Discovery of N-Containing (-)-Borneol Esters as Respiratory Syncytial Virus Fusion Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. SAR for the Anti-RSV Activity of the Target Compounds
2.3. Mechanism of Action of the Key Compounds
2.3.1. Time-of-Addition Assay
2.3.2. Temperature Shift Assay
2.4. Molecular Modeling
2.4.1. Binding Site Analysis
2.4.2. Docking Study
2.4.3. Molecular Dynamics (MD) Simulation of Compounds 3b and 5a
3. Materials and Methods
3.1. Chemistry
3.2. General Procedure for the Synthesis of Compounds 12–15a–c
- (1S,2R,4S)-1,7,7-Trimethylbicyclo [2.2.1]heptan-2-yl 2-thiomorpholinoacetate (12a)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 3-thiomorpholinopropanoate (12b)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 4-thiomorpholinobutanoate (12c)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 2-(4-benzylpiperidin-1-yl)acetate (13a)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 3-(4-benzylpiperidin-1-yl)propanoate (13b)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 4-(4-benzylpiperidin-1-yl)butanoate (13c)
- (1S,2R,4S)-1,7,7-Trimethylbicyclo [2.2.1]heptan-2-yl 2-(4-phenylpiperazin-1-yl)acetate (14a)
- (1S,2R,4S)-1,7,7-Trimethylbicyclo [2.2.1]heptan-2-yl 3-(4-phenylpiperazin-1-yl)propanoate (14b)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 4-(4-phenylpiperazin-1-yl)butanoate (14c)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 2-(4-(2-fluorophenyl)piperazin-1-yl)acetate (15a)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 3-(4-(2-fluorophenyl)piperazin-1-yl)propanoate (15b)
- (1S,2R,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl 4-(4-(2-fluorophenyl)piperazin-1-yl)butanoate (15c)
3.3. MTT Cytotoxicity Assay
3.4. Antiviral Assay
3.5. Time-of-Addition Assay
3.6. Molecular Modeling
3.6.1. Ligands and Protein Preparations
3.6.2. Molecular Docking
3.6.3. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, G.J.; Stelzer-Braid, S.; Shorter, C.; Honeywill, C.; Wynn, M.; Willenborg, C.; Barnes, P.; Kang, J.; Pierse, N.; Crane, J.; et al. Viruses associated with acute respiratory infection in a community-based cohort of healthy New Zealand children. J. Med. Virol. 2022, 94, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. COVID-19 Weekly Epidemiological Update; WHO: Geneva, Switzerland, 2022; pp. 1–33. [Google Scholar]
- Hsieh, Y.; Wu, T.; Liu, D.; Shao, P.; Chang, L.; Lu, C. Influenza Pandemics: Past, Present and Future. J. Formos. Med. Assoc. 2006, 105, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, H.C.; Tripp, R.A. Immunopathology of RSV: An Updated Review. Viruses 2021, 13, 2478. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, E.; Lisi, G.C.; Costantino, C.; Jon, H.; Manzoni, P.; Riccò, M.; Roberts, M.; Baraldi, E.; Lisi, G.C.; Costantino, C.; et al. RSV disease in infants and young children: Can we see a brighter future ? Hum. Vaccin. Immunother. 2022, 2079322. [Google Scholar] [CrossRef] [PubMed]
- Wetzke, M.; Funken, D.; Lange, M.; Bejo, L.; Haid, S.; Monteiro, J.G.T.; Schütz, K.; Happle, C.; Schulz, T.F.; Seidenberg, J.; et al. IRIS: Infection with RespIratory Syncytial Virus in infants—A prospective observational cohort study. BMC Pulm. Med. 2022, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Mistchenko, A.S.; Mariana, V. RSV reemergence in Argentina since the SARS-CoV-2 pandemic. J. Clin. Virol. 2022, 149, 105126. [Google Scholar] [CrossRef]
