Clinical Application of Pharmacogenetic Markers in the Treatment of Dermatologic Pathologies
Abstract
:1. Introduction
2. Materials and Methods
3. Pharmacogenetically Significant Dermatologic Pathologies
3.1. Actinic Keratosis
3.2. Basal-Cell Carcinoma
3.3. Dermatitis Herpetiformis
3.4. Psoriasis
3.5. Hidradenitis Suppurativa
4. General Pharmacogenetics of the Disease
4.1. Topical Treatment: 5-FU in Actinic Keratosis and Basal-Cell Carcinoma
4.2. Systemic Treatment: Dapsone in Dermatitis Herpetiformis
4.2.1. Glucose-6-phosphate dehydrogenase (G6PD)
4.2.2. Major Histocompatibility Complex, Class I, B (HLA-B)
4.3. Biologic Drug Treatment
4.3.1. Moderate-to-Severe Psoriasis
4.3.2. Hidradenitis Suppurativa
5. Clinical Application of Each Drug
5.1. 5-Fluorouracil
5.2. Dapsone
5.3. Biologic Drugs
6. Future Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo-Arenas, E.; Garrido, V.; Serrano-Ortega, S. Skin conditions in primary care: An analysis of referral demand. Actas Dermosifiliogr. 2014, 105, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Alonso, P. Atlas de Dermatología del Pie: Editorial medica Panamericana. 2007. Available online: https://books.google.com.ec/books?id=Sji16aQ9XwUC&printsec=frontcover#v=onepage&q&f=false (accessed on 15 February 2021).
- Buendía-Eisman, A.; Arias-Santiago, S.; Molina-Leyva, A.; Gilaberte, Y.; Fernández-Crehuet, P.; Husein-ElAhmed, H.; Viera-Ramírez, A.; Fernández-Peñas, P.; Taberner, R.; Descalzo, M.Á.; et al. Outpatient Dermatological Diagnoses in Spain: Results from the National DIADERM Random Sampling Project. Actas Dermosifiliogr. 2018, 109, 416–423. [Google Scholar] [CrossRef]
- Svensson, A.; Ofenloch, R.F.; Bruze, M.; Naldi, L.; Cazzaniga, S.; Elsner, P.; Goncalo, M.; Schuttelaar, M.-L.A.; Diepgen, T.L. Prevalence of skin disease in a population-based sample of adults from five European countries. Br. J. Dermatol. 2018, 178, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- De Lucas RNM, L.; Maldonado Cid, P.; Feito Rodríguez, M. Principios de la terapéutica médica dermatológica. Pediatr. Integral 2012, 332, e1–e5. [Google Scholar]
- Muñoz-Aceituno, E.; Martos-Cabrera, L.; Ovejero-Benito, M.C.; Reolid, A.; Abad-Santos, F.; Daudén, E. Pharmacogenetics Update on Biologic Therapy in Psoriasis. Medicina 2020, 56, 719. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Abad-Santos, F.; Daudén, E. Pharmacogenetics and Pharmacogenomics in Moderate-to-Severe Psoriasis. Am. J. Clin. Dermatol. 2018, 19, 209–222. [Google Scholar] [CrossRef]
- Mehta, D.; Uber, R.; Ingle, T.; Li, C.; Liu, Z.; Thakkar, S.; Ning, B.; Wu, L.; Yang, J.; Harris, S.; et al. Study of pharmacogenomic information in FDA-approved drug labeling to facilitate application of precision medicine. Drug Discov. Today 2020, 25, 813–820. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. EMA Recommendations on DPD Testing Prior to Treatment with Fluorouracil, Capecitabine, Tegafur and Flucytosine; EMA/367286/2020 J.; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Chang, C.J.; Chen, C.B.; Hung, S.I.; Ji, C.; Chung, W.H. Pharmacogenetic Testing for Prevention of Severe Cutaneous Adverse Drug Reactions. Front. Pharmacol. 2020, 11, 969. [Google Scholar] [CrossRef]
- Daneshjou, R.; Huddart, R.; Klein, T.E.; Altman, R.B. Pharmacogenomics in dermatology: Tools for understanding gene-drug associations. Semin. Cutan. Med. Surg. 2019, 38, E19–E24. [Google Scholar] [CrossRef] [PubMed]
- Böhm, R.; Proksch, E.; Schwarz, T.; Cascorbi, I. Drug Hypersensitivity. Dtsch. Arztebl. Int. 2018, 115, 501–512. [Google Scholar] [CrossRef]
- Siegel, J.A.; Korgavkar, K.; Weinstock, M.A. Current perspective on actinic keratosis: A review. Br. J. Dermatol. 2017, 177, 350–358. [Google Scholar] [CrossRef]
- De Oliveira, E.C.V.; da Motta, V.R.V.; Pantoja, P.C.; Ilha, C.S.O.; Magalhães, R.F.; Galadari, H.; Leonardi, G.R. Actinic keratosis—Review for clinical practice. Int. J. Dermatol. 2019, 58, 400–407. [Google Scholar] [CrossRef]
- Ferrandiz-Pulido, C.; Lera-Imbuluzqueta, M.; Ferrandiz, C.; Plazas-Fernandez, M.J. Prevalence of Actinic Keratosis in Different Regions of Spain: The EPIQA Study. Actas Dermosifiliogr. 2018, 109, 83–86. [Google Scholar] [CrossRef]
- Carmena-Ramon, R.; Mateu-Puchades, A.; Santos-Alarcon, S.; Lucas-Truyols, S. Actinic keratosis: New concept and therapeutic update. Aten Primaria 2017, 49, 492–497. [Google Scholar] [PubMed]
