Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner
Abstract
:1. Introduction
2. Results
2.1. The Effects of Capsaicin on Na+ Channels (INa)
2.2. The Effects of Capsaicin on L-Type Ca2+ Channels (IL-Ca)
2.3. The Effects of Capsaicin on the Delayed Rectifier K+ Channels (IK)
2.4. The Effect of Capsaicin on Transient Outward K+ Current (Ito)
2.5. The Effect of Capsaicin on the Inward Rectifier K+ Current (IK1)
3. Discussion
4. Materials and Methods
4.1. Whole Cell Patch-Clamp Technique
4.2. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev. 2012, 64, 939–971. [Google Scholar] [CrossRef]
- Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules 2016, 21, 966. [Google Scholar] [CrossRef]
- Szabados, T.; Gömöri, K.; Pálvölgyi, L.; Görbe, A.; Baczkó, I.; Helyes, Z.; Jancsó, G.; Ferdinandy, P.; Bencsik, P. Capsaicin-Sensitive Sensory Nerves and the TRPV1 Ion Channel in Cardiac Physiology and Pathologies. Int. J. Mol. Sci. 2020, 21, 4472. [Google Scholar] [CrossRef]
- Miller, M.; Koch, S.E.; Veteto, A.; Domeier, T.; Rubinstein, J. Role of Known Transient Receptor Potential Vanilloid Channels in Modulating Cardiac Mechanobiology. Front. Physiol. 2021, 12, 734113. [Google Scholar] [CrossRef]
- Wang, D.H. The vanilloid receptor and hypertension. Acta Pharmacol. Sin. 2005, 26, 286–294. [Google Scholar] [CrossRef]
- Rubino, A.; Burnstock, G. Capsaicin-sensitive sensory-motor neurotransmission in the peripheral control of cardiovascular function. Cardiovasc. Res. 1996, 31, 467–479. [Google Scholar] [CrossRef]
- Firth, A.L.; Remillard, C.V.; Yuan, J.X. TRP channels in hypertension. Biochim. Biophys. Acta 2007, 1772, 895–906. [Google Scholar] [CrossRef]
- Fukuda, N.; Fujiwara, M. Effect of capsaicin on the guinea-pig isolated atrium. J. Pharm. Pharmacol. 1969, 21, 622–624. [Google Scholar] [CrossRef]
- Molnár, J.; György, L.; Unyi, G.; Kenyeres, J. Effect of capsaicin on the isolated ileum and auricle of the guinea pig. Acta Physiol. Acad. Sci. Hung. 1969, 35, 369–374. [Google Scholar]
- Zernig, G.; Holzer, P.; Lembeck, F. A study of the mode and site of action of capsaicin in guinea-pig heart and rat uterus. Naunyn Schmiedebergs Arch. Pharmacol. 1984, 326, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Franco-Cereceda, A.; Lou, Y.P.; Lundberg, J.M. Ruthenium-red inhibits CGRP release by capsaicin and resiniferatoxin but not by ouabain, bradykinin or nicotine in guinea-pig heart: Correlation with effects on cardiac contractility. Br. J. Pharmacol. 1991, 104, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Hoshikuma, K.; Nakano, Y.; Yokoo, Y.; Kamiya, T. The positive inotropic and chronotropic effects of evodiamine and rutaecarpine, indoloquinazoline alkaloids isolated from the fruits of Evodia rutaecarpa, on the guinea-pig isolated right atria: Possible involvement of vanilloid receptors. Planta Med. 2001, 67, 244–248. [Google Scholar] [CrossRef]
- Lundberg, J.M.; Hua, Y.; Fredholm, B.B. Capsaicin-induced stimulation of the guinea-pig atrium. Involvement of a novel sensory transmitter or a direct action on myocytes? Naunyn Schmiedebergs Arch. Pharmacol. 1984, 325, 176–182. [Google Scholar] [CrossRef]
- Miyauchi, T.; Ishikawa, T.; Sugishita, Y.; Saito, A.; Goto, K. Involvement of calcitonin gene-related peptide in the positive chronotropic and inotropic effects of piperine and development of cross-tachyphylaxis between piperine and capsaicin in the isolated rat atria. J. Pharmacol. Exp. Ther. 1989, 248, 816–824. [Google Scholar]