- Pollack, P.; Groothuis, J.R. Development and use of palivizumab (Synagis): A passive immunoprophylactic agent for RSV. J. Infect. Chemother. 2002, 8, 201–206. [Google Scholar] [CrossRef]
- Rezaee, F.; Linfield, D.T.; Harford, T.J.; Piedimonte, G. Ongoing developments in RSV prophylaxis: A clinician’ s analysis. Curr. Opin. Virol. 2017, 112781, 70–78. [Google Scholar] [CrossRef]
- Heylen, E.; Neyts, J.; Jochmans, D. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem. Pharmacol. 2017, 127, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Elawar, F.; Oraby, A.K.; Kieser, Q.; Jensen, L.D.; Culp, T.; West, F.G.; Marchant, D.J. Pharmacology & Therapeutics Pharmacological targets and emerging treatments for respiratory syncytial virus bronchiolitis. Pharmacol. Ther. 2021, 220, 107712. [Google Scholar] [CrossRef]
- Sokolova, A.S.; Yarovaya, O.I.; Zybkina, A.V.; Mordvinova, E.D.; Shcherbakova, N.S.; Zaykovskaya, A.V.; Baev, D.S.; Tolstikova, T.G.; Shcherbakov, D.N.; Pyankov, O.V.; et al. Monoterpenoid-based inhibitors of filoviruses targeting the glycoprotein-mediated entry process. Eur. J. Med. Chem. 2020, 207, 112726. [Google Scholar] [CrossRef] [PubMed]
- Kononova, A.A.; Sokolova, A.S.; Cheresiz, S.V.; Yarovaya, O.I.; Nikitina, R.A.; Chepurnov, A.A.; Pokrovsky, A.G.; Salakhutdinov, N.F. N-Heterocyclic borneol derivatives as inhibitors of Marburg virus glycoprotein-mediated VSIV pseudotype entry. Med. Chem. Comm. 2017, 8, 2233–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarovaya, O.I.; Shcherbakov, D.N.; Borisevich, S.S.; Sokolova, A.S.; Gureev, M.A.; Khamitov, E.M.; Rudometova, N.B.; Zybkina, A.V.; Mordvinova, E.D.; Zaykovskaya, A.V.; et al. Borneol Ester Derivatives as Entry Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022, 14, 1295. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, A.S.; Yarovaya, O.I.; Semenova, M.D.; Shtro, A.A.; Orshanskaya, I.R.; Zarubaev, V.V.; Salakhutdinov, N.F. Synthesis and in vitro study of novel borneol derivatives as potent inhibitors of the influenza A virus. Med. Chem. Comm. 2017, 8, 960–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolova, A.S.; Kovaleva, K.S.; Yarovaya, O.I.; Bormotov, N.I.; Shishkina, L.N.; Serova, O.A.; Sergeev, A.A.; Agafonov, A.P.; Maksuytov, R.A.; Salakhutdinov, N.F. (+)-Camphor and (−)-borneol derivatives as potential anti-orthopoxvirus agents. Arch. Pharm. 2021, 354, 2100038. [Google Scholar] [CrossRef] [PubMed]
- Battles, M.B.; Langedijk, J.P.; Furmanova-Hollenstein, P.; Chaiwatpongsakorn, S.; Costello, H.M.; Kwanten, L.; Vranckx, L.; Vink, P.; Jaensch, S.; Jonckers, T.H.M.; et al. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol. 2016, 12, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.D.; Blagg, J.; Price, D.A.; Bailey, S.; Decrescenzo, G.A.; Devraj, R.V.; Ellsworth, E.; Fobian, Y.M.; Gibbs, M.E.; Gilles, R.W.; et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008, 18, 4872–4875. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, G.S.; Angell, R.M.; Bedernjak, A.; Chuckowree, I.; Fraser, I.; Gascon-Simorte, J.; Gilman, M.S.A.; Good, J.A.D.; Harland, R.; Johnson, S.M.; et al. Discovery of Sisunatovir (RV521), an Inhibitor of Respiratory Syncytial Virus Fusion. J. Med. Chem. 2021, 64, 3658–3676. [Google Scholar] [CrossRef] [PubMed]
