Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance
Abstract
:1. The TriTryp Parasites
2. New Tools for Target Deconvolution
3. Artificial Selection for Drug Resistance
3.1. Selection In Vitro vs. In Vivo
3.2. Selection of Insect Stages vs. Mammalian Stages
3.3. Selection of a Clone vs. a Population
3.4. Selection with Mutagens vs. Adaptive Evolution
3.5. Selection under Constant Pressure vs. Sudden Shock
4. Biosafety Considerations and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Lopez, A.D. Measuring global health: Motivation and evolution of the Global Burden of Disease Study. Lancet 2017, 390, 1460–1464. [Google Scholar] [CrossRef]
- Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 2013, 13, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.L.; Shi, H.; Kolev, N.G.; Tschudi, C.; Ullu, E. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog. 2012, 8, e1002678. [Google Scholar] [CrossRef] [PubMed]
- Berriman, M.; Ghedin, E.; Hertz-Fowler, C.; Blandin, G.; Renauld, H.; Bartholomeu, D.C.; Lennard, N.J.; Caler, E.; Hamlin, N.E.; Haas, B.; et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309, 416–422. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downing, T.; Imamura, H.; Decuypere, S.; Clark, T.G.; Coombs, G.H.; Cotton, J.A.; Hilley, J.D.; de Doncker, S.; Maes, I.; Mottram, J.C.; et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011, 21, 2143–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, K.L.; Shi, H.; Kolev, N.G.; Ersfeld, K.; Tschudi, C.; Ullu, E. Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 2009, 106, 17933–17938. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.R.G.; Tosar, J.P.; Frugier, M.; Pantano, S.; Bonilla, B.; Esteban, L.; Serra, E.; Rovira, C.; Robello, C.; Cayota, A. Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene 2010, 466, 26–35. [Google Scholar] [CrossRef]
- Lye, L.-F.; Owens, K.; Shi, H.; Murta, S.M.F.; Vieira, A.C.; Turco, S.J.; Tschudi, C.; Ullu, E.; Beverley, S.M. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010, 6, e1001161. [Google Scholar] [CrossRef] [Green Version]
- Batista, T.M.; Marques, J.T. RNAi pathways in parasitic protists and worms. J. Proteom. 2011, 74, 1504–1514. [Google Scholar] [CrossRef]
- Beneke, T.; Madden, R.; Makin, L.; Valli, J.; Sunter, J.; Gluenz, E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci. 2017, 4, 170095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, D.; Kurup, S.P.; Yao, P.Y.; Minning, T.A.; Tarleton, R.L. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio 2014, 6, e02097-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lander, N.; Li, Z.H.; Niyogi, S.; Docampo, R. CRISPR/Cas9-Induced Disruption of Paraflagellar Rod Protein 1 and 2 Genes in Trypanosoma cruzi Reveals Their Role in Flagellar Attachment. mBio 2015, 6, e01012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.W.; Matlashewski, G. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. mBio 2015, 6, e00861. [Google Scholar] [CrossRef] [Green Version]
- Sangster, N.C.; Song, J.; Demeler, J. Resistance as a tool for discovering and understanding targets in parasite neuromusculature. Parasitology 2005, 131, S179–S190. [Google Scholar] [CrossRef]
- Graf, F.E.; Ludin, P.; Arquint, C.; Schmidt, R.S.; Schaub, N.; Renggli, C.K.; Munday, J.C.; Krezdorn, J.; Baker, N.; Horn, D.; et al. Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cell. Mol. Life Sci. 2016, 73, 3387–3400. [Google Scholar] [CrossRef] [Green Version]