- Franco-Cereceda, A.; Lundberg, J.M. Calcitonin gene-related peptide (CGRP) and capsaicin-induced stimulation of heart contractile rate and force. Naunyn Schmiedebergs Arch. Pharmacol. 1985, 331, 146–151. [Google Scholar] [CrossRef]
- Takaki, M.; Akashi, T.; Ishioka, K.; Kikuta, A.; Matsubara, H.; Yasuhara, S.; Fujii, W.; Suga, H. Effects of capsaicin on mechanoenergetics of excised cross-circulated canine left ventricle and coronary artery. J. Mol. Cell Cardiol. 1994, 26, 1227–1239. [Google Scholar] [CrossRef]
- Yamato, T.; Aomine, M.; Ikeda, M.; Noto, H.; Ohta, C. Inhibition of contractile tension by capsaicin in isolated rat papillary muscle. Gen. Pharmacol. 1996, 27, 129–132. [Google Scholar] [CrossRef]
- Franco-Cereceda, A.; Lundberg, J.M. Actions of calcitonin gene-related peptide and tachykinins in relation to the contractile effects of capsaicin in the guinea-pig and rat heart in vitro. Naunyn Schmiedebergs Arch. Pharmacol. 1988, 337, 649–655. [Google Scholar] [CrossRef]
- Franco-Cereceda, A.; Lundberg, J.M.; Saria, A.; Schreibmayer, W.; Tritthart, H.A. Calcitonin gene-related peptide: Release by capsaicin and prolongation of the action potential in the guinea-pig heart. Acta Physiol. Scand. 1988, 132, 181–190. [Google Scholar] [CrossRef]
- Kury, L.T.A.; Voitychuk, O.I.; Yang, K.H.; Thayyullathil, F.T.; Doroshenko, P.; Ramez, A.M.; Shuba, Y.M.; Galadari, S.; Howarth, F.C.; Oz, M. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. Br. J. Pharmacol. 2014, 171, 3485–3498. [Google Scholar] [CrossRef]
- Sanguinetti, M.C.; Jurkiewicz, N.K. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol. 1990, 96, 195–215. [Google Scholar] [CrossRef]
- Mitcheson, J.S.; Sanguinetti, M.C. Biophysical properties and molecular basis of cardiac rapid and slow delayed rectifier potassium channels. Cell Physiol. Biochem. 1999, 9, 201–216. [Google Scholar] [CrossRef]
- Castle, N.A. Differential inhibition of potassium currents in rat ventricular myocytes by capsaicin. Cardiovasc. Res. 1992, 26, 1137–1144. [Google Scholar] [CrossRef]
- Wu, S.N.; Chen, I.J.; Lo, Y.C.; Yu, H.S. The characteristics in the inhibitory effects of capsaicin on voltage-dependent K+ currents in rat atrial myocytes. Environ. Toxicol. Pharmacol. 1996, 2, 39–47. [Google Scholar] [CrossRef]
- Xing, J.; Ma, J.; Zhang, P.; Fan, X. Block effect of capsaicin on hERG potassium currents is enhanced by S6 mutation at Y652. Eur. J. Pharmacol. 2010, 630, 1–9. [Google Scholar] [CrossRef]
- Milesi, V.; Rebolledo, A.; Alvis, A.G.; Raingo, J.; de Gende, A.O.G. Voltage-activated sodium current is inhibited by capsaicin in rat atrial myocytes. Biochem. Biophys. Res. Commun. 2001, 282, 965–970. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Y.P.; He, R.R. Electrophysiological effects of capsaicin on guinea pig papillary muscles. Sheng Li Xue Bao 2003, 55, 511–515. [Google Scholar]
- Cowan, L.M.; Strege, P.R.; Rusinova, R.; Andersen, O.S.; Farrugia, G.; Beyder, A. Capsaicin as an amphipathic modulator of Na (V) 1.5 mechanosensitivity. Channels 2022, 16, 9–26. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Y.M.; He, R.R. Electrophysiological effects of capsaicin on spontaneous activity of rabbit atrioventricular node cells. Sheng Li Xue Bao 2004, 56, 248–252. [Google Scholar]
- Cheng, Y.P.; Wang, Y.H.; Cheng, L.P.; He, R.R. Electrophysiologic effects of capsaicin on pacemaker cells in sinoatrial nodes of rabbits. Acta Pharmacol. Sin. 2003, 24, 826–830. [Google Scholar]
- Puglisi, J.L.; Bers, D.M. LabHEART: An interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am. J. Physiol. Cell Physiol. 2001, 281, C2049–C2060. [Google Scholar] [CrossRef]