- Roymans, D.; Alnajjar, S.S.; Battles, M.B.; Sitthicharoenchai, P.; Furmanova-Hollenstein, P.; Rigaux, P.; Van Den Berg, J.; Kwanten, L.; Van Ginderen, M.; Verheyen, N.; et al. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat. Commun. 2017, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- DeVincenzo, J.P.; Whitley, R.J.; Mackman, R.L.; Scaglioni-Weinlich, C.; Harrison, L.; Farrell, E.; McBride, S.; Lambkin-Williams, R.; Jordan, R.; Xin, Y.; et al. Oral GS-5806 Activity in a Respiratory Syncytial Virus Challenge Study. N. Engl. J. Med. 2014, 371, 711–722. [Google Scholar] [CrossRef]
- McLellan, J.S.; Ray, W.C.; Peeples, M.E. Structure and function of respiratory syncytial virus surface glycoproteins. Curr. Top. Microbiol. Immunol. 2013, 372, 83–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, J.L.; Panis, M.L.; Ho, E.; Lin, K.; Krawczyk, S.H.; Grant, D.M.; Cai, R.; Swaminathan, S.; Chen, X.; Cihlar, T. Small Molecules VP-14637 and JNJ-2408068 Inhibit Respiratory Syncytial Small Molecules VP-14637 and JNJ-2408068 Inhibit Respiratory Syncytial Virus Fusion by Similar Mechanisms. Antimicrob. Agents Chemother. 2005, 49, 2460–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013, 113, 2110–2142. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.K.; van Mourik, T.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. Theochem. 1996, 388, 339–349. [Google Scholar] [CrossRef]
- Rossey, I.; Hsieh, C.-L.; Sedeyn, K.; Ballegeer, M.; Schepens, B.; McLellan, J.S.; Saelens, X. A Vulnerable, Membrane-Proximal Site in Human Respiratory Syncytial Virus F Revealed by a Prefusion-Specific Single-Domain Antibody. J. Virol. 2021, 95. [Google Scholar] [CrossRef]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The protein data bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Aloia, R.C.; Jensen, F.C.; Curtain, C.C.; Mobley, P.W.; Gordon, L.M. Lipid composition and fluidity of the human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1988, 85, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Satoh, O.; Imai, H.; Yoneyama, T.; Miyamura, T.; Utsumi, H.; Inoue, K.; Umeda, M. Membrane Structure of the Hepatitis B Virus Surface Antigen Particle. J. Biochem. 2000, 127, 543–550. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Virus | n | ||||
---|---|---|---|---|---|
I | II | III | IV | ||
Filoviruses | 1 | a SIMarV-GP = 14 | a SIMarV-GP = 29 | a SIMarV-GP = 5 | a SIMarV-GP = 6 |
1 | b SIEboV-GP = 46 | b SIEboV-GP = 80 | b SIEboV-GP = 13 | NT | |
2 | a SIMarV-GP = 20 | a SIMarV-GP = 47 | a SIMarV-GP = 5 | a SIMarV-GP = 15 | |
2 | b SIEboV-GP = 870 | b SIEboV-GP = 170 | b SIEboV-GP = 36 | NT | |
Influenza virus | 1 | c SIH1N1 = 23 | c SIH1N1 = 16 | c SIH1N1 = 82 | c SIH1N1 = 16 |
2 | c SIH1N1 = 25 | c SIH1N1 = 12 | c SIH1N1 = 45 | c SIH1N1 = 12 | |
Vaccinia virus | 1 | NA | NA | d SIVACV = 56 | NA |
2 | NA | NA | d SIVACV = 48 | NA | |
3 | NA | NA | d SIVACV = 23 | NA | |
Coronavirus | 1 | NA | NA | e SIpSARS-CoV-2-S = 5 | e SIpSARS-CoV-2-S = 10 |
SISARS-CoV-2 = 11–40 * | |||||
2 | NA | NA | e SIpSARS-CoV-2-S = 18 | e SIpSARS-CoV-2-S = 29 | |
SISARS-CoV-2 = 6–102 * |
Compound | n | logP | CC50 a, µM | IC50 b, µM | SI c | |
---|---|---|---|---|---|---|
3a | 1 | 2.364 | 497.2 ± 53.2 | 133.7 ± 19.5 | 4 | |
3b | 2 | 2.733 | 982.7 ± 44.2 | 8.9 ± 2.4 | 111 | |
