Inhibitors of HIV-1 and Cathepsin L Proteases Identified from the Insect Gall of Hypericum kouytchense
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition of HIV-1 and Cat L PRs by H. kouytchense Insect Gall Extracts
2.2. Characterization of Selective Compounds in the H. kouytchense Insect Gall Extracts by UPLC–MS and UV–Vis Methods
2.3. Inhibition of HIV-1 and Cat L PRs by the Active Compounds from the H. kouytchense Insect Gall Extracts
2.4. Molecular Docking
3. Materials and Methods
3.1. Plant Material
3.2. Reagents and Instruments
3.3. Sample Preparation
3.4. Fluorimetric HIV-1, Cat L and Renin PRs Inhibition Assay
3.5. Characterization and Content Determination of the Main Active Components in the Extracts
3.6. Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
Cat L PR | cathepsin L protease |
HIV PR | human immunodeficiency virus protease |
HW | aqueous extract of H. kouytchense insect gall |
H30 | 30% methanol extract of H. kouytchense insect gall |
H60 | 60% methanol extract of H. kouytchense insect gall |
H85 | 85% methanol extract of H. kouytchense insect gall |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
COVID-19 | coronavirus disease 2019 |
HSV | herpes simplex virus |
LC–MS | liquid chromatograph–mass spectrometer |
DMSO | dimethyl sulfoxide |
HPLC | high-performance liquid chromatography |
UPLC–MS | ultra-performance liquid chromatography–mass spectrometry |
GUTCM | Guizhou University of Traditional Chinese Medicine |
References
- Natrual Portfolio: Viral Infection. Available online: https://www.nature.com/subjects/viral-infection (accessed on 13 November 2022).
- Guan, W.; Lan, W.; Zhang, J.L. COVID-19: Antiviral agents, antibody development and traditional Chinese medicine. Virol. Sin. 2020, 35, 685–698. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Pruijssers, A.J.; Denison, M.R. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol. 2019, 35, 57–62. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Ahmad, B.; Benchoula, K.; Vohra, M.S.; Mea, H.J.; Chong, P.P.; Palanisamy, N.K.; Wong, E.H. Emergence and molecular mechanisms of SARS-CoV-2 and HIV to target host cells and potential therapeutics. Infect. Genet. Evol. 2020, 85, 104583–104596. [Google Scholar] [CrossRef]
- Illanes-Álvarez, F.; Márquez-Ruiz, D.; Márquez-Coello, M.; Cuesta-Sancho, S.; Girón-González, J.A. Similarities and differences between HIV and SARS-CoV-2. Int. J. Med. Sci. 2021, 18, 846–851. [Google Scholar] [CrossRef]
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Momattin, H.; Al-Ali, A.Y.; Al-Tawfiq, J.A. A systematic review of therapeutic agents for the treatment of the Middle East respiratory syndrome coronavirus (MERS-CoV). Travel. Med. Infect. Dis. 2019, 30, 9–18. [Google Scholar] [CrossRef]
- FintelmanRodrigues, N.; Sacramento, C.Q.; Lima, C.R.; Silva, F.S.; Ferreira, A.C.; Mattos, M.; Freitas, C.S.; Soares, V.C.; Temerozo, J.R.; Miranda, M.D.; et al. Atazanavir Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrob. Agents Chemother. 2020, 64, e00825-20. [Google Scholar] [CrossRef]
