T. Structure-Function of the Yellow Fever Virus Envelope Protein: Analysis of Antibody Epitopes. Viral. Immunol. 2020, 33, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Staples, J.E.; Monath, T.P.; Gershman, M.D.; Barrett, A.D. Yellow fever vaccines. In Plotkin’s Vaccines; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1181–1265. [Google Scholar]
- Van den Elsen, K.; Quek, J.P.; Luo, D. Molecular Insights into the Flavivirus Replication Complex. Viruses 2021, 13, 965. [Google Scholar] [CrossRef]
- Fernandez-Garcia, M.D.; Mazzon, M.; Jacobs, M.; Amara, A. Pathogenesis of flavivirus infections: Using and abusing the host cell. Cell Host Microbe 2009, 5, 318–328. [Google Scholar] [CrossRef]
- Lee, E.; Lobigs, M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. Virol. 2000, 74, 8867–8875. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Garcia, M.D.; Meertens, L.; Chazal, M.; Hafirassou, M.L.; Dejarnac, O.; Zamborlini, A.; Despres, P.; Sauvonnet, N.; Arenzana-Seisdedos, F.; Jouvenet, N.; et al. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses. mBio 2016, 7, e01956-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.; Wu, Z.; Wu, S.; Chen, S.; Cheng, A. The key amino acids of E protein involved in early flavivirus infection: Viral entry. Virol. J. 2021, 18, 136. [Google Scholar] [CrossRef]
- Theiler, M.; Smith, H.H. The Effect of Prolonged Cultivation In Vitro Upon the Pathogenicity of Yellow Fever Virus. J. Exp. Med. 1937, 65, 767–786. [Google Scholar] [CrossRef] [PubMed]
- McElroy, K.L.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Manipulation of the yellow fever virus non-structural genes 2A and 4B and the 3’non-coding region to evaluate genetic determinants of viral dissemination from the Aedes aegypti midgut. Am. J. Trop. Med. Hyg. 2006, 75, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Tesh, R.B.; Wood, T.G.; Widen, S.G.; Ryman, K.D.; Barrett, A.D. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing. J. Infect. Dis. 2014, 209, 334–344. [Google Scholar] [CrossRef]
- Tangy, F.; Desprès, P. Yellow fever vaccine attenuation revealed: Loss of diversity. J. Infect. Dis. 2014, 209, 318–320. [Google Scholar] [CrossRef] [Green Version]
- Pugachev, K.V.; Guirakhoo, F.; Monath, T.P. New developments in flavivirus vaccines with special attention to yellow fever. Curr. Opin. Infect. Dis. 2005, 18, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.S.; Wood, T.G.; Widen, S.G.; Thompson, J.K.; Barrett, A.D.T. Analysis By Deep Sequencing of Discontinued Neurotropic Yellow Fever Vaccine Strains. Sci. Rep. 2018, 8, 13408. [Google Scholar] [CrossRef]
- Serrão de Andrade, A.A.; Soares, A.E.R.; Paula de Almeida, L.G.; Ciapina, L.P.; Pestana, C.P.; Aquino, C.L.; Medeiros, M.A.; Ribeiro de Vasconcelos, A.T. Testing the genomic stability of the Brazilian yellow fever vaccine strain using next-generation sequencing data. Interface Focus 2021, 11, 20200063. [Google Scholar] [CrossRef]
- Salmona, M.; Gazaignes, S.; Mercier-Delarue, S.; Garnier, F.; Korimbocus, J.; Colin de Verdière, N.; LeGoff, J.; Roques, P.; Simon, F. Molecular characterization of the 17D-204 yellow fever vaccine. Vaccine 2015, 33, 5432–5436. [Google Scholar] [CrossRef]
- Victoria, J.G.; Wang, C.; Jones, M.S.; Jaing, C.; McLoughlin, K.; Gardner, S.; Delwart, E.L. Viral nucleic acids in live-attenuated vaccines: Detection of minority variants and an adventitious virus. J. Virol. 2010, 84, 6033–6040. [Google Scholar] [CrossRef] [Green Version]
- Pestana, C.P.; Lawson-Ferreira, R.; Lessa-Aquino, C.; Leal, M.D.L.F.; Freire, M.D.S.; Homma, A.; Medeiros, M.A. Sanger-based sequencing technology for yellow fever vaccine genetic quality control. J. Virol. Methods 2018, 260, 82–87. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Standards for the Manufacture and Control of Yellow Fever Vaccine. In World Health Organization Epidemiological Bulletin; World Health Organization: Geneva, Switzerland, 1945; Volume 1, pp. 365–370. [Google Scholar]