- Leprohon, P.; Fernandez-Prada, C.; Gazanion, E.; Monte-Neto, R.; Ouellette, M. Drug resistance analysis by next generation sequencing in Leishmania. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Alsford, S.; Eckert, S.; Baker, N.; Glover, L.; Sanchez-Flores, A.; Leung, K.F.; Turner, D.J.; Field, M.C.; Berriman, M.; Horn, D. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 2012, 482, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Alsford, S.; Turner, D.J.; Obado, S.O.; Sanchez-Flores, A.; Glover, L.; Berriman, M.; Hertz-Fowler, C.; Horn, D. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011, 21, 915–924. [Google Scholar] [CrossRef] [Green Version]
- Schumann Burkard, G.; Jutzi, P.; Roditi, I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasitol. 2011, 175, 91–94. [Google Scholar] [CrossRef]
- Baker, N.; Alsford, S.; Horn, D. Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6. Mol. Biochem. Parasitol. 2011, 176, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Kuettel, S.; Greenwald, J.; Kostrewa, D.; Ahmed, S.; Scapozza, L.; Perozzo, R. Crystal structures of T. b. rhodesiense adenosine kinase complexed with inhibitor and activator: Implications for catalysis and hyperactivation. PLoS Negl. Trop. Dis. 2011, 5, e1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuettel, S.; Mosimann, M.; Maser, P.; Kaiser, M.; Brun, R.; Scapozza, L.; Perozzo, R. Adenosine Kinase of T. b. Rhodesiense identified as the putative target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine using chemical proteomics. PLoS Negl. Trop. Dis. 2009, 3, e506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matveyev, A.V.; Alves, J.M.; Serrano, M.G.; Lee, V.; Lara, A.M.; Barton, W.A.; Costa-Martins, A.G.; Beverley, S.M.; Camargo, E.P.; Teixeira, M.M.; et al. The Evolutionary Loss of RNAi Key Determinants in Kinetoplastids as a Multiple Sporadic Phenomenon. J. Mol. Evol. 2017, 84, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares Medeiros, L.C.; South, L.; Peng, D.; Bustamante, J.M.; Wang, W.; Bunkofske, M.; Perumal, N.; Sanchez-Valdez, F.; Tarleton, R.L. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. mBio 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Sollelis, L.; Ghorbal, M.; MacPherson, C.R.; Martins, R.M.; Kuk, N.; Crobu, L.; Bastien, P.; Scherf, A.; Lopez-Rubio, J.J.; Sterkers, Y. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell. Microbiol. 2015, 17, 1405–1412. [Google Scholar] [CrossRef] [Green Version]
- Rico, E.; Jeacock, L.; Kovarova, J.; Horn, D. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes. Sci. Rep. 2018, 8, 7960. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.; Knusel, S.; Hoenner, S.; Roditi, I. A transient CRISPR/Cas9 expression system for genome editing in Trypanosoma brucei. BMC Res. Notes 2020, 13, 268. [Google Scholar] [CrossRef]
- Beneke, T.; Gluenz, E. Bar-seq strategies for the LeishGEdit toolbox. Mol. Biochem. Parasitol. 2020, 239, 111295. [Google Scholar] [CrossRef]
- Yagoubat, A.; Corrales, R.M.; Bastien, P.; Lévêque, M.F.; Sterkers, Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol. 2020, 36, 745–760. [Google Scholar] [CrossRef]
- Fernandez-Prada, C.; Sharma, M.; Plourde, M.; Bresson, E.; Roy, G.; Leprohon, P.; Ouellette, M. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gazanion, É.; Fernández-Prada, C.; Papadopoulou, B.; Leprohon, P.; Ouellette, M. Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc. Natl. Acad. Sci. USA 2016, 113, E3012–E3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajao, M.A.; Furtado, C.; Alves, C.L.; Passos-Silva, D.G.; de Moura, M.B.; Schamber-Reis, B.L.; Kunrath-Lima, M.; Zuma, A.A.; Vieira-da-Rocha, J.P.; Garcia, J.B.; et al. Unveiling benznidazole’s mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environ. Mol. Mutagen. 2014, 55, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Wall, R.J.; Rico, E.; Lukac, I.; Zuccotto, F.; Elg, S.; Gilbert, I.H.; Freund, Y.; Alley, M.R.K.; Field, M.C.; Wyllie, S.; et al. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proc. Natl. Acad. Sci. USA 2018, 115, 9616–9621. [Google Scholar] [CrossRef] [Green Version]