- Xu, Z.J.; Peng, C.; Shi, Y.L.; Zhu, Z.D.; Mu, K.J.; Wang, X.Y.; Zhu, W.L. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Sang, P.; Tian, S.; Meng, Z.; Yang, L. Insight derived from molecular docking and molecular dynamics simulations into the binding interactions between HIV-1 protease inhibitors and SARS-CoV-2 3CLpro. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Arya, R.; Kumari, S.; Pandey, B.; Mistry, H.; Bihani, S.C.; Das, A.; Prashar, V.; Gupta, G.D.; Panicker, L.; Kumar, M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 2021, 433, 166725–166749. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Hao, X.J.; Wang, Z.H.; Zhang, J.Y.; Huang, L.J.; Pei, S.J. Ethnobotanical study on medicinal plants from the Dragon Boat Festival herbal markets of Qianxinan, southwestern Guizhou, China. Plant Divers. 2020, 42, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Pilepić, K.H.; Maleš, Z. Quantitative analysis of polyphenols in eighteen Hypericum taxa. Period. Biol. 2013, 115, 459–462. [Google Scholar]
- Anna, G.; Lianna, B.; Chris, P. Review of whole plant extracts with activity against herpes simplex viruses in vitro and in vivo. J. Evid. Based Integr. Med. 2021, 2, 1–57. [Google Scholar]
- Zhu, H.C.; Chen, C.M.; Yang, J.; Li, X.N.; Liu, J.J.; Sun, B.; Huang, S.X.; Li, D.Y.; Yao, G.M.; Luo, Z.W.; et al. Bioactive acylphloroglucinols with adamantyl skeleton from Hypericum sampsonii. Org. Lett. 2014, 16, 6322–6325. [Google Scholar] [CrossRef]
- Tanaka, N.; Okasaka, M.; Ishimaru, Y.; Takaishi, Y.; Sato, M.; Okamoto, M.; Oshikawa, T.; Ahmed, S.U.; Consentino, L.M.; Lee, K.H. Biyouyangin A, an anti-HIV agent from Hypericum chinense L. var. salicifolium. Org. Lett. 2005, 7, 2997–2999. [Google Scholar] [CrossRef]
- Rahimi, R.; Abdollahi, M. An update on the ability of St. John’s wort to affect the metabolism of other drugs. Expert Opin. Drug Metab. Toxicol. 2012, 8, 691–708. [Google Scholar] [CrossRef]
- Meruelo, D.; Lavie, G.; Lavie, D. Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin. Proc. Natl. Acad. Sci. USA 1988, 85, 5230–5234. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, N.; Kashiwada, Y. Characteristic metabolites of Hypericum plants: Their chemical structures and biological activities. J. Nat. Med. 2021, 75, 423–433. [Google Scholar] [CrossRef]
- Pan, B.W.; Li, S.M.; Xiao, J.W.; Yang, X.; Xie, S.X.; Zhou, Y.; Yang, J.; Wei, Y. Dual inhibition of HIV-1 and Cathepsin L proteases by Sarcandra glabra. Molecules 2022, 27, 5552. [Google Scholar] [CrossRef]
- Wei, Y.; Ma, C.M.; Hattori, M. Synthesis of dammarane-type triterpene derivatives and their ability to inhibit HIV and HCV proteases. Bioorg. Med. Chem. 2009, 17, 3003–3010. [Google Scholar] [CrossRef]
- Zhang, H.; He, X.M.; Wang, X.T.; Yu, B.; Zhao, S.Q.; Jiao, P.L.; Jin, H.W.; Liu, Z.M.; Wang, K.W.; Zhang, L.R.; et al. Design, synthesis and biological activities of piperidinespirooxadiazole derivatives as α7 nicotinic receptor antagonists. Eur. J. Med. Chem. 2020, 207, 112774–112790. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease 2019 (COVID-19): Situation Report: COVID-19 Partners Platform. Available online: https://covid19.who.int/ (accessed on 23 September 2022).
- Andrea, K.; Souvik, K.; Selahaddin, S.; Michael, S.; Eva, C. Occurrence and Distribution of Phytochemicals in the Leaves of 17 In vitro Cultured Hypericum spp. Adapted to Outdoor Conditions. Front. Plant Sci. 2016, 7, 1616. [Google Scholar]