- WHO. International Health Regulations (2005); World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- WHO. Recommendations to assure the quality, safety and efficacy of live attenuated yellow fever vaccines. In Annex 5, Standardization; WHO Technical Report Series: 2013; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Perraut, R.; Girault, G.; Moreau, J.P. Stability-related studies on 17D yellow fever vaccine. Microbes Infect. 2000, 2, 33–38. [Google Scholar] [CrossRef]
- Lang, J.; Zuckerman, J.; Clarke, P.; Barrett, P.; Kirkpatrick, C.; Blondeau, C. Comparison of the immunogenicity and safety of two 17D yellow fever vaccines. Am. J. Trop. Med. Hyg. 1999, 60, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Belmusto-Worn, V.E.; Sanchez, J.L.; McCarthy, K.; Nichols, R.; Bautista, C.T.; Magill, A.J.; Pastor-Cauna, G.; Echevarria, C.; Laguna-Torres, V.A.; Samame, B.K.; et al. Randomized, double-blind, phase III, pivotal field trial of the comparative immunogenicity, safety, and tolerability of two yellow fever 17D vaccines (Arilvax and YF-VAX) in healthy infants and children in Peru. Am. J. Trop. Med. Hyg. 2005, 72, 189–197. [Google Scholar] [CrossRef]
- Juan-Giner, A.; Kimathi, D.; Grantz, K.H.; Hamaluba, M.; Kazooba, P.; Njuguna, P.; Fall, G.; Dia, M.; Bob, N.S.; Monath, T.P.; et al. Immunogenicity and safety of fractional doses of yellow fever vaccines: A randomised, double-blind, non-inferiority trial. Lancet 2021, 397, 119–127. [Google Scholar] [CrossRef]
- Mason, R.A.; Tauraso, N.M.; Spertzel, R.O.; Ginn, R.K. Yellow fever vaccine: Direct challenge of monkeys given graded doses of 17D vaccine. Appl. Microbiol. 1973, 25, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Julander, J.G.; Trent, D.W.; Monath, T.P. Immune correlates of protection against yellow fever determined by passive immunization and challenge in the hamster model. Vaccine 2011, 29, 6008–6016. [Google Scholar] [CrossRef] [Green Version]
- WHO. Weekly Epidemiological Record: Yellow Fever Vaccine; World Health Organization: Geneva, Switzerland, 2003; Volume 78, pp. 349–360. [Google Scholar]
- Wieten, R.W.; Jonker, E.F.; van Leeuwen, E.M.; Remmerswaal, E.B.; Ten Berge, I.J.; de Visser, A.W.; van Genderen, P.J.; Goorhuis, A.; Visser, L.G.; Grobusch, M.P.; et al. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination. PLoS ONE 2016, 11, e0149871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staples, J.E.; Barrett, A.D.T.; Wilder-Smith, A.; Hombach, J. Review of data and knowledge gaps regarding yellow fever vaccine-induced immunity and duration of protection. NPJ Vaccines 2020, 5, 54. [Google Scholar] [CrossRef]
- Gotuzzo, E.; Yactayo, S.; Córdova, E. Efficacy and duration of immunity after yellow fever vaccination: Systematic review on the need for a booster every 10 years. Am. J. Trop. Med. Hyg. 2013, 89, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Casey, R.M.; Harris, J.B.; Ahuka-Mundeke, S.; Dixon, M.G.; Kizito, G.M.; Nsele, P.M.; Umutesi, G.; Laven, J.; Kosoy, O.; Paluku, G.; et al. Immunogenicity of Fractional-Dose Vaccine during a Yellow Fever Outbreak-Final Report. N. Engl. J. Med. 2019, 381, 444–454. [Google Scholar] [CrossRef]
- Hepburn, M.J.; Kortepeter, M.G.; Pittman, P.R.; Boudreau, E.F.; Mangiafico, J.A.; Buck, P.A.; Norris, S.L.; Anderson, E.L. Neutralizing antibody response to booster vaccination with the 17d yellow fever vaccine. Vaccine 2006, 24, 2843–2849. [Google Scholar] [CrossRef]
- Kongsgaard, M.; Bassi, M.R.; Rasmussen, M.; Skjødt, K.; Thybo, S.; Gabriel, M.; Hansen, M.B.; Christensen, J.P.; Thomsen, A.R.; Buus, S.; et al. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination. Sci. Rep. 2017, 7, 662. [Google Scholar] [CrossRef] [Green Version]
- ACIP. Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) for Use of Yellow Fever Vaccine Booster Doses; Advisory Committee on Immunization Practices (ACIP): Atlanta, GA, USA, 2015.