- Di Stefani, A.; Chimenti, S. Basal cell carcinoma: Clinical and pathological features. G. Ital. Dermatol. Venereol. 2015, 150, 385–391. [Google Scholar] [PubMed]
- Vilchez-Marquez, F.; Borregon-Nofuentes, P.; Barchino-Ortiz, L.; Ruiz-de-Casas, A.; Palacios-Alvarez, I.; Soria-Rivas, A.; Descalzo-Gallego, M.A.; García-Doval, I.; Ríos-Buceta, L.; Redondo-Bellón, P. Diagnosis and Treatment of Basal Cell Carcinoma in Specialized Dermatology Units: A Clinical Practice Guideline. Actas Dermosifiliogr. 2020, 111, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Sobanko, J.F.; Lynm, C.; Rosenbach, M. Basal cell carcinoma. JAMA Dermatol. 2013, 149, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fania, L.; Didona, D.; Morese, R.; Campana, I.; Coco, V.; Di Pietro, F.R.; Ricci, F.; Pallotta, S.; Candi, E.; Abeni, D.; et al. Basal Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2020, 8, 449. [Google Scholar] [CrossRef]
- Marzuka, A.G.; Book, S.E. Basal cell carcinoma: Pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J. Biol. Med. 2015, 88, 167–179. [Google Scholar]
- Plotnikova, N.; Miller, J.L. Dermatitis herpetiformis. Skin Therapy Lett. 2013, 18, 1–3. [Google Scholar]
- Salmi, T.T. Dermatitis herpetiformis. Clin. Exp. Dermatol. 2019, 44, 728–731. [Google Scholar] [CrossRef] [Green Version]
- Pezzolo, E.; Naldi, L. Epidemiology of major chronic inflammatory immune-related skin diseases in 2019. Expert Rev. Clin. Immunol. 2020, 16, 155–166. [Google Scholar] [CrossRef]
- Salmi, T.; Hervonen, K. Current Concepts of Dermatitis Herpetiformis. Acta Derm. Venereol. 2020, 100, adv00056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarindo, M.V.; Possebon, A.T.; Soligo, E.M.; Uyeda, H.; Ruaro, R.T.; Empinotti, J.C. Dermatitis herpetiformis: Pathophysiology, clinical presentation, diagnosis and treatment. An. Bras. Dermatol. 2014, 89, 865–875, quiz 76–77. [Google Scholar] [CrossRef]
- Menter, A.; Gelfand, J.M.; Connor, C.; Armstrong, A.W.; Cordoro, K.M.; Davis, D.M.R.; Elewski, B.E.; Gordon, K.B.; Gottlieb, A.B.; Kaplan, D.H.; et al. Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management of psoriasis with systemic nonbiologic therapies. J. Am. Acad. Dermatol. 2020, 82, 1445–1486. [Google Scholar] [CrossRef]
- Molina-Leyva, A.; Salvador-Rodriguez, L.; Martinez-Lopez, A.; Ruiz-Carrascosa, J.C.; Arias-Santiago, S. Association Between Psoriasis and Sexual and Erectile Dysfunction in Epidemiologic Studies: A Systematic Review. JAMA Dermatol. 2019, 155, 98–106. [Google Scholar] [CrossRef]
- Harden, J.L.; Krueger, J.G.; Bowcock, A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun. 2015, 64, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, A.; Ray, A.; Senapati, S.; Chatterjee, R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol. Immunol. 2015, 64, 313–323. [Google Scholar] [CrossRef]
- Caputo, V.; Strafella, C.; Termine, A.; Dattola, A.; Mazzilli, S.; Lanna, C.; Cosio, T.; Campione, E.; Novelli, G.; Giardina, E.; et al. Overview of the molecular determinants contributing to the expression of Psoriasis and Psoriatic Arthritis phenotypes. J. Cell Mol. Med. 2020, 24, 13554–13563. [Google Scholar] [CrossRef]
- Boehncke, W.H. Etiology and Pathogenesis of Psoriasis. Rheum. Dis. Clin. N. Am. 2015, 41, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Daudén, E.; Puig, L.; Ferrándiz, C.; Sánchez-Carazo, J.L.; Hernanz-Hermosa, J.M.; Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. J. Eur. Acad. Dermatol. Venereol. 2016, 30 (Suppl. 2), 1–18. [Google Scholar] [CrossRef]
- Dauden, E.; Carretero, G.; Rivera, R.; Ferrandiz, C.; Llamas-Velasco, M.; de la Cueva, P.; Belinchón, I.; Gómez-García, F.J.; Herrera-Acosta, E.; Ruiz-Genao, D.P.; et al. Long term safety of nine systemic medications for psoriasis: A cohort study using the Biobadaderm Registry. J. Am. Acad. Dermatol. 2020, 83, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Puig, L.; Joshi, A.; Skup, M.; Williams, D.; Li, J.; Betts, K.A.; Augustin, M. Comparison of Biologics and Oral Treatments for Plaque Psoriasis: A Meta-analysis. JAMA Dermatol. 2020, 156, 258–269. [Google Scholar] [CrossRef]
- Lee, E.Y.; Alhusayen, R.; Lansang, P.; Shear, N.; Yeung, J. What is hidradenitis suppurativa? Can. Fam. Physician. 2017, 63, 114–120. [Google Scholar]