- Zhou, X.D.; Lin, Q.X.; Yang, X.-Z. Study on chemical components of H. kouytchense Lévl. J. Yunnan Univ. Nat. Sci. Ed. 2022, 44, 1–8. [Google Scholar]
- Maury, W.; Price, J.P.; Brindley, M.A.; Oh, C.; Neighbors, J.D.; Wiemer, D.F.; Wills, N.; Carpenter, S.; Hauck, C.; Murphy, P.; et al. Identification of light-independent inhibition of human immunodeficiency virus-1infection through bioguided fractionation of Hypericum perforatum. Virol. J. 2009, 6, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Mazouri, S.E.; Aanniz, T.; Touhtouh, J.; Kandoussi, I.; Hakmi, M.; Belyamani, L.; Ibrahimi, A.; Ouadghiri, M. Anthraquinone: A promising muti-target therapeutic scaffold to treat Covid-19. Int. J. Appl. Biol. Pharm. 2021, 12, 338–355. [Google Scholar] [CrossRef]
Name | HIV-1 PR (µg/mL) | Cat L PR (µg/mL) | Renin PR (µg/mL) |
---|---|---|---|
HW | 10.0 ± 6.78 | 210.0 ± 4.05 | 180.0 ± 6.01 |
H30 | 4.0 ± 1.35 | 34.0 ± 1.64 | 65.0 ± 1.27 |
H60 | 3.2 ± 2.97 | 24.0 ± 1.44 | 44.0 ± 2.88 |
H85 | 17.0 ± 5.10 | 30.0 ± 4.22 | 39.0 ± 3.91 |
PC1 | 0.17 | - | - |
PC2 | - | 6.8 × 10−4 | - |
PC3 | - | - | 0.9 |
No. | Rt [min] | Name | Structures | Formula |
---|---|---|---|---|
1 | 4.74 | Epicatechin | C15H14O6 | |
2 | 5.47 | Rutin | C27H30O16 | |
3 | 5.73 | Hyperoside | C21H20O12 | |
4 | 6.05 | Taxifolin-7-O-rhamnoside | C21H22O11 | |
5 | 6.37 | Quercetin-3-O-arabinose | C20H18O11 | |
6 | 6.73 | Quercitrin | C21H20O11 | |
7 | 7.52 | Eriodicytiol | C15H12O6 | |
8 | 10.45 | Quercetin | C15H10O7 | |
9 | 12.57 | Naringenin chalcone | C15H12O5 | |
10※ | Hypericin | C30H16O8 |
No. | Rt (min) | Name | HW | H30 | H60 | H85 | Regression Equation |
---|---|---|---|---|---|---|---|
1 | 4.69 | Epicatechin | 82.19 | 124.26 | 114.07 | 89.45 | Y = −1060.51 + 5929.96 × X R2 = 0.9995 |
2 | 5.47 | Rutin | 2.00 | 4.12 | 4.16 | 9.28 | Y = 134859+341706 × X R2 = 0.9994 |
3 | 5.73 | Hyperoside | 1.01 | 3.08 | 3.61 | 10.77 | Y = 195092+219026 × X R2 = 0.9992 |
4 | 6.05 | Taxifolin-7-rhamnoside | 1.30 | 1.96 | 1.93 | 5.12 | Y = 216559+39301.7 × X R2 = 0.9983 |
5 | 6.37 | Quercetin-3-O-arabinose | 0.01 | 0.34 | 0.42 | 1.46 | Y = 817687+540720 × X R2 = 0.9978 |
6 | 6.73 | Quercitrin | 0.82 | 3.16 | 3.61 | 14.05 | Y = 52918.4+106963 × X R2 = 1.0000 |
7 | 7.52 | Eriodicytiol | 3.90 | 29.34 | 58.86 | 51.51 | Y = 686143+95743.9 × X R2 = 0.9952 |
8 | 10.45 | Quercetin | 0.35 | 5.86 | 9.37 | 6.38 | Y = −286872+268675 × X R2 = 0.9991 |
9 | 12.57 | Naringenin chalcone | 66.91 | 395.10 | 479.23 | 361.83 | Y = 163887+175999 × X R2 = 0.9993 |
10※ | Hypericin | 1.49 | 4.03 | 11.65 | 0.99 | Y = 4.5778 × X + 0.004 R2 = 1.000 |
No. | Name | Cat L PR | |
---|---|---|---|
Inhi% at 100.0 µg/mL | IC50 (µg/mL) | ||
10 | Hypericin | 79.4 ± 2.02 | 17,100.0 ± 3.29 |
9 | Naringenin chalcone | 22.2 ± 6.77 | >100,000.0 |
4 | Taxifolin-7-O-Rhamnoside | 18.1 ± 0.95 | >100,000.0 |
6 | Quercitrin | 16.3 ± 3.24 | >100,000.0 |
7 | Eriodictyol | 14.3 ± 2.32 | >100,000.0 |
3 | Hyperoside | 11.8 ± 2.56 | >100,000.0 |
5 | Quercetin-3-O-Arabinoside | 6.77 ± 0.46 | >100,000.0 |
8 | Quercetin | −3.67 ± 6.59 | >100,000.0 |
2 | Rutin | −4.81 ± 3.80 | >100,000.0 |