- De Noronha, T.G.; de Lourdes de Sousa Maia, M.; Geraldo Leite Ribeiro, J.; Campos Lemos, J.A.; Maria Barbosa de Lima, S.; Martins-Filho, O.A.; Campi-Azevedo, A.C.; da Silva Freire, M.; de Menezes Martins, R.; Bastos Camacho, L.A. Duration of post-vaccination humoral immunity against yellow fever in children. Vaccine 2019, 37, 7147–7154. [Google Scholar] [CrossRef] [PubMed]
- Sanofi Pasteur Inc. Yellow Fever Vaccine: YF-VAX® Product Information; Sanofi Pasteur Inc.: Swiftwater, PA, USA, 2016. [Google Scholar]
- Veit, O.; Niedrig, M.; Chapuis-Taillard, C.; Cavassini, M.; Mossdorf, E.; Schmid, P.; Bae, H.G.; Litzba, N.; Staub, T.; Hatz, C.; et al. Immunogenicity and safety of yellow fever vaccination for 102 HIV-infected patients. Clin. Infect. Dis. 2009, 48, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Veit, O.; Domingo, C.; Niedrig, M.; Staehelin, C.; Sonderegger, B.; Héquet, D.; Stoeckle, M.; Calmy, A.; Schiffer, V.; Bernasconi, E.; et al. Study, S.H.C., Long-term Immune Response to Yellow Fever Vaccination in Human Immunodeficiency Virus (HIV)-Infected Individuals Depends on HIV RNA Suppression Status: Implications for Vaccination Schedule. Clin. Infect. Dis. 2018, 66, 1099–1108. [Google Scholar] [CrossRef]
- Martin, C.; Domingo, C.; Bottieau, E.; Buonfrate, D.; De Wit, S.; Van Laethem, Y.; Dauby, N. Immunogenicity and duration of protection after yellow fever vaccine in people living with human immunodeficiency virus: A systematic review. Clin. Microbiol. Infect. 2021, 27, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; McLinden, J.H.; Rydze, R.A.; Chang, Q.; Kaufman, T.M.; Klinzman, D.; Stapleton, J.T. Viruses within the Flaviviridae decrease CD4 expression and inhibit HIV replication in human CD4+ cells. J. Immunol. 2009, 183, 7860–7869. [Google Scholar] [CrossRef] [Green Version]
- Gaucher, D.; Therrien, R.; Kettaf, N.; Angermann, B.R.; Boucher, G.; Filali-Mouhim, A.; Moser, J.M.; Mehta, R.S.; Drake, D.R.; Castro, E.; et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 2008, 205, 3119–3131. [Google Scholar] [CrossRef] [PubMed]
- Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009, 10, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Wec, A.Z.; Haslwanter, D.; Abdiche, Y.N.; Shehata, L.; Pedreño-Lopez, N.; Moyer, C.L.; Bornholdt, Z.A.; Lilov, A.; Nett, J.H.; Jangra, R.K.; et al. Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. Proc. Natl. Acad. Sci. USA 2020, 117, 6675–6685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershman, M.D.; Staples, J.E.; Bentsi-Enchill, A.D.; Breugelmans, J.G.; Brito, G.S.; Camacho, L.A.; Cottin, P.; Domingo, C.; Durbin, A.; Gascon, J.; et al. Viscerotropic disease: Case definition and guidelines for collection, analysis, and presentation of immunization safety data. Vaccine 2012, 30, 5038–5058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittembury, A.; Ramirez, G.; Hernández, H.; Ropero, A.M.; Waterman, S.; Ticona, M.; Brinton, M.; Uchuya, J.; Gershman, M.; Toledo, W.; et al. Viscerotropic disease following yellow fever vaccination in Peru. Vaccine 2009, 27, 5974–5981. [Google Scholar] [CrossRef]
- Pulendran, B.; Miller, J.; Querec, T.D.; Akondy, R.; Moseley, N.; Laur, O.; Glidewell, J.; Monson, N.; Zhu, T.; Zhu, H.; et al. Case of yellow fever vaccine-associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J. Infect. Dis. 2008, 198, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Belsher, J.L.; Gay, P.; Brinton, M.; DellaValla, J.; Ridenour, R.; Lanciotti, R.; Perelygin, A.; Zaki, S.; Paddock, C.; Querec, T.; et al. Fatal multiorgan failure due to yellow fever vaccine-associated viscerotropic disease. Vaccine 2007, 25, 8480–8485. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.D.; Gibson, C.A.; Miller, B.R.; Mathews, J.H.; Mitchell, C.J.; Roehrig, J.T.; Wood, D.J.; Taffs, F.; Sil, B.K.; Whitby, S.N. Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J. Infect. Dis. 1994, 169, 512–518. [Google Scholar] [CrossRef]
- WHO. Vaccines and vaccination against yellow fever. WHO position paper-June 2013. Wkly. Epidemiol. Rec. 2013, 88, 269–283. [Google Scholar]
- Staples, J.E.; Bocchini, J.A.; Rubin, L.; Fischer, M. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 647–650. [Google Scholar]
- Campi-Azevedo, A.C.; de Almeida Estevam, P.; Coelho-Dos-Reis, J.G.; Peruhype-Magalhães, V.; Villela-Rezende, G.; Quaresma, P.F.; Maia, M.e.L.; Farias, R.H.; Camacho, L.A.; Freire, M.a.S. Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline. BMC Infect. Dis. 2014, 14, 391. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.M.; Maia, M.e.L.; Farias, R.H.; Camacho, L.A.; Freire, M.S.; Galler, R.; Yamamura, A.M.; Almeida, L.F.; Lima, S.M.; Nogueira, R.M. 17DD yellow fever vaccine: A double blind, randomized clinical trial of immunogenicity and safety on a dose-response study. Hum. Vaccin. Immunother. 2013, 9, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Kimathi, D.; Juan, A.; Bejon, P.; Grais, R.F.; Warimwe, G.M.; YEFE and NIFTY Vaccine Trials Teams. Randomized, double-blinded, controlled non-inferiority trials evaluating the immunogenicity and safety of fractional doses of Yellow Fever vaccines in Kenya and Uganda. Wellcome Open Res. 2019, 4, 182. [Google Scholar] [CrossRef] [Green Version]