3c | 3 | 3.241 | 228.1 ± 23.5 | 23.9 ± 3.7 | 10 | |
4a | 1 | 3.177 | 669.4 ± 56.4 | 355.3 ± 51.1 | 2 | |
4b | 2 | 3.431 | 390.9 ± 23.1 | 99.5 ± 8.7 | 4 | |
4c | 3 | 3.994 | 152.3 ± 12.1 | 30.5 ± 2.9 | 5 | |
5a | 1 | 2.048 | 413.2 ± 35.1 | 5.0 ± 1 | 83 | |
5b | 2 | 2.387 | 127.3 ± 15.2 | 8.5 ± 2.8 | 15 | |
5c | 3 | 2.906 | 307.0 ± 24.1 | 5.8 ± 0.9 | 53 | |
6a | 1 | 3.127 | 128.8 ± 9.8 | 41.9 ± 3.1 | 3 | |
6b | 2 | 3.573 | 326.0 ± 45.6 | 14.6 ± 1.2 | 22 | |
6c | 3 | 3.959 | 117.1 ± 11.1 | 39.0 ± 4.1 | 3 | |
7a | 1 | 3.483 | 398.7 ± 4.8 | 109.1 ± 10.7 | 4 | |
7b | 2 | 3.93 | 159.4 ± 17.1 | 6.2 ± 2.1 | 26 | |
7c | 3 | 4.386 | 59.1 ± 4.8 | 19.9 ± 2.3 | 3 | |
8a | 1 | 3.261 | 85.2 ± 5.6 | 61.3 ± 3.2 | 1 | |
8b | 2 | 3.584 | 344.7 ± 24.6 | 97.6 ± 8.9 | 3 | |
8c | 3 | 4.345 | 158.6 ± 12.4 | 34.2 ± 1.1 | 5 | |
9a | 1 | 1.951 | 267.0 ± 16.5 | 13.9 ± 2.4 | 19 | |
9b | 2 | 2.081 | 169.2 ± 12.1 | 17.2 ± 1.9 | 10 | |
9c | 3 | 2.746 | 198.5 ± 13.6 | 5.1 ± 0.8 | 39 | |
10a | 1 | 2.403 | 217.2 ± 18.9 | 57.7 ± 2.2 | 4 | |
10b | 2 | 2.66 | 116.9 ± 11.7 | 5.9 ± 1.4 | 20 | |
10c | 3 | 2.708 | 208.0 ± 21.4 | 9.8 ± 2.5 | 21 | |
11a | 1 | 3.742 | 51.3 ± 4.9 | 21.6 ± 2.6 | 2 | |
11b | 2 | 4.06 | 49.4 ± 5.6 | 46.8 ± 7.2 | 1 | |
11c | 3 | 4.472 | 82.8 ± 7.9 | 25.1 ± 3.5 | 3 | |
12a | 1 | 3.061 | 126.4 ± 10.5 | 69.6 ± 16.2 | 2 | |
12b | 2 | 3.503 | 86.0 ± 7.4 | 96.3 ± 3.5 | 1 | |
12c | 3 | 3.911 | 56.5 ± 3.8 | 75.3 ± 7.9 | 1 | |
13a | 1 | 5.354 | 116.4 ± 13.4 | 21.6 ± 1.8 | 5 | |
13b | 2 | 5.743 | 25.5 ± 11.4 | 14.9 ± 1.0 | 2 | |
13c | 3 | 5.982 | 40.2 ± 5.1 | 7.3 ± 0.6 | 5 | |
14a | 1 | 4.387 | 26.4 ± 3.8 | 4.6 ± 1.1 | 6 | |
14b | 2 | 4.48 | 365.7 ± 25.8 | 8.1 ± 0.9 | 45 | |
14c | 3 | 5.122 | 23.9 ± 8.7 | 12.0 ± 2.0 | 2 | |
15a | 1 | 4.35 | 27.5 ± 3.8 | 2.7 ± 0.7 | 10 | |
15b | 2 | 4.825 | 20.1 ± 12.1 | 8.2 ± 0.8 | 2 | |
15c | 3 | 5.213 | 27.8 ± 7.4 | 14.7 ± 2.1 | 2 | |
Ribavirin | <4000 | 80.1 ± 13.5 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, A.S.; Yarovaya, O.I.; Kuzminykh, L.V.; Shtro, A.A.; Klabukov, A.M.; Galochkina, A.V.; Nikolaeva, Y.V.; Petukhova, G.D.; Borisevich, S.S.; Khamitov, E.M.; et al. Discovery of N-Containing (-)-Borneol Esters as Respiratory Syncytial Virus Fusion Inhibitors. Pharmaceuticals 2022, 15, 1390. https://doi.org/10.3390/ph15111390
Sokolova AS, Yarovaya OI, Kuzminykh LV, Shtro AA, Klabukov AM, Galochkina AV, Nikolaeva YV, Petukhova GD, Borisevich SS, Khamitov EM, et al. Discovery of N-Containing (-)-Borneol Esters as Respiratory Syncytial Virus Fusion Inhibitors. Pharmaceuticals. 2022; 15(11):1390. https://doi.org/10.3390/ph15111390
Chicago/Turabian StyleSokolova, Anastasiya S., Olga I. Yarovaya, Lana V. Kuzminykh, Anna A. Shtro, Artem M. Klabukov, Anastasia V. Galochkina, Yulia V. Nikolaeva, Galina D. Petukhova, Sophia S. Borisevich, Edward M. Khamitov, and et al. 2022. "Discovery of N-Containing (-)-Borneol Esters as Respiratory Syncytial Virus Fusion Inhibitors" Pharmaceuticals 15, no. 11: 1390. https://doi.org/10.3390/ph15111390
APA StyleSokolova, A. S., Yarovaya, O. I., Kuzminykh, L. V., Shtro, A. A., Klabukov, A. M., Galochkina, A. V., Nikolaeva, Y. V., Petukhova, G. D., Borisevich, S. S., Khamitov, E. M., & Salakhutdinov, N. F. (2022). Discovery of N-Containing (-)-Borneol Esters as Respiratory Syncytial Virus Fusion Inhibitors. Pharmaceuticals, 15(11), 1390. https://doi.org/10.3390/ph15111390