- Sioud, M. (Ed.) Main Approaches to Target Discovery and Validation. In Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2007; Volume 360, pp. 1–12. [Google Scholar]
- Werbovetz, K.A. Target-Based Drug Discovery for Malaria, Leishmaniasis, and Trypanosomiasis. Curr. Med. Chem. 2000, 7, 835–860. [Google Scholar] [CrossRef]
- Kubota, K.; Funabashi, M.; Ogura, Y. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 22–27. [Google Scholar] [CrossRef]
- Mercer, L.; Bowling, T.; Perales, J.; Freeman, J.; Nguyen, T.; Bacchi, C.; Yarlett, N.; Don, R.; Jacobs, R.; Nare, B. 2,4-Diaminopyrimidines as potent inhibitors of Trypanosoma brucei and identification of molecular targets by a chemical proteomics approach. PLoS Negl. Trop. Dis. 2011, 5, e956. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.Y.; Wang, M.; He, C.Y.; Yao, S.Q. Proteomic profiling and potential cellular target identification of K11777, a clinical cysteine protease inhibitor, in Trypanosoma brucei. Chem. Commun. 2012, 48, 835–837. [Google Scholar] [CrossRef]
- Yang, P.Y.; Wang, M.; Liu, K.; Ngai, M.H.; Sheriff, O.; Lear, M.J.; Sze, S.K.; He, C.Y.; Yao, S.Q. Parasite-based screening and proteome profiling reveal orlistat, an FDA-approved drug, as a potential anti Trypanosoma brucei agent. Chemistry 2012, 18, 8403–8413. [Google Scholar] [CrossRef]
- Chidley, C.; Haruki, H.; Pedersen, M.G.; Muller, E.; Johnsson, K. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat. Chem. Biol. 2011, 7, 375–383. [Google Scholar] [CrossRef]
- Terstappen, G.C.; Schlupen, C.; Raggiaschi, R.; Gaviraghi, G. Target deconvolution strategies in drug discovery. Nat. Rev. Drug Discov 2007, 6, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P. Chemotherapeutische Trypanosomen-Studien. Berl. klin. Wochenschr. 1907, 11, 310–314. [Google Scholar]
- Fleming, A. Penicillin. Nobel Lecture 1945. Nobel Foundation. Available online: www.nobelprize.org (accessed on 22 December 2021).
- Ehrlich, P. Partial cell functions. Nobel Lecture 1908. Nobel Foundation. Available online: www.nobelprize.org (accessed on 22 December 2021).
- Chugh, M.; Scheurer, C.; Sax, S.; Bilsland, E.; van Schalkwyk, D.A.; Wicht, K.J.; Hofmann, N.; Sharma, A.; Bashyam, S.; Singh, S.; et al. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains. Antimicrob. Agents Chemother. 2015, 59, 1110–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminsky, R.; Mäser, P. Drug resistance in African trypanosomes. Curr. Op. Anti Inf. Inv. Drugs 2000, 2, 76–82. [Google Scholar]
- Scott, A.G.; Tait, A.; Turner, M.R. Characterisation of cloned lines of Trypanosoma brucei expressing stable resistance to MelCy and Suramin. Acta Trop. 1996, 60, 251–262. [Google Scholar] [CrossRef]
- Scott, A.G.; Tait, A.; Turner, C.M.R. Trypanosoma brucei: Lack of cross-resistance to melarsoprol in vitro by cymelarsan-resistant parasites. Exp. Parasitol. 1997, 86, 181–190. [Google Scholar] [CrossRef]
- Keiser, J.; Ericsson, O.; Burri, C. Investigations of the metabolites of the trypanocidal drug melarsoprol. Clin. Pharmacol. Ther. 2000, 67, 478–488. [Google Scholar] [CrossRef]