- Molina-Leyva, A.; Cuenca-Barrales, C. Adolescent-Onset Hidradenitis Suppurativa: Prevalence, Risk Factors and Disease Features. Dermatology 2019, 235, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Barrales, C.; Montero-Vilchez, T.; Salvador-Rodríguez, L.; Sánchez-Díaz, M.; Arias-Santiago, S.; Molina-Leyva, A. Implications of Hidradenitis Suppurativa Phenotypes in Cardiovascular Risk and Treatment Decisions: A Retrospective Cohort Study. Dermatology 2021, 237, 727–732. [Google Scholar] [CrossRef]
- Cuenca-Barrales, C.; Molina-Leyva, A. Sexuality in Patients with Hidradenitis Suppurativa: Beliefs, Behaviors and Needs. Int. J. Environ. Res. Public Health 2020, 17, 8808. [Google Scholar] [CrossRef] [PubMed]
- Pedraz, J.; Daudén, E. Practical management of hidradenitis suppurativa. Actas Dermosifiliogr. 2008, 99, 101–110. [Google Scholar] [CrossRef]
- Liu, M.; Degner, J.; Georgantas, R.W.; Nader, A.; Mostafa, N.M.; Teixeira, H.D.; Williams, D.A.; Kirsner, R.S.; Nichols, A.J.; Davis, J.W.; et al. A Genetic Variant in the BCL2 Gene Associates with Adalimumab Response in Hidradenitis Suppurativa Clinical Trials and Regulates Expression of BCL2. J. Investig. Dermatol. 2020, 140, 574–582.e2. [Google Scholar] [CrossRef]
- Gulliver, W.; Zouboulis, C.C.; Prens, E.; Jemec, G.B.; Tzellos, T. Evidence-based approach to the treatment of hidradenitis suppurativa/acne inversa, based on the European guidelines for hidradenitis suppurativa. Rev. Endocr. Metab. Disord. 2016, 17, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Saunte, D.M.L.; Jemec, G.B.E. Hidradenitis Suppurativa: Advances in Diagnosis and Treatment. JAMA 2017, 318, 2019–2032. [Google Scholar] [CrossRef]
- Kimball, A.B.; Okun, M.M.; Williams, D.A.; Gottlieb, A.B.; Papp, K.A.; Zouboulis, C.C.; Armstrong, A.W.; Kerdel, F.; Gold, M.H.; Forman, S.B.; et al. Two Phase 3 Trials of Adalimumab for Hidradenitis Suppurativa. N. Engl. J. Med. 2016, 375, 422–434. [Google Scholar] [CrossRef]
- Molina-Leyva, A. Adalimumab every other week combined with dexamethasone pulses for the treatment of refractory hidradenitis suppurativa. Dermatol. Ther. 2019, 32, e12885. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Desai, N.; Emtestam, L.; Hunger, R.E.; Ioannides, D.; Juhász, I.; Lapins, J.; Matusiak, L.; Prens, E.P.; Revuz, J.; et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 619–644. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Barrales, C.; Montero-Vílchez, T.; Szepietowski, J.C.; Matusiak, L.; Molina-Leyva, A. Sexual impairment in patients with hidradenitis suppurativa: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 345–352. [Google Scholar] [CrossRef] [PubMed]
- 5-Fluorouracil 05% and Salicylic Acid 100% (Actikerall); CADTH Common Drug Reviews: Ottawa, ON, Canada, 2017.
- Casale, J.; Crane, J.S. Fluorouracil. StatPearls. Treasure Island (FL)2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549808/ (accessed on 18 February 2021).
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.M.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, U.; Farese, S.; Aebi, S.; Largiader, C.R. Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy. J. Exp. Clin. Cancer Res. 2008, 27, 54. [Google Scholar] [CrossRef] [Green Version]
- Henricks, L.M.; Lunenburg, C.A.T.C.; de Man, F.M.; Meulendijks, D.; Frederix, G.W.J.; Kienhuis, E.; Creemers, G.J.; Baars, A.; Dezentjé, V.O.; Imholz, A.L.T.; et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: A prospective safety analysis. Lancet Oncol. 2018, 19, 1459–1467. [Google Scholar] [CrossRef]
- Yokota, H.; Fernandez-Salguero, P.; Furuya, H.; Lin, K.; McBride, O.W.; Podschun, B.; Schnackerz, K.D.; Gonzalez, F.J. cDNA cloning and chromosome mapping of human dihydropyrimidine dehydrogenase, an enzyme associated with 5-fluorouracil toxicity and congenital thymine uraciluria. J. Biol. Chem. 1994, 269, 23192–23196. [Google Scholar] [CrossRef]
- Wozel, G.; Blasum, C. Dapsone in dermatology and beyond. Arch. Dermatol. Res. 2014, 306, 103–124. [Google Scholar] [CrossRef] [Green Version]
- Al-Salama, Z.T.; Deeks, E.D. Dapsone 7.5% Gel: A Review in Acne Vulgaris. Am. J. Clin. Dermatol. 2017, 18, 139–145. [Google Scholar] [CrossRef]
- Allergan Announces FDA Approval of Aczone (dapsone) Gel, 7.5% for Treatment of Acne Vulgaris. 2021. Available online: https://www.prnewswire.com/news-releases/allergan-announces-fda-approval-of-aczone-dapsone-gel-75-for-treatment-of-acne-vulgaris-300226540.html (accessed on 17 February 2021).