- Julander, J.G. Animal models of yellow fever and their application in clinical research. Curr. Opin. Virol. 2016, 18, 64–69. [Google Scholar] [CrossRef]
- Engelmann, F.; Josset, L.; Girke, T.; Park, B.; Barron, A.; Dewane, J.; Hammarlund, E.; Lewis, A.; Axthelm, M.K.; Slifka, M.K.; et al. Pathophysiologic and transcriptomic analyses of viscerotropic yellow fever in a rhesus macaque model. PLoS Negl. Trop. Dis. 2014, 8, e3295. [Google Scholar] [CrossRef] [Green Version]
- Fitzgeorge, R.; Bradish, C.J. The in vivo differentiation of strains of yellow fever virus in mice. J. Gen. Virol. 1980, 46, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Meier, K.C.; Gardner, C.L.; Khoretonenko, M.V.; Klimstra, W.B.; Ryman, K.D. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog. 2009, 5, e1000614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibodeaux, B.A.; Garbino, N.C.; Liss, N.M.; Piper, J.; Blair, C.D.; Roehrig, J.T. A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain. Vaccine 2012, 30, 3180–3187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piras-Douce, F.; Raynal, F.; Raquin, A.; Girerd-Chambaz, Y.; Gautheron, S.; Sanchez, M.E.N.; Vangelisti, M.; Mantel, N. Next generation live-attenuated yellow fever vaccine candidate: Safety and immuno-efficacy in small animal models. Vaccine 2021, 39, 1846–1856. [Google Scholar] [CrossRef]
- Mateo, R.I.; Xiao, S.Y.; Travassos da Rosa, A.P.; Lei, H.; Guzman, H.; Lu, L.; Tesh, R.B. Yellow fever 17-D vaccine is neurotropic and produces encephalitis in immunosuppressed hamsters. Am. J. Trop. Med. Hyg. 2007, 77, 919–924. [Google Scholar] [CrossRef]
- Tesh, R.B.; Guzman, H.; da Rosa, A.P.; Vasconcelos, P.F.; Dias, L.B.; Bunnell, J.E.; Zhang, H.; Xiao, S.Y. Experimental yellow fever virus infection in the Golden Hamster (Mesocricetus auratus). I. Virologic, biochemical, and immunologic studies. J. Infect. Dis. 2001, 183, 1431–1436. [Google Scholar] [CrossRef] [Green Version]
- McArthur, M.A.; Suderman, M.T.; Mutebi, J.P.; Xiao, S.Y.; Barrett, A.D. Molecular characterization of a hamster viscerotropic strain of yellow fever virus. J. Virol. 2003, 77, 1462–1468. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Lee, C.K.; Julander, J.G.; Brown, A.; Beasley, D.W.; Watts, D.M.; Hayman, E.; Guertin, P.; Makowiecki, J.; Crowell, J.; et al. Inactivated yellow fever 17D vaccine: Development and nonclinical safety, immunogenicity and protective activity. Vaccine 2010, 28, 3827–3840. [Google Scholar] [CrossRef]
- Julander, J.G.; Testori, M.; Cheminay, C.; Volkmann, A. Immunogenicity and Protection after Vaccination with a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Front Immunol. 2018, 9, 1756. [Google Scholar] [CrossRef] [Green Version]
- Pato, T.P.; Souza, M.C.O.; Mattos, D.A.; Caride, E.; Ferreira, D.F.; Gaspar, L.P.; Freire, M.S.; Castilho, L.R. Purification of yellow fever virus produced in Vero cells for inactivated vaccine manufacture. Vaccine 2019, 37, 3214–3220. [Google Scholar] [CrossRef]
- Pereira, R.C.; Silva, A.N.; Souza, M.C.; Silva, M.V.; Neves, P.P.; Silva, A.A.; Matos, D.D.; Herrera, M.A.; Yamamura, A.M.; Freire, M.S.; et al. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures. Vaccine 2015, 33, 4261–4268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, A.P.; Klebleeva, T.D.; Rogova, Y.V.; Ivanova, O.E. Development of inactivated cultural yellow fever vaccine. Vopr. Virusol. 2020, 65, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.; Mason, P.W.; Konishi, E.; Fonseca, B.A.; Shope, R.E.; Rice, C.M.; Paoletti, E. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology 1992, 187, 290–297. [Google Scholar] [CrossRef]
- Schäfer, B.; Holzer, G.W.; Joachimsthaler, A.; Coulibaly, S.; Schwendinger, M.; Crowe, B.A.; Kreil, T.R.; Barrett, P.N.; Falkner, F.G. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever. PLoS ONE 2011, 6, e24505. [Google Scholar] [CrossRef] [PubMed]
- Maciel, M.; Cruz, F.a.S.; Cordeiro, M.T.; da Motta, M.A.; Cassemiro, K.M.; Maia, R.e.C.; de Figueiredo, R.C.; Galler, R.; Freire, M.a.S.; August, J.T.; et al. A DNA vaccine against yellow fever virus: Development and evaluation. PLoS Negl. Trop. Dis. 2015, 9, e0003693. [Google Scholar] [CrossRef] [PubMed]