- Wiedemar, N.; Graf, F.E.; Zwyer, M.; Ndomba, E.; Kunz Renggli, C.; Cal, M.; Schmidt, R.S.; Wenzler, T.; Mäser, P. Beyond immune escape: A variant surface glycoprotein causes suramin resistance in Trypanosoma brucei. Mol. Microbiol. 2018, 107, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Yorke, W.; Murgatroyd, F. The action in vitro of certain arsenical and antimonial compounds on T. rhodesiense and on atoxyl- and acriflavine-resistant strains of this parasite. Ann. Trop. Med. Parasitol. 1930, 24, 449–476. [Google Scholar] [CrossRef]
- Yorke, W.; Murgatroyd, F.; Hawking, F. Preliminary contribution on the nature of drug resistance. Ann. Trop. Med. Parasitol. 1931, 25, 351–358. [Google Scholar] [CrossRef]
- Yorke, W.; Murgatroyd, F.; Hawking, F. Comparison of Strains of T. rhodesiense Made Resistant to Various Arsenicals and Antimonials, to Bayer 205, and to Acriflavine, Respectively. Ann. Trop. Med. Parasitol. 1933, 26, 577–586. [Google Scholar] [CrossRef]
- Lourie, E.M.; Yorke, W. The Preparation of Strains of Trypanosomes Resistant to Synthalin and Undecane Diamidine, and an Analysis of Their Characters. Ann. Trop. Med. Parasitol. 1938, 32, 201–213. [Google Scholar] [CrossRef]
- Fulton, J.D.; Yorke, W. Further Observations on the Stability of Drug-Resistance in Trypanosomes. Ann. Trop. Med. Parasitol. 1942, 35, 221–227. [Google Scholar] [CrossRef]
- Rollo, I.M.; Williamson, J. Acquired resistance to ‘melarsen’, tryparsamide and amidines in pathogenic trypanosomes after treatment with ‘melarsen’ alone. Nature 1951, 167, 147–148. [Google Scholar] [CrossRef]
- Frommel, T.O.; Balber, A.E. Flow cytofluorimetric analysis of drug accumulation by multidrug-resistant Trypanosoma brucei brucei and T. b. rhodesiense. Mol. Biochem. Parasitol. 1987, 26, 183–192. [Google Scholar] [CrossRef]
- Pospichal, H.; Brun, R.; Kaminsky, R.; Jenni, L. Induction of resistance to melarsenoxide cysteamine (Mel Cy) in Trypanosoma brucei brucei. Acta Trop. 1994, 58, 187–197. [Google Scholar] [CrossRef]
- Fairlamb, A.H.; Carter, N.S.; Cunningham, M.; Smith, K. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Mol. Biochem. Parasitol. 1992, 53, 213–222. [Google Scholar] [CrossRef]
- Murta, S.M.; Romanha, A.J. In vivo selection of a population of Trypanosoma cruzi and clones resistant to benznidazole. Parasitology 1998, 116, 165–171. [Google Scholar] [CrossRef]
- Dos Santos, F.M.; Caldas, S.; de Assis Cau, S.B.; Crepalde, G.P.; de Lana, M.; Machado-Coelho, G.L.; Veloso, V.M.; Bahia, M.T. Trypanosoma cruzi: Induction of benznidazole resistance in vivo and its modulation by in vitro culturing and mice infection. Exp. Parasitol. 2008, 120, 385–390. [Google Scholar] [CrossRef]
- Hendrickx, S.; Mondelaers, A.; Eberhardt, E.; Delputte, P.; Cos, P.; Maes, L. In Vivo Selection of Paromomycin and Miltefosine Resistance in Leishmania donovani and L. infantum in a Syrian Hamster Model. Antimicrob. Agents Chemother. 2015, 59, 4714–4718. [Google Scholar] [CrossRef] [Green Version]
- Perry, M.R.; Wyllie, S.; Raab, A.; Feldmann, J.; Fairlamb, A.H. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis. Proc. Natl. Acad. Sci. USA 2013, 110, 19932–19937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanteri, C.A.; Stewart, M.L.; Brock, J.M.; Alibu, V.P.; Meshnick, S.R.; Tidwell, R.R.; Barrett, M.P. Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance. Mol. Pharmacol. 2006, 70, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Teka, I.A.; Kazibwe, A.J.; El-Sabbagh, N.; Al-Salabi, M.I.; Ward, C.P.; Eze, A.A.; Munday, J.C.; Mäser, P.; Matovu, E.; Barrett, M.P.; et al. The diamidine diminazene aceturate is a substrate for the high-affinity pentamidine transporter: Implications for the development of high resistance levels in trypanosomes. Mol. Pharmacol. 2011, 80, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, I.M.; Creek, D.; Watson, D.G.; Kamleh, M.A.; Woods, D.J.; Wong, P.E.; Burchmore, R.J.; Barrett, M.P. A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog. 2010, 6, e1001204. [Google Scholar] [CrossRef] [Green Version]