- Wolf, R.; Matz, H.; Orion, E.; Tuzun, B.; Tuzun, Y. Dapsone. Dermatol. Online J. 2002, 8, 2. [Google Scholar]
- Zuidema, J.; Hilbers-Modderman, E.S.; Merkus, F.W. Clinical pharmacokinetics of dapsone. Clin. Pharmacokinet. 1986, 11, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Van Malderen, C.; Van Geertruyden, J.P.; Machevo, S.; Gonzalez, R.; Bassat, Q.; Talisuna, A.; Yeka, A.; Nabasumba, C.; Piola, P.; Daniel, A.; et al. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria. Malar. J. 2012, 11, 139. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Wang, C.W.; Lu, C.W.; Chen, C.B.; Lee, H.E.; Hung, S.I.; Choon, S.E.; Yang, C.H.; Liu, M.T.; Chen, T.J.; et al. The Function of HLA-B*13:01 Involved in the Pathomechanism of Dapsone-Induced Severe Cutaneous Adverse Reactions. J. Investig. Dermatol. 2018, 138, 1546–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Relling, M.V.; McDonagh, E.M.; Chang, T.; Caudle, K.E.; McLeod, H.L.; Haidar, C.E.; Klein, T.; Luzzatto, L. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin. Pharmacol. Ther. 2014, 96, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Gampio Gueye, N.S.; Peko, S.M.; Nderu, D.; Koukouikila-Koussounda, F.; Vouvoungui, C.; Kobawila, S.C.; Velavan, T.P.; Ntoumi, F. An update on glucose-6-phosphate dehydrogenase deficiency in children from Brazzaville, Republic of Congo. Malar. J. 2019, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Piette, W.W.; Taylor, S.; Pariser, D.; Jarratt, M.; Sheth, P.; Wilson, D. Hematologic safety of dapsone gel, 5%, for topical treatment of acne vulgaris. Arch. Dermatol. 2008, 144, 1564–1570. [Google Scholar] [CrossRef]
- FDA. Table of Pharmacogenomic Biomarkers in Drug Labelin. 2021. Available online: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling (accessed on 20 February 2021).
- Trowsdale, J. Genetic and functional relationships between MHC and NK receptor genes. Immunity 2001, 15, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Tangamornsuksan, W.; Lohitnavy, M. Association Between HLA-B*1301 and Dapsone-Induced Cutaneous Adverse Drug Reactions: A Systematic Review and Meta-analysis. JAMA Dermatol. 2018, 154, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.R.; Liu, H.; Irwanto, A.; Fu, X.A.; Li, Y.; Yu, G.Q.; Yu, Y.X.; Chen, M.F.; Low, H.Q.; Li, J.H.; et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N. Engl. J. Med. 2013, 369, 1620–1628. [Google Scholar] [CrossRef] [Green Version]
- Augustin, M.; McBride, D.; Gilloteau, I.; O’Neill, C.; Neidhardt, K.; Graham, C.N. Cost-effectiveness of secukinumab as first biologic treatment, compared with other biologics, for moderate to severe psoriasis in Germany. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2191–2199. [Google Scholar] [CrossRef]
- Bai, F.; Li, G.G.; Liu, Q.; Niu, X.; Li, R.; Ma, H. Short-Term Efficacy and Safety of IL-17, IL-12/23, and IL-23 Inhibitors Brodalumab, Secukinumab, Ixekizumab, Ustekinumab, Guselkumab, Tildrakizumab, and Risankizumab for the Treatment of Moderate to Severe Plaque Psoriasis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. J. Immunol. Res. 2019, 2019, 2546161. [Google Scholar]
- Jeon, C.; Sekhon, S.; Yan, D.; Afifi, L.; Nakamura, M.; Bhutani, T. Monoclonal antibodies inhibiting IL-12, -23, and -17 for the treatment of psoriasis. Hum. Vaccin. Immunother. 2017, 13, 2247–2259. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, L.M.; Malottki, K.; Sabry-Grant, C.; Yasmeen, N.; Wright, E.; Sohrt, A.; Borg, E.; Warren, R.B. Assessing the relative efficacy of interleukin-17 and interleukin-23 targeted treatments for moderate-to-severe plaque psoriasis: A systematic review and network meta-analysis of PASI response. PLoS ONE 2019, 14, e0220868. [Google Scholar] [CrossRef] [Green Version]
- Carrasquillo, O.Y.; Pabon-Cartagena, G.; Falto-Aizpurua, L.A.; Santiago-Vazquez, M.; Cancel-Artau, K.J.; Arias-Berrios, G.; Martín-García, R.F. Treatment of erythrodermic psoriasis with biologics: A systematic review. J. Am. Acad. Dermatol. 2020, 83, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Ten Bergen, L.L.; Petrovic, A.; Krogh Aarebrot, A.; Appel, S. The TNF/IL-23/IL-17 axis-Head-to-head trials comparing different biologics in psoriasis treatment. Scand. J. Immunol. 2020, 92, e12946. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, L.M.; Cornic, L.; Levin, L.A.; Gibbons, C.; Moller, A.H.; Jemec, G.B. Long-term efficacy of novel therapies in moderate-to-severe plaque psoriasis: A systematic review and network meta-analysis of PASI response. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peleva, E.; Exton, L.S.; Kelley, K.; Kleyn, C.E.; Mason, K.J.; Smith, C.H. Risk of cancer in patients with psoriasis on biological therapies: A systematic review. Br. J. Dermatol. 