- D’Alonzo, A.J.; Grover, G.J.; Darbenzio, R.B.; Hess, T.A.; Sleph, P.G.; Dzwonczyk, S.; Zhu, J.L.; Sewter, J.C. In vitro effects of capsaicin: Antiarrhythmic and antiischemic activity. Eur. J. Pharmacol. 1995, 272, 269–278. [Google Scholar] [CrossRef]
- Arnar, D.O.; Cai, J.J.; Lee, H.C.; Martins, J.B. Electrophysiologic effects of civamide (zucapsaicin) on canine cardiac tissue in vivo and in vitro. J. Cardiovasc. Pharmacol. 1998, 32, 875–883. [Google Scholar] [CrossRef]
- Dvorakova, M.; Kummer, W. Transient expression of vanilloid receptor subtype 1 in rat cardiomyocytes during development. Histochem. Cell Biol. 2001, 116, 223–225. [Google Scholar] [CrossRef]
- Hong, J.; Lisco, A.M.; Rudebush, T.L.; Yu, L.; Gao, L.; Kitzerow, O.; Zucker, I.H.; Wang, H.J. Identification of Cardiac Expression Pattern of Transient Receptor Potential Vanilloid Type 1 (TRPV1) Receptor using a Transgenic Reporter Mouse Model. Neurosci. Lett. 2020, 737, 135320. [Google Scholar] [CrossRef]
- Hoebart, C.; Rojas-Galvan, N.S.; Ciotu, C.I.; Aykac, I.; Reissig, L.F.; Weninger, W.J.; Kiss, A.; Podesser, B.K.; Fischer, M.J.M.; Heber, S. No functional TRPA1 in cardiomyocytes. Acta Physiol. 2021, 232, e13659. [Google Scholar] [CrossRef]
- Qi, Y.; Qi, Z.; Li, Z.; Wong, C.K.; So, C.; Lo, I.C.; Huang, Y.; Yao, X.; Tsang, S.Y. Role of TRPV1 in the Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes. PLoS ONE 2015, 10, e0133211. [Google Scholar] [CrossRef]
- Kury, L.T.A.; Yang, K.H.; Thayyullathil, F.T.; Rajesh, M.; Ali, R.M.; Shuba, Y.M.; Howarth, F.C.; Galadari, S.; Oz, M. Effects of endogenous cannabinoid anandamide on cardiac Na⁺/Ca²⁺ exchanger. Cell Calcium 2014, 55, 231–237. [Google Scholar] [CrossRef]
- Melck, D.; Bisogno, T.; De Petrocellis, L.; Chuang, H.; Julius, D.; Bifulco, M.; Di Marzo, V. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): Vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem. Biophys. Res. Commun. 1999, 262, 275–284. [Google Scholar] [CrossRef]
- Ingólfsson, H.I.; Thakur, P.; Herold, K.F.; Hobart, E.A.; Ramsey, N.B.; Periole, X.; de Jong, D.H.; Zwama, M.; Yilmaz, D.; Hall, K.; et al. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 2014, 9, 1788–1798. [Google Scholar] [CrossRef]
- Greisen, P., Jr.; Lum, K.; Ashrafuzzaman, M.; Greathouse, D.V.; Andersen, O.S.; Lundbæk, J.A. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. Proc. Natl. Acad. Sci. USA 2011, 108, 12717–12722. [Google Scholar] [CrossRef]
- Lundbaek, J.A.; Birn, P.; Tape, S.E.; Toombes, G.E.; Søgaard, R.; Koeppe, R.E., 2nd; Gruner, S.M.; Hansen, A.J.; Andersen, O.S. Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. Mol. Pharmacol. 2005, 68, 680–689. [Google Scholar] [CrossRef]
- Efimova, S.S.; Zakharova, A.A.; Ostroumova, O.S. Alkaloids Modulate the Functioning of Ion Channels Produced by Antimicrobial Agents via an Influence on the Lipid Host. Front Cell Dev. Biol. 2020, 8, 537. [Google Scholar] [CrossRef]
- Efimova, S.S.; Ostroumova, O.S. The Disordering Effect of Plant Metabolites on Model Lipid Membranes of Various Thickness. Cell Tissue Biol. 2020, 14, 388–397. [Google Scholar] [CrossRef]
- Alzaabi, A.H.; Howarth, L.; El Nebrisi, E.; Syed, N.; Susan Yang, K.H.; Howarth, F.C.; Oz, M. Capsaicin inhibits the function of α(7)-nicotinic acetylcholine receptors expressed in Xenopus oocytes and rat hippocampal neurons. Eur. J. Pharmacol. 2019, 857, 172411. [Google Scholar] [CrossRef]