- Ranade, R.M.; Gillespie, J.R.; Shibata, S.; Verlinde, C.L.; Fan, E.; Hol, W.G.; Buckner, F.S. Induced resistance to methionyl-tRNA synthetase inhibitors in Trypanosoma brucei is due to overexpression of the target. Antimicrob. Agents Chemother. 2013, 57, 3021–3028. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Berens, R.L.; Sifri, C.D.; Ullman, B. Amplification of the inosinate dehydrogenase gene in Trypanosoma brucei gambiense due to an increase in chromosome copy number. J. Biol. Chem. 1994, 269, 28979–28987. [Google Scholar] [CrossRef]
- Sokolova, A.Y.; Wyllie, S.; Patterson, S.; Oza, S.L.; Read, K.D.; Fairlamb, A.H. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob. Agents Chemother. 2010, 54, 2893–2900. [Google Scholar] [CrossRef] [Green Version]
- Berger, B.J.; Carter, N.S.; Fairlamb, A.H. Polyamine and pentamidine metabolism in African trypanosomes. Acta Trop. 1993, 54, 215–224. [Google Scholar] [CrossRef]
- Bridges, D.J.; Gould, M.K.; Nerima, B.; Mäser, P.; Burchmore, R.J.; de Koning, H.P. Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes. Mol. Pharmacol. 2007, 71, 1098–1108. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, S.C.; Nerima, B.; Mäser, P.; Brun, R. Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance. Int. J. Parasitol. 2007, 37, 1443–1448. [Google Scholar] [CrossRef]
- Ali, J.A.; Creek, D.J.; Burgess, K.; Allison, H.C.; Field, M.C.; Maser, P.; De Koning, H.P. Pyrimidine salvage in Trypanosoma brucei bloodstream forms and the trypanocidal action of halogenated pyrimidines. Mol. Pharmacol. 2013, 83, 439–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nirde, P.; Larroque, C.; Barnabe, C. Drug-resistant epimastigotes of Trypanosoma cruzi and persistence of this phenotype after differentiation into amastigotes. C. R. Acad. Sci. III 1995, 318, 1239–1244. [Google Scholar] [PubMed]
- Campos, M.C.; Castro-Pinto, D.B.; Ribeiro, G.A.; Berredo-Pinho, M.M.; Gomes, L.H.; da Silva Bellieny, M.S.; Goulart, C.M.; Echevarria, A.; Leon, L.L. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitol. Res. 2013, 112, 2341–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, M.C.; Leon, L.L.; Taylor, M.C.; Kelly, J.M. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Mol. Biochem. Parasitol. 2014, 193, 17–19. [Google Scholar] [CrossRef]
- Mejia, A.M.; Hall, B.S.; Taylor, M.C.; Gomez-Palacio, A.; Wilkinson, S.R.; Triana-Chavez, O.; Kelly, J.M. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J. Infect. Dis. 2012, 206, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Campos, M.C.; Phelan, J.; Francisco, A.F.; Taylor, M.C.; Lewis, M.D.; Pain, A.; Clark, T.G.; Kelly, J.M. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci. Rep. 2017, 7, 14407. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, F.B.; Krieger, M.A.; Nirde, P.; Goldenberg, S.; Romanha, A.J.; Murta, S.M. Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Trop. 2006, 100, 119–132. [Google Scholar] [CrossRef]