2018, 178, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.J.; Merola, J.F.; Feldman, S.R.; Menter, A.; Lebwohl, M. Treatment of Psoriasis with Secukinumab in Challenging Patient Scenarios: A Review of the Available Evidence. Dermatol. Ther. 2020, 10, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Farhangian, M.E.; Feldman, S.R. Immunogenicity of biologic treatments for psoriasis: Therapeutic consequences and the potential value of concomitant methotrexate. Am. J. Clin. Dermatol. 2015, 16, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Membrive Jiménez, C.; Pérez Ramírez, C.; Sánchez Martín, A.; Vieira Maroun, S.; Arias Santiago, S.A.; Ramírez Tortosa, M.D.C.; Jiménez Morales, A. Influence of Genetic Polymorphisms on Response to Biologics in Moderate-to-Severe Psoriasis. J. Pers. Med. 2021, 11, 293. [Google Scholar] [CrossRef]
- Van Vugt, L.J.; van den Reek, J.M.P.A.; Hannink, G.; Coenen, M.J.H.; de Jong, E.M.G.J. Association of HLA-C*06:02 Status with Differential Response to Ustekinumab in Patients with Psoriasis: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019, 155, 708–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dand, N.; Duckworth, M.; Baudry, D.; Russell, A.; Curtis, C.J.; Lee, S.H.; Evans, I.; Mason, K.J.; Alsharqi, A.; Becher, G.; et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 2019, 143, 2120–2130. [Google Scholar] [CrossRef] [Green Version]
- Galluzzo, M.; Boca, A.N.; Botti, E.; Potenza, C.; Malara, G.; Malagoli, P.; Vesa, S.; Chimenti, S.; Buzoianu, A.D.; Talamonti, M.; et al. IL12B (p40) Gene Polymorphisms Contribute to Ustekinumab Response Prediction in Psoriasis. Dermatology 2016, 232, 230–236. [Google Scholar] [CrossRef]
- Talamonti, M.; Galluzzo, M.; Zangrilli, A.; Papoutsaki, M.; Egan, C.G.; Bavetta, M.; Tambone, S.; Fargnoli, M.C.; Bianchi, L. HLA-C*06:02 Does Not Predispose to Clinical Response Following Long-Term Adalimumab Treatment in Psoriatic Patients: A Retrospective Cohort Study. Mol. Diagn. Ther. 2017, 21, 295–301. [Google Scholar] [CrossRef]
- Ryan, C.; Kelleher, J.; Fagan, M.F.; Rogers, S.; Collins, P.; Barker, J.N.; Allen, M.; Hagan, R.; Renfro, L.; Kirby, B. Genetic markers of treatment response to tumour necrosis factor-α inhibitors in the treatment of psoriasis. Clin. Exp. Dermatol. 2014, 39, 519–524. [Google Scholar] [CrossRef]
- Prinz, J.C. Human Leukocyte Antigen-Class I Alleles and the Autoreactive T Cell Response in Psoriasis Pathogenesis. Front. Immunol. 2018, 9, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovejero-Benito, M.C.; Prieto-Pérez, R.; Llamas-Velasco, M.; Belmonte, C.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Saiz-Rodríguez, M.; Daudén, E.; et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2017, 18, 631–638. [Google Scholar] [CrossRef]
- Prieto-Pérez, R.; Solano-López, G.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Baniandrés, O.; López-Estebaranz, J.L.; de la Cueva, P.; Daudén, E.; et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharm. J. 2018, 18, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Masouri, S.; Stefanaki, I.; Ntritsos, G.; Kypreou, K.P.; Drakaki, E.; Evangelou, E.; Nicolaidou, E.; Stratigos, A.J.; Antoniou, C. A Pharmacogenetic Study of Psoriasis Risk Variants in a Greek Population and Prediction of Responses to Anti-TNF-α and Anti-IL-12/23 Agents. Mol. Diagn. Ther. 2016, 20, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Cabaleiro, T.; Román, M.; Solano-López, G.; Abad-Santos, F.; García-Díez, A.; Daudén, E. The relationship between tumour necrosis factor (TNF)-α promoter and IL12B/IL-23R genes polymorphisms and the efficacy of anti-TNF-α therapy in psoriasis: A case-control study. Br. J. Dermatol. 2013, 169, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Talamonti, M.; Galluzzo, M.; van den Reek, J.M.; de Jong, E.M.; Lambert, J.L.W.; Malagoli, P.; Bianchi, L.; Costanzo, A. Role of the HLA-C*06 allele in clinical response to ustekinumab: Evidence from real life in a large cohort of European patients. Br. J. Dermatol. 2017, 177, 489–496. [Google Scholar] [CrossRef]
- Song, G.G.; Seo, Y.H.; Kim, J.H.; Choi, S.J.; Ji, J.D.; Lee, Y.H. Association between TNF-α (-308 A/G, -238 A/G, -857 C/T) polymorphisms and responsiveness to TNF-α blockers in spondyloarthropathy, psoriasis and Crohn’s disease: A meta-analysis. Pharmacogenomics 2015, 16, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Linares-Pineda, T.M.; Cañadas-Garre, M.; Sánchez-Pozo, A.; Calleja-Hernández, M. Gene polymorphisms as predictors of response to biological therapies in psoriasis patients. Pharmacol. Res. 2016, 113 Pt A, 71–80. [Google Scholar] [CrossRef]
- Talamonti, M.; Botti, E.; Galluzzo, M.; Teoli, M.; Spallone, G.; Bavetta, M.; Chimenti, S.; Costanzo, A. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br. J. Dermatol. 2013, 169, 458–463. [Google Scholar] [CrossRef]