- Tretyakova, I.; Nickols, B.; Hidajat, R.; Jokinen, J.; Lukashevich, I.S.; Pushko, P. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice. Virology 2014, 468-470, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Dalebout, T.J.; Lukashevich, I.S.; Bredenbeek, P.J.; Franco, D. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone. J. Gen. Virol. 2015, 96, 804–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kum, D.B.; Mishra, N.; Vrancken, B.; Thibaut, H.J.; Wilder-Smith, A.; Lemey, P.; Neyts, J.; Dallmeier, K. Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerg. Microbes Infect. 2019, 8, 1734–1746. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Virus like Particles (VLP) as multivalent vaccine candidate against Chikungunya, Japanese Encephalitis, Yellow Fever and Zika Virus. Sci. Rep. 2020, 10, 4017. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, K.E.; Bhosle, S.M.; Zurla, C.; Beyersdorf, J.; Rogers, K.A.; Vanover, D.; Xiao, P.; Araínga, M.; Shirreff, L.M.; Pitard, B.; et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging. Nat. Biomed. Eng. 2019, 3, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Klitting, R.; Riziki, T.; Moureau, G.; Piorkowski, G.; Gould, E.A.; de Lamballerie, X. Exploratory re-encoding of yellow fever virus genome: New insights for the design of live-attenuated viruses. Virus. Evol. 2018, 4, vey021. [Google Scholar] [CrossRef] [Green Version]
- Tottey, S.; Shoji, Y.; Jones, R.M.; Chichester, J.A.; Green, B.J.; Musiychuk, K.; Si, H.; Manceva, S.D.; Rhee, A.; Shamloul, M.; et al. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models. Am. J. Trop. Med. Hyg. 2018, 98, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Fowler, E.; Johnson, C.T.; Balser, J.; Morin, M.J.; Sisti, M.; Trent, D.W. An inactivated cell-culture vaccine against yellow fever. N. Engl. J. Med. 2011, 364, 1326–1333. [Google Scholar] [CrossRef]
- Putnak, J.R.; Schlesinger, J.J. Protection of mice against yellow fever virus encephalitis by immunization with a vaccinia virus recombinant encoding the yellow fever virus non-structural proteins, NS1, NS2a and NS2b. J. Gen. Virol. 1990, 71, 1697–1702. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases (NIAID). A Trial to Evaluate the Safety, Reactogenicity, and Immunogenicity of MVA-BN Yellow Fever Vaccine with and Without Montanide ISA-720 Adjuvant in 18–45 Year Old Healthy Volunteers. In NCT02743455; National Institute of Allergy and Infectious Diseases (NIAID): Rockville, MD, USA, 2021. [Google Scholar]
- Freire, M.S.; Mann, G.F.; Marchevsky, R.S.; Yamamura, A.M.; Almeida, L.F.; Jabor, A.V.; Malachias, J.M.; Coutinho, E.S.; Galler, R. Production of yellow fever 17DD vaccine virus in primary culture of chicken embryo fibroblasts: Yields, thermo and genetic stability, attenuation and immunogenicity. Vaccine 2005, 23, 2501–2512. [Google Scholar] [CrossRef] [Green Version]
- Appaiahgari, M.B.; Vrati, S. Clinical development of IMOJEV ®-a recombinant Japanese encephalitis chimeric vaccine (JE-CV). Expert Opin. Biol. Ther. 2012, 12, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Chotpitayasunondh, T.; Pruekprasert, P.; Puthanakit, T.; Pancharoen, C.; Tangsathapornpong, A.; Oberdorfer, P.; Kosalaraksa, P.; Prommalikit, O.; Tangkittithaworn, S.; Kerdpanich, P.; et al. Post-licensure, phase IV, safety study of a live attenuated Japanese encephalitis recombinant vaccine in children in Thailand. Vaccine 2017, 35, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.J.; Yoon, I.K. A review of Dengvaxia®: Development to deployment. Hum. Vaccin. Immunother. 2019, 15, 2295–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile virus live-attenuated vaccine: Preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef] [Green Version]
- Biedenbender, R.; Bevilacqua, J.; Gregg, A.M.; Watson, M.; Dayan, G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J. Infect. Dis. 2011, 203, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Dayan, G.H.; Bevilacqua, J.; Coleman, D.; Buldo, A.; Risi, G. Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥ 50 years of age. Vaccine 2012, 30, 6656–6664. [Google Scholar] [CrossRef]
- Giel-Moloney, M.; Goncalvez, A.P.; Catalan, J.; Lecouturier, V.; Girerd-Chambaz, Y.; Diaz, F.; Maldonado-Arocho, F.; Gomila, R.C.; Bernard, M.C.; Oomen, R.; et al. Chimeric yellow fever 17D-Zika virus (ChimeriVax-Zika) as a live-attenuated Zika virus vaccine. Sci. Rep. 2018, 8, 13206. [Google Scholar] [CrossRef]
- Kum, D.B.; Boudewijns, R.; Ma, J.; Mishra, N.; Schols, D.; Neyts, J.; Dallmeier, K. A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice. Emerg. Microbes. Infect. 2020, 9, 520–533. [Google Scholar] [CrossRef]
- Kum, D.B.; Mishra, N.; Boudewijns, R.; Gladwyn-Ng, I.; Alfano, C.; Ma, J.; Schmid, M.A.; Marques, R.E.; Schols, D.; Kaptein, S.; et al. A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. NPJ Vaccines 2018, 3, 56. [Google Scholar] [CrossRef]