- Nebrisi, E.E.; Prytkova, T.; Lorke, D.E.; Howarth, L.; Alzaabi, A.H.; Yang, K.S.; Howarth, F.C.; Oz, M. Capsaicin Is a Negative Allosteric Modulator of the 5-HT(3) Receptor. Front. Pharmacol. 2020, 11, 1274. [Google Scholar] [CrossRef]
- Oz, M.; Ravindran, A.; Diaz-Ruiz, O.; Zhang, L.; Morales, M. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. J. Pharmacol. Exp. Ther. 2003, 306, 1003–1010. [Google Scholar] [CrossRef]
- Oz, M.; Tchugunova, Y.; Dinc, M. Differential effects of endogenous and synthetic cannabinoids on voltage-dependent calcium fluxes in rabbit T-tubule membranes: Comparison with fatty acids. Eur. J. Pharmacol. 2004, 502, 47–58. [Google Scholar] [CrossRef]
- Spivak, C.E.; Lupica, C.R.; Oz, M. The endocannabinoid anandamide inhibits the function of alpha4beta2 nicotinic acetylcholine receptors. Mol. Pharmacol. 2007, 72, 1024–1032. [Google Scholar] [CrossRef]
- Zhang, L.; Oz, M.; Stewart, R.R.; Peoples, R.W.; Weight, F.F. Volatile general anaesthetic actions on recombinant nACh alpha 7, 5-HT3 and chimeric nACh alpha 7-5-HT3 receptors expressed in Xenopus oocytes. Br. J. Pharmacol. 1997, 120, 353–355. [Google Scholar] [CrossRef]
- Jackson, S.N.; Singhal, S.K.; Woods, A.S.; Morales, M.; Shippenberg, T.; Zhang, L.; Oz, M. Volatile anesthetics and endogenous cannabinoid anandamide have additive and independent inhibitory effects on alpha (7) -nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. Eur. J. Pharmacol. 2008, 582, 42–51. [Google Scholar] [CrossRef]
- Oz, M.; Zhang, L.; Spivak, C.E. Direct noncompetitive inhibition of 5-HT (3) receptor-mediated responses by forskolin and steroids. Arch. Biochem. Biophys. 2002, 404, 293–301. [Google Scholar] [CrossRef]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release 2014, 196, 96–105. [Google Scholar] [CrossRef]
- Saria, A.; Skofitsch, G.; Lembeck, F. Distribution of capsaicin in rat tissues after systemic administration. J. Pharm. Pharmacol. 1982, 34, 273–275. [Google Scholar] [CrossRef]
- Donnerer, J.; Amann, R.; Schuligoi, R.; Lembeck, F. Absorption and metabolism of capsaicinoids following intragastric administration in rats. Naunyn Schmiedebergs Arch. Pharmacol. 1990, 342, 357–361. [Google Scholar] [CrossRef]
- Kury, L.T.A.; Voitychuk, O.I.; Ali, R.M.; Galadari, S.; Yang, K.H.; Howarth, F.C.; Shuba, Y.M.; Oz, M. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes. Cell Calcium 2014, 55, 104–118. [Google Scholar] [CrossRef]
- Ali, R.M.; Kury, L.T.A.; Yang, K.H.; Qureshi, A.; Rajesh, M.; Galadari, S.; Shuba, Y.M.; Howarth, F.C.; Oz, M. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes. Cell Calcium 2015, 57, 290–299. [Google Scholar] [CrossRef]
- Isaev, D.; Shabbir, W.; Dinc, E.Y.; Lorke, D.E.; Petroianu, G.; Oz, M. Cannabidiol Inhibits Multiple Ion Channels in Rabbit Ventricular Cardiomyocytes. Front. Pharmacol. 2022, 13, 821758. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaev, D.; Yang, K.-H.S.; Shabbir, W.; Howarth, F.C.; Oz, M. Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals 2022, 15, 1187. https://doi.org/10.3390/ph15101187
Isaev D, Yang K-HS, Shabbir W, Howarth FC, Oz M. Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals. 2022; 15(10):1187. https://doi.org/10.3390/ph15101187
Chicago/Turabian StyleIsaev, Dmytro, Keun-Hang Susan Yang, Waheed Shabbir, Frank Christopher Howarth, and Murat Oz. 2022. "Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner" Pharmaceuticals 15, no. 10: 1187. https://doi.org/10.3390/ph15101187
APA StyleIsaev, D., Yang, K. -H. S., Shabbir, W., Howarth, F. C., & Oz, M. (2022). Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals, 15(10), 1187. https://doi.org/10.3390/ph15101187