- Van den Reek, J.M.P.A.; Coenen, M.J.H.; van de L’Isle Arias, M.; Zweegers, J.; Rodijk-Olthuis, D.; Schalkwijk, J.; Vermeulen, S.H.; Joosten, I.; van de Kerkhof, P.C.M.; Seyger, M.M.B.; et al. Polymorphisms in CD84, IL12B and TNFAIP3 are associated with response to biologics in patients with psoriasis. Br. J. Dermatol. 2017, 176, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Reolid, A.; Fisas, L.H.; Llamas-Velasco, M.; Prieto-Pérez, R.; Abad-Santos, F.; Daudén, E. Polymorphisms associated with anti-TNF drugs response in patients with psoriasis and psoriatic arthritis. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e175–e177. [Google Scholar] [CrossRef] [PubMed]
- Loft, N.D.; Skov, L.; Iversen, L.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharm. J. 2018, 18, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Bianchi, A.; Saraceno, R.; Calabrese, V.; Cornelius, C.; Iacopino, L.; Chimenti, S.; De Lorenzo, A. -174G/C IL-6 gene promoter polymorphism predicts therapeutic response to TNF-α blockers. Pharm. Genom. 2012, 22, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, J.E.; Yan, B.Y.; Chan, T.C.; Krueger, J.G. Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. J. Immunol. 2018, 201, 1605–1613. [Google Scholar] [CrossRef]
- Catanoso, M.G.; Boiardi, L.; Macchioni, P.; Garagnani, P.; Sazzini, M.; De Fanti, S.; Farnetti, E.; Casali, B.; Chiarolanza, I.; Nicoli, D.; et al. IL-23A, IL-23R, IL-17A and IL-17R polymorphisms in different psoriatic arthritis clinical manifestations in the northern Italian population. Rheumatol. Int. 2013, 33, 1165–1176. [Google Scholar] [CrossRef]
- Batalla, A.; Coto, E.; Gomez, J.; Eiris, N.; Gonzalez-Fernandez, D.; Gomez-De Castro, C.; Daudén, E.; Llamas-Velasco, M.; Prieto-Perez, R.; Abad-Santos, F.; et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharm. J. 2018, 18, 76–80. [Google Scholar] [CrossRef]
- Batalla, A.; Coto, E.; Gonzalez-Lara, L.; Gonzalez-Fernandez, D.; Gomez, J.; Aranguren, T.F.; Queiro, R.; Santos-Juanes, J.; López-Larrea, C.; Coto-Segura, P. Association between single nucleotide polymorphisms IL17RA rs4819554 and IL17E rs79877597 and Psoriasis in a Spanish cohort. J. Dermatol. Sci. 2015, 80, 111–115. [Google Scholar] [CrossRef]
- Cabaleiro, T.; Prieto-Pérez, R.; Navarro, R.; Solano, G.; Román, M.; Ochoa, D.; Abad-Santos, F.; Daudén, E. Paradoxical psoriasiform reactions to anti-TNFα drugs are associated with genetic polymorphisms in patients with psoriasis. Pharm. J. 2016, 16, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Jemec, G.B. Predicting response to anti-TNF-alpha treatment in Hidradenitis suppurativa. Br. J. Dermatol. 2013, 168, 233. [Google Scholar] [CrossRef]
- Savva, A.; Kanni, T.; Damoraki, G.; Kotsaki, A.; Giatrakou, S.; Grech, I.; Katoulis, A.; Papadavid, E.; Giamarellos-Bourboulis, E.J. Impact of Toll-like receptor-4 and tumour necrosis factor gene polymorphisms in patients with hidradenitis suppurativa. Br. J. Dermatol. 2013, 168, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Degner, J.; Davis, J.W.; Idler, K.B.; Nader, A.; Mostafa, N.M.; Waring, J.F. Identification of HLA-DRB1 association to adalimumab immunogenicity. PLoS ONE 2018, 13, e0195325. [Google Scholar] [CrossRef] [Green Version]
- Bennardo, L.; Bennardo, F.; Giudice, A.; Passante, M.; Dastoli, S.; Morrone, P.; Provenzano, E.; Patruno, C.; Nisticò, S.P. Local Chemotherapy as an Adjuvant Treatment in Unresectable Squamous Cell Carcinoma: What Do We Know So Far? Curr. Oncol. 2021, 28, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.R. Topical application of 5-fluorouracil 5 percent cream associated with severe neutropenia: Discussion of a case and review of systemic reactions after topical treatment with 5-fluorouracil. Dermatol. Online J. 2018, 24, 10. [Google Scholar]
- Sargen, M.; Wanat, K.A.; Jambusaria, A.; Rosenbach, M.; Sobanko, J.; Miller, C.J. Systemic toxicity from occlusive therapy with topical 5-fluorouracil: A case report and review of the literature. Dermatol. Surg. 2012, 38, 1756–1759. [Google Scholar] [CrossRef]
- Johnson, M.R.; Hageboutros, A.; Wang, K.; High, L.; Smith, J.B.; Diasio, R.B. Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin. Cancer Res. 1999, 5, 2006–2011. [Google Scholar]
- Kishi, P.; Price, C.J. Life-Threatening Reaction with Topical 5-Fluorouracil. Drug Saf. Case Rep. 2018, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Youngster, I.; Arcavi, L.; Schechmaster, R.; Akayzen, Y.; Popliski, H.; Shimonov, J.; Beig, S.; Berkovitch, M. Medications and glucose-6-phosphate dehydrogenase deficiency: An evidence-based review. Drug Saf. 2010, 33, 713–726. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, E.M.; Thorn, C.F.; Bautista, J.M.; Youngster, I.; Altman, R.B.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for G6PD. Pharm. Genom. 2012, 22, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PharmGKB. 2021. Available online: https://www.pharmgkb.org/ (accessed on 15 March 2021).