- Bonaldo, M.C.; Garratt, R.C.; Marchevsky, R.S.; Coutinho, E.S.; Jabor, A.V.; Almeida, L.F.; Yamamura, A.M.; Duarte, A.S.; Oliveira, P.J.; Lizeu, J.O.; et al. Attenuation of recombinant yellow fever 17D viruses expressing foreign protein epitopes at the surface. J. Virol. 2005, 79, 8602–8613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, R.T.; Nogueira, A.R.; Pereira, M.C.; Rodrigues, M.M.; Neves, P.C.; Galler, R.; Bonaldo, M.C. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi. PLoS ONE 2013, 8, e59347. [Google Scholar]
- Bonaldo, M.C.; Martins, M.A.; Rudersdorf, R.; Mudd, P.A.; Sacha, J.B.; Piaskowski, S.M.; Costa Neves, P.C.; Veloso de Santana, M.G.; Vojnov, L.; Capuano, S. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques. J. Virol. 2010, 84, 3699–3706. [Google Scholar] [CrossRef] [Green Version]
- Bredenbeek, P.J.; Molenkamp, R.; Spaan, W.J.; Deubel, V.; Marianneau, P.; Salvato, M.S.; Moshkoff, D.; Zapata, J.; Tikhonov, I.; Patterson, J.; et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology 2006, 345, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Felipe, L.; Vercruysse, T.; Sharma, S.; Ma, J.; Lemmens, V.; Van Looveren, D.; Arkalagud Javarappa, M.P.; Boudewijns, R.; Malengier-Devlies, B.; Liesenborghs, L.; et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature 2021, 590, 320–325. [Google Scholar] [CrossRef]
- Firbas, C.; Jilma, B. Product review on the JE vaccine IXIARO. Hum. Vaccin. Immunother. 2015, 11, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Erra, E.O.; Kantele, A. The Vero cell-derived, inactivated, SA14-14-2 strain-based vaccine (Ixiaro) for prevention of Japanese encephalitis. Expert Rev. Vaccines 2015, 14, 1167–1179. [Google Scholar] [CrossRef]
- Amicizia, D.; Domnich, A.; Panatto, D.; Lai, P.L.; Cristina, M.L.; Avio, U.; Gasparini, R. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum. Vaccin. Immunother. 2013, 9, 1163–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinz, F.X.; Stiasny, K. Flaviviruses and flavivirus vaccines. Vaccine 2012, 30, 4301–4306. [Google Scholar] [CrossRef] [PubMed]
- Bredenbeek, P.J.; Kooi, E.A.; Lindenbach, B.; Huijkman, N.; Rice, C.M.; Spaan, W.J.M. A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J. Gen. Virol. 2003, 84, 1261–1268. [Google Scholar] [CrossRef]
- Rice, C.M.; Grakoui, A.; Galler, R.; Chambers, T.J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989, 1, 285–296. [Google Scholar] [PubMed]
- Pushko, P.; Lukashevich, I.S.; Weaver, S.C.; Tretyakova, I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev. Vaccines 2016, 15, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Alvim, R.G.F.; Lima, T.M.; Silva, J.L.; de Oliveira, G.A.P.; Castilho, L.R. Process intensification for the production of yellow fever virus-like particles as potential recombinant vaccine antigen. Biotechnol. Bioeng. 2021, 118, 3581–3592. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Kelland, K.; Heinrich, M. Epidemic group invests $34 million in potential vaccine printer tech. Healthc. Pharma 2019. Available online: https://www.reuters.com/article/us-health-vaccines-curevac-idUSKCN1QG1MD (accessed on 27 July 2021).
- Burns, C.C.; Shaw, J.; Campagnoli, R.; Jorba, J.; Vincent, A.; Quay, J.; Kew, O. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 2006, 80, 3259–3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, S.; Papamichail, D.; Coleman, J.R.; Skiena, S.; Wimmer, E. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol. 2006, 80, 9687–9696. [Google Scholar] [CrossRef] [Green Version]
- Gomord, V.; Faye, L. Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant. Biol. 2004, 7, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Souza, Y.R.M.; Manso, P.P.A.; Oliveira, B.C.D.; Terra, M.A.B.L.; Paschoal, T.; Caminha, G.; Ribeiro, I.P.; Raphael, L.M.S.; Bonaldo, M.C.; Pelajo-Machado, M. Generation of Yellow Fever virus vaccine in skeletal muscle cells of chicken embryos. Mem. Inst. Oswaldo. Cruz. 2019, 114, e190187. [Google Scholar] [CrossRef]
- Chokephaibulkit, K.; Houillon, G.; Feroldi, E.; Bouckenooghe, A. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children. Expert Rev. Vaccines 2016, 15, 153–166. [Google Scholar] [CrossRef]
- Halstead, S.B.; Thomas, S.J. New Japanese encephalitis vaccines: Alternatives to production in mouse brain. Expert Rev. Vaccines 2011, 10, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Appaiahgari, M.B.; Vrati, S. IMOJEV(®): A Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev. Vaccines 2010, 9, 1371–1384. [Google Scholar] [CrossRef] [PubMed]
- Sanofi Pasteur. Imojev ® Package Insert; Sanofi Pasteur: Paris, France, 2014. [Google Scholar]