1 | Epicatechin | −17.7 ± 2.35 | >100,000.0 |
PC | Cathepsin L inhibitor | 6.8 × 10−4 |
No. | Name | HIV-1 PR | |
---|---|---|---|
Inhi% at 1000.0 µg/mL | IC50 (µg/mL) | ||
10 | Hypericin | 100.0 ± 7.87 | 1.8 ± 4.72 |
9 | Naringenin chalcone | 100.0 ± 1.96 | 33.0 ± 4.59 |
7 | Eriodictyol | 100.0 ± 4.98 | 190.0 ± 5.23 |
6 | Quercitrin | 94.4 ± 7.86 | 20.0 ± 5.04 |
3 | Hyperoside | 72.6 ± 1.40 | 39.0 ± 5.01 |
4 | Taxifolin-7-O-rhamnoside | 68.4 ± 5.45 | 550.0 ± 5.19 |
1 | Epicatechin | 66.0 ± 3.79 | 800.0 ± 2.72 |
8 | Quercetin | 50.3 ± 1.40 | >100,000.0 |
5 | Quercetin-3-O-arabinoside | 32.6 ± 2.18 | >100,000.0 |
2 | Rutin | 24.8 ± 3.85 | >100,000.0 |
PC | Pepstatin A | 0.17 |
No. | Name | Docking Score | Glide Gscore | Glide Emodel (kcal/mol) |
---|---|---|---|---|
1 | Hyperoside | −8.768 | −8.796 | −62.262 |
2 | Taxifolin-7-O-rhamnoside | −8.572 | −8.592 | −60.924 |
3 | Rutin | −8.558 | −8.586 | −79.958 |
4 | Quercitrin | −6.920 | −6.936 | −53.793 |
5 | Hypericin | −6.872 | −6.932 | −55.562 |
6 | Quercetin-3-O-Arabinoside | −6.295 | −6.324 | −61.944 |
7 | Eriodictyol | −5.737 | −5.755 | −44.473 |
8 | Naringenin chalcone | −5.597 | −6.337 | −45.334 |
9 | Quercetin | −5.528 | −5.560 | −41.583 |
10 | Epicatechin | −5.403 | −5.403 | −41.822 |
PC | Cathepsin L inhibitor | −7.822 | −7.823 | −93.170 |
No. | Name | Docking Score | Glide Gscore | Glide Emodel (kcal/mol) |
---|---|---|---|---|
1 | Hyperoside | −11.349 | −11.377 | −73.883 |
2 | Quercitrin | −10.691 | −10.719 | −87.889 |
3 | Rutin | −10.578 | −12.498 | −94.728 |
4 | Taxifolin-7-O-rhamnoside | −10.356 | −10.376 | −87.539 |
5. | Naringenin chalcone | −8.567 | −8.823 | −55.455 |
6 | Quercetin-3-O-Arabinoside | −8.062 | −9.982 | −67.772 |
7 | Quercetin | −7.782 | −7.814 | −60.119 |
8 | Eriodictyol | −7.749 | −7.768 | −57.928 |
9 | Epicatechin | −7.047 | −7.047 | −56.373 |
10 | Hypericin | −6.222 | −7.665 | −54.973 |
PC | Pepstatin A | −10.940 | −10.941 | −131.591 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, B.W.; Xiao, J.W.; Li, S.M.; Yang, X.; Zhou, X.; Sun, Q.W.; Chen, M.; Xie, S.X.; Sakharkar, M.K.; Yang, J.; et al. Inhibitors of HIV-1 and Cathepsin L Proteases Identified from the Insect Gall of Hypericum kouytchense. Pharmaceuticals 2022, 15, 1499. https://doi.org/10.3390/ph15121499
Pan BW, Xiao JW, Li SM, Yang X, Zhou X, Sun QW, Chen M, Xie SX, Sakharkar MK, Yang J, et al. Inhibitors of HIV-1 and Cathepsin L Proteases Identified from the Insect Gall of Hypericum kouytchense. Pharmaceuticals. 2022; 15(12):1499. https://doi.org/10.3390/ph15121499
Chicago/Turabian StylePan, Bo Wen, Jun Wei Xiao, Su Mei Li, Xin Yang, Xia Zhou, Qing Wen Sun, Mei Chen, Shou Xia Xie, Meena Kishore Sakharkar, Jian Yang, and et al. 2022. "Inhibitors of HIV-1 and Cathepsin L Proteases Identified from the Insect Gall of Hypericum kouytchense" Pharmaceuticals 15, no. 12: 1499. https://doi.org/10.3390/ph15121499
APA StylePan, B. W., Xiao, J. W., Li, S. M., Yang, X., Zhou, X., Sun, Q. W., Chen, M., Xie, S. X., Sakharkar, M. K., Yang, J., Zhou, Y., & Wei, Y. (2022). Inhibitors of HIV-1 and Cathepsin L Proteases Identified from the Insect Gall of Hypericum kouytchense. Pharmaceuticals, 15(12), 1499. https://doi.org/10.3390/ph15121499