- Maxwell, J.R.; Potter, C.; Hyrich, K.L.; Barton, A.; Worthington, J.; Isaacs, J.D.; Morgan, A.W.; Wilson, A.G. Association of the tumour necrosis factor-308 variant with differential response to anti-TNF agents in the treatment of rheumatoid arthritis. Hum. Mol. Genet. 2008, 17, 3532–3538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guis, S.; Balandraud, N.; Bouvenot, J.; Auger, I.; Toussirot, E.; Wendling, D.; Mattei, J.P.; Nogueira, L.; Mugnier, B.; Legeron, P.; et al. Influence of -308 A/G polymorphism in the tumor necrosis factor alpha gene on etanercept treatment in rheumatoid arthritis. Arthritis Rheum. 2007, 57, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Seitz, M.; Wirthmüller, U.; Möller, B.; Villiger, P.M. The -308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology 2007, 46, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Padyukov, L.; Lampa, J.; Heimbürger, M.; Ernestam, S.; Cederholm, T.; Lundkvist, I.; Andersson, P.; Hermansson, Y.; Harju, A.; Klareskog, L.; et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 526–529. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Duan, Z.; Zhang, T.; Wang, S.; Li, G.; Gao, J.; Ye, D.; Xu, S.; Xu, J.; Zhang, L.; et al. Association between tumor necrosis factor-α (TNF-α) promoter -308 G/A and response to TNF-α blockers in rheumatoid arthritis: A meta-analysis. Mod. Rheumatol. 2013, 23, 489–495. [Google Scholar] [CrossRef]
- O’Rielly, D.D.; Roslin, N.M.; Beyene, J.; Pope, A.; Rahman, P. TNF-alpha-308 G/A polymorphism and responsiveness to TNF-alpha blockade therapy in moderate to severe rheumatoid arthritis: A systematic review and meta-analysis. Pharm. J. 2009, 9, 161–167. [Google Scholar]
- Lee, Y.H.; Rho, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Association of TNF-alpha -308 G/A polymorphism with responsiveness to TNF-alpha-blockers in rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2006, 27, 157–161. [Google Scholar] [CrossRef]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. The role of pharmacogenetics in keloid scar treatment: A literature review. Scars Burns Heal. 2020, 6, 2059513120941704. [Google Scholar] [CrossRef] [PubMed]
- Do Socorro Silva Costa, P.; Woycinck Kowalski, T.; Rosa Fraga, L.; Furtado Feira, M.; Nazario, A.P.; MarceloAranha Camargo, L.; lop de Oliveira Caldoncelli, D.; Irismar da Silva Silveira, M.; Hutz, M.H.; Schüler-Faccini, L.; et al. NR3C1, ABCB1, TNF and CYP2C19 polymorphisms association with the response to the treatment of erythema nodosum leprosum. Pharmacogenomics 2019, 20, 503–516. [Google Scholar] [CrossRef]
- Del Re, M.; Marconcini, R.; Pasquini, G.; Rofi, E.; Vivaldi, C.; Bloise, F.; Restante, G.; Arrigoni, E.; Caparello, C.; Bianco, M.G.; et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br. J. Cancer 2018, 118, 820–824. [Google Scholar] [CrossRef] [Green Version]
- Blagec, K.; Koopmann, R.; Crommentuijn-van Rhenen, M.; Holsappel, I.; van der Wouden, C.H.; Konta, L.; Xu, H.; Steinberger, D.; Just, E.; Swen, J.J.; et al. Implementing pharmacogenomics decision support across seven European countries: The Ubiquitous Pharmacogenomics (U-PGx) project. J. Am. Med. Inform. Assoc. 2018, 25, 893–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzum, J.A.; Pakyz, R.E.; Elsey, A.R.; Haidar, C.E.; Peterson, J.F.; Whirl-Carrillo, M.; Handelman, S.K.; Palmer, K.; Pulley, J.M.; Beller, M.; et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and Metrics of Pharmacogenetic Implementations Across Diverse Healthcare Systems. Clin. Pharmacol. Ther. 2017, 102, 502–510. [Google Scholar] [CrossRef] [PubMed]