- Guy, B.; Noriega, F.; Ochiai, R.L.; L′azou, M.; Delore, V.; Skipetrova, A.; Verdier, F.; Coudeville, L.; Savarino, S.; Jackson, N. A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev. Vaccines 2017, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dayan, G.H.; Pugachev, K.; Bevilacqua, J.; Lang, J.; Monath, T.P. Preclinical and clinical development of a YFV 17 D-based chimeric vaccine against West Nile virus. Viruses 2013, 5, 3048–3070. [Google Scholar] [CrossRef] [PubMed]
- Tesh, R.B.; Arroyo, J.; Travassos Da Rosa, A.P.; Guzman, H.; Xiao, S.Y.; Monath, T.P. Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg. Infect. Dis. 2002, 8, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Liu, J.; Kanesa-Thasan, N.; Myers, G.A.; Nichols, R.; Deary, A.; McCarthy, K.; Johnson, C.; Ermak, T.; Shin, S.; et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl. Acad. Sci. USA 2006, 103, 6694–6699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.L.; Monath, T.P.; Pazoles, P.; Rothman, A.L.; Casey, D.M.; Terajima, M.; Ennis, F.A.; Guirakhoo, F.; Green, S. Development of antigen-specific memory CD8+ T cells following live-attenuated chimeric West Nile virus vaccination. J. Infect. Dis. 2011, 203, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, E.; Laureys, G.; Verbeke, F.; Domingo Carrasco, C.; Van Esbroeck, M.; Huits, R. A clinician′s perspective on yellow fever vaccine-associated neurotropic disease. J. Travel. Med. 2020, 27, taaa172. [Google Scholar] [CrossRef]
Structural Proteins | ||
---|---|---|
Nucleotide | Gene | AA Number (Asibi to 17D) |
854 | M | L36F |
1127 | E | G52R |
1482 | E | A170V |
1491 | E | T173I |
1572 | E | K200T |
1870 | E | M299I |
1887 | E | S305F |
2112 | E | T380R |
2193 | E | A407V |
Nonstructural proteins | ||
3371 | NS1 | I307V |
3860 | NS2A | M118V |
4007 | NS2A | T167A |
4022 | NS2A | T172A |
4056 | NS2A | S183F |
4505 | NS2B | I109L |
6023 | NS3 | D485N |
6876 | NS4A | V146A |
7171 | NS4B | I95M |
10,142 | NS5 | E836K |
10,338 | NS5 | P900L |
3′ Untranslated Region Nucleotide changes (Asibi to 17D) | ||
10,367 | U → C | |
10,418 | U → C | |
10,800 | G → A | |
10,847 | A → C |
Vaccine Name [Reference] | Vaccine Type | Formulation/Makeup | Stage of Development | Cohort | Endpoints | Comments |
---|---|---|---|---|---|---|
XRX-001 [89] | Inactivated | YF-VAX inactivated with BPL adsorbed to aluminum hydroxide | Clinical: Phase I | 60 healthy male and female volunteers | Safety: SAE incidence Efficacy: neutralizing antibody response | |
VINFLAPI001/2010 [77] | Inactivated | Bio-Manguinhos/FIOCRUZ 17DD inactivated with BPL adsorbed to aluminum hydroxide | Pre-clinical | C57Bl/6 mice | Seroconversion of neutralizing antibodies and protection from lethal challenge | 17DD grown in serum-free Vero cells in bioreactor |
Chumakov Institute inactivated YF vaccine [78] | Inactivated | Chumakov Institute 17D-213 inactivated with BPL | Pre-clinical | BALB/c mice | Non-inferior immunogenicity compared to 17D | 17D strain adapted to Vero cell culture |
Recombinant vaccinia virus/17D YFV [90] | Replicating viral vector | YFV-specific cDNA clone 10III NS1-NS2A-NS2B expressed in wild-type vaccinia virus | Pre-clinical | BALB/c mice | Protection from lethal challenge | Only conferred partial immunity |
MVA-YF and dVV-YF [80] | Non-replicating viral vector | Stamaril 17D prME expressed in modified vaccinia virus Ankara and D4R defective vaccinia virus | Pre-clinical | BALB/c mice | Safety, immunogenicity, and protection from lethal challenge | |
MVA-BN-YF [75,91] | Non-replicating viral vector | 17D prME expressed in modified vaccinia virus Ankara, Montanide ISA-720 adjuvant | Clinical: Phase I | Healthy adults aged 18–45 (NCT 02743455) | Safety, reactogenicity, immunogenicity | |
pYF17D-16 iDNA [82] | DNA | PLLAV: iDNA plasmid containing 17D genome downstream of CMV promoter | Pre-clinical | AG129 and BALB/c mice | Safety and seroconversion of neutralizing antibodies, respectively | |
pBeloBAC-FLYF and pBeloBAC-YF/ΔC [83] | DNA | PLLAV: plasmid containing 17D genome downstream of CMV promoter and upstream of hepatitis delta virus ribozyme and RNA pol II transcription terminator (ΔC: capsid gene deleted) | Pre-clinical | A129 mice | Seroconversion of neutralizing antibodies | |
pShuttle/YFV-17D [84] | DNA | PLLAV: 17D-204 cDNA downstream of SV40 promoter, upstream of hepatitis delta virus ribozyme | Pre-clinical | AG129 mice | Measuring genetic diversity (safety correlate) | |
p/YFE and pL/YFE [81] | DNA | DNA encoding 17DD E and E fused to LAMP-1, respectively (not PLLAV) | Pre-clinical | C57Bl/6 and BALB/c mice | Stimulation of T-cell responses, neutralizing antibodies; comparison to 17DD vaccination; protection from lethal challenge | |
CJaYZ [85] | VLP | Tetravalent VLP against YFV, ZIKV, CHIKV, and JEV: CprME of the flaviviruses and C-E3-E2-E1 of CHIKV expressed on a lentiviral vector that has been stably expressed in 293 T cells under antibiotic selective pressure | Pre-clinical | BALB/c mice | Seroconversion of neutralizing antibodies | |