Gene | Polymorphism | Drug | Pathology | Population | PharmGKB Level of Evidence | Clinical Application | Alelle | Phenotype Category | References |
---|---|---|---|---|---|---|---|---|---|
DYPD | rs3918290 | 5-FU | KA, CBC * | Multiple groups (Caucasian, Black/African American, Asian...) | 1A | Yes | CC < CT < TT | Toxicity | [32,77] |
rs55886062 | 5-FU | KA, CBC * | 1A | Yes | AA < AC < CC | Toxicity | [32,77] | ||
rs67376798 | 5-FU | KA, CBC * | 1A | Yes | TT < TA < AA | Toxicity | [32,77] | ||
rs75017182 | 5-FU | KA, CBC * | 1A | Yes | GG < GC < CC | Toxicity | [32,77] | ||
G6PD | G6PD A- rs1050828 | Dapsone | Malaria | Africans | 1B | No | A376G y G202A | Toxicity | [80,81] |
G6PD A+ rs1050829 | Dapsone | Malaria | Africans | - | No | A376G | Toxicity | ||
HLA-B | HLA-B*13:01:01 | Dapsone | Leprosy | Asian | 2A | No | (+) | Toxicity | [44] |
TNF | rs1800629 | Anti-TNF | Aps, AR, CD, SA **, Psoriasis | Caucasians (European) | 2B | No | AA < AG < GG | Efficacy | [79,90,91] |
rs1799724 | Anti-TNF | AR, CD, SA*** | Asian, Caucasians (Spain) | 4 | No | TT + CT < CC | Efficacy | [79,90,91] | |
TNFAIP3 | rs610604 | Anti-TNF | Aps+, Psoriasis | Caucasians (Italy, Netherlands, Spain) | 3 | No | GG < TT | Efficacy | [94] |
IL1- β | rs1143623 | Anti-TNF/UTK | Psoriasis | Caucasians (Denmark) | 3 | No | GG + CG < CC | Efficacy | [95] |
IL1- β | rs1143627 | Anti-TNF/UTK | Psoriasis | 3 | No | GG + AG < AA | Efficacy | [95] | |
Il-6 | rs1800795 | Anti-TNF | Psoriasis | Caucasians (Italy) | 3 | No | GG < CG < CC | Efficacy | [96] |
IL12-β | rs2546890 | Anti-TNF | Psoriasis | Caucasians (Spain) | 3 | No | GG + AG < AA | Efficacy | [86] |
IL12-β | rs3213094 | UTK | Psoriasis | Caucasians (Netherlands) | 3 | No | CT < CC | Efficacy | [93] |
IL23R | rs11209026 | Anti-TNF | Psoriasis | Caucasians (Spain) | 3 | No | GG < AG | Toxicity | [88,101] |
TLR2 | rs4696480 | Anti-TNF | Psoriasis | Caucasians (Denmark) | 3 | No | TT + AT < AA | Efficacy | [95] |
rs11938228 | Anti-TNF | Psoriasis, Inflammatory bowel diseases | 3 | No | AA + AC < CC | Efficacy | [95] | ||
TLR5 | rs5744174 | UTK | Psoriasis | 3 | No | AA < A + GG | Efficacy | [95] | |
TLR9 | rs352139 | Anti-TNF | Psoriasis | 3 | No | CC < CT + TT | Efficacy | [95] | |
BCL2 | rs59532114 | ADA | Hidradenitis Suppurativa | Caucasians (American) | - | No | CC > CA + AA | Efficacy | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Membrive Jiménez, C.; Pérez Ramírez, C.; Sánchez Martín, A.; Vieira Maroun, S.; Arias Santiago, S.; Ramírez Tortosa, M.C.; Jiménez Morales, A. Clinical Application of Pharmacogenetic Markers in the Treatment of Dermatologic Pathologies. Pharmaceuticals 2021, 14, 905. https://doi.org/10.3390/ph14090905
Membrive Jiménez C, Pérez Ramírez C, Sánchez Martín A, Vieira Maroun S, Arias Santiago S, Ramírez Tortosa MC, Jiménez Morales A. Clinical Application of Pharmacogenetic Markers in the Treatment of Dermatologic Pathologies. Pharmaceuticals. 2021; 14(9):905. https://doi.org/10.3390/ph14090905
Chicago/Turabian StyleMembrive Jiménez, Cristina, Cristina Pérez Ramírez, Almudena Sánchez Martín, Sayleth Vieira Maroun, Salvador Arias Santiago, María Carmen Ramírez Tortosa, and Alberto Jiménez Morales. 2021. "Clinical Application of Pharmacogenetic Markers in the Treatment of Dermatologic Pathologies" Pharmaceuticals 14, no. 9: 905. https://doi.org/10.3390/ph14090905
APA StyleMembrive Jiménez, C., Pérez Ramírez, C., Sánchez Martín, A., Vieira Maroun, S., Arias Santiago, S., Ramírez Tortosa, M. C., & Jiménez Morales, A. (2021). Clinical Application of Pharmacogenetic Markers in the Treatment of Dermatologic Pathologies. Pharmaceuticals, 14(9), 905. https://doi.org/10.3390/ph14090905