(YF) prME mRNA [86] | RNA | YFV prME mRNA complexed with lipid derivatives | Pre-clinical | Cynomolgus macaques | Visualize vaccine trafficking dynamics to draining lymph nodes | No immunogenicity or efficacy data |
Re-encoded wild-type YF viruses [87] | Synonymous transition mutations live-attenuated vaccine | Asibi and Ap7M (hamster-adapted) strains mutated to have 100–400 synonymous mutations in the NS2A-to-NS4B coding region of the YFV genome | Pre-clinical | Syrian golden hamsters (M. auratus) | Comparison of virulence and immunogenicity to wild-type/hamster-adapted YFV; protection from challenge | |
YFE and YFE-LicKM [88] | Plant-produced subunit vaccine | E protein and E protein fused to bacterial enzyme lichenase produced by Nicotiana benthamiana | Pre-clinical | BALB/c mice | Seroconversion of neutralizing antibodies and protection from lethal challenge | |
vYF-247 [70] | New manufacturing protocols | Stamaril and YF-VAX 17D genomes transfected into serum-free Vero cells; resulting seed lots grown in serum-free Vero cells | Pre-clinical | A129 and OF1 mice and Syrian golden hamsters (M. auratus) | Comparison to chicken embryo live-attenuated 17D in neurovirulence, viscerotropism, immunogenicity, protection from lethal challenge | |
YFCEF-01-07 [92] | New manufacturing protocols | 17DD grown in chicken embryo fibroblast culture | Pre-clinical | Swiss Webster mice and rhesus macaques | Immunogenicity and neurovirulence, respectively |
Vaccine Name [Reference] | Pathogen | Vaccine Formulation | Stage of Development | Cohort | Endpoints | Comments |
---|---|---|---|---|---|---|
Imojev™ (JE-CV) [93,94] | JEV | prME proteins of JEV SA14-14-2 in 17D backbone | Licensed | 14 countries | Produced in Vero cells | |
Dengvaxia® [95] | DENV1-4 | 17D-204 backbone with the prM and E of YF replaced with those of the four wild-type DENV serotypes | Licensed | 20 countries | ||
ChimeriVax-WN01 [96] | WNV | 17D backbone with WN NY99 prME | Pre-clinical | ICR mice and rhesus macaques | Reduced neurovirulence and neurotropism when compared to wild-type WNV | |
ChimeriVax-WN02 [96,97,98] | WNV | Same as WN01 with added mutations in E: L107F, A316V, and K440R | Clinical: Phase II | Healthy adults aged 18–40 years (NCT00442169); adults over 50 years of age (NCT00746798) | Testing safety and immunogenicity (seroconversion of neutralizing antibodies) of low, medium, and high doses | |
ChimeriVax-Zika (CYZ) [99] | ZIKV | 17D backbone with prME of ZIKV | Pre-clinical | A129 mice | Reduced viral loads, reduced neurovirulence/neuroinvasion, seroconversion of neutralizing antibodies, protection from lethal challenge | |
YF-ZIKprM/E [100,101] | ZIKV | 17D backbone with prME of ZIKV | Pre-clinical | AG129, IFNAR1−/−, C57Bl/6, BALB/c, and immunocompetent NMRI mice | Protection from lethal challenge; protection from brain infections and malformations in mouse fetuses | |
17D/13 and 17D/8 [102] | Plasmodium falciparum | SYVPSAEQI portion of Plasmodium yoelii CS protein inserted into the fg loop in EDII | Pre-clinical | Rhesus macaques | Monkey neurovirulence test | |
YF17D/ENS1/Tc [103] | Trypanasoma cruzi | Amastigote surface protein-2 inserted between E and NS1 of 17DD | Pre-clinical | A/J mice | Seroconversion of neutralizing antibodies | |
rYF17D/SIVGag45–269 [104] | HIV | SIVmac239 Gag sequences inserted between E and NS1 of 17D | Pre-clinical | Rhesus macaques | Generation of CD8+ T-cell responses | |
YFV17D/LASV-GPC [105] | Lassa virus | Lassa glycoproteins inserted into the C-terminal region of the 17D E protein | Pre-clinical | Strain 13 guinea pigs | Seroconversion of antibodies; protection from lethal challenge | |
YF-S0 [106] | SARS-CoV-2 | Non-cleavable prefusion spike protein of SARS-CoV-2 inserted between E and NS1 or 17D | Pre-clinical | Syrian golden hamsters (M. auratus), AG129 hamsters, STAT2−/− hamsters; BALB/c and IFNAR1−/− mice, cynomolgus macaques | Safety, immunogenicity (neutralizing antibodies), efficacy; protection from infection/lung disease with SARS-CoV-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, C.A.; Barrett, A.D.T. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals 2021, 14, 891. https://doi.org/10.3390/ph14090891
Hansen CA, Barrett ADT. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals. 2021; 14(9):891. https://doi.org/10.3390/ph14090891
Chicago/Turabian StyleHansen, Clairissa A., and Alan D. T. Barrett. 2021. "The Present and Future of Yellow Fever Vaccines" Pharmaceuticals 14, no. 9: 891. https://doi.org/10.3390/ph14090891
APA StyleHansen, C. A., & Barrett, A. D. T. (2021). The Present and Future of Yellow Fever Vaccines. Pharmaceuticals, 14(9), 891. https://doi.org/10.3390/ph14090891