- Buckner, F.S.; Wilson, A.J.; White, T.C.; Van Voorhis, W.C. Induction of resistance to azole drugs in Trypanosoma cruzi. Antimicrob. Agents Chemother. 1998, 42, 3245–3250. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, T.; Engel, J.C.; Dvorak, J.A. Cellular and molecular biological analyses of nifurtimox resistance in Trypanosoma cruzi. Am. J. Trop. Med. Hyg. 1996, 55, 111–117. [Google Scholar] [CrossRef]
- Nozaki, T.; Dvorak, J.A. Molecular biology studies of tubercidin resistance in Trypanosoma cruzi. Parasitol. Res. 1993, 79, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Garvey, E.P.; Coderre, J.A.; Santi, D.V. Selection and properties of Leishmania tropica resistant to 10-propargyl-5,8-dideazafolate, an inhibitor of thymidylate synthetase. Mol. Biochem. Parasitol. 1985, 17, 79–91. [Google Scholar] [CrossRef]
- Yasur-Landau, D.; Jaffe, C.L.; Doron-Faigenboim, A.; David, L.; Baneth, G. Induction of allopurinol resistance in Leishmania infantum isolated from dogs. PLoS Negl. Trop. Dis. 2017, 11, e0005910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Hernandez, R.; Manzano, J.I.; Castanys, S.; Gamarro, F. Leishmania donovani develops resistance to drug combinations. PLoS Negl. Trop. Dis. 2012, 6, e1974. [Google Scholar] [CrossRef] [Green Version]
- Beverley, S.M.; Coderre, J.A.; Santi, D.V.; Schimke, R.T. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell 1984, 38, 431–439. [Google Scholar] [CrossRef]
- Detke, S.; Katakura, K.; Chang, K.P. DNA amplification in arsenite-resistant Leishmania. Exp. Cell. Res. 1989, 180, 161–170. [Google Scholar] [CrossRef]
- Marquis, N.; Gourbal, B.; Rosen, B.P.; Mukhopadhyay, R.; Ouellette, M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol. Microbiol. 2005, 57, 1690–1699. [Google Scholar] [CrossRef]
- Chiquero, M.J.; Perez-Victoria, J.M.; O’Valle, F.; Gonzalez-Ros, J.M.; del Moral, R.G.; Ferragut, J.A.; Castanys, S.; Gamarro, F. Altered drug membrane permeability in a multidrug-resistant Leishmania tropica line. Biochem. Pharmacol. 1998, 55, 131–139. [Google Scholar] [CrossRef]
- Kaur, K.; Coons, T.; Emmett, K.; Ullman, B. Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. J. Biol. Chem. 1988, 263, 7020–7028. [Google Scholar] [CrossRef]
- Iovannisci, D.M.; Beverley, S.M. Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array. Mol. Biochem. Parasitol. 1989, 34, 177–188. [Google Scholar] [CrossRef]
- Seifert, K.; Matu, S.; Javier Perez-Victoria, F.; Castanys, S.; Gamarro, F.; Croft, S.L. Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int. J. Antimicrob. Agents 2003, 22, 380–387. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Leprohon, P.; Bigot, S.; Padmanabhan, P.K.; Mukherjee, A.; Roy, G.; Gingras, H.; Mestdagh, A.; Papadopoulou, B.; Ouellette, M. Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat. Commun. 2019, 10, 5627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhingran, A.; Chawla, B.; Saxena, S.; Barrett, M.P.; Madhubala, R. Paromomycin: Uptake and resistance in Leishmania donovani. Mol. Biochem. Parasitol. 2009, 164, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullman, B.; Carrero-Valenzuela, E.; Coons, T. Leishmania donovani: Isolation and characterization of sodium stibogluconate (Pentostam)-resistant cell lines. Exp. Parasitol. 1989, 69, 157–163. [Google Scholar] [CrossRef]
- Ellenberger, T.E.; Beverley, S.M. Multiple drug resistance and conservative amplification of the H region in Leishmania major. J. Biol. Chem. 1989, 264, 15094–15103. [Google Scholar] [CrossRef]
- Alzahrani, K.J.H.; Ali, J.A.M.; Eze, A.A.; Looi, W.L.; Tagoe, D.N.A.; Creek, D.J.; Barrett, M.P.; de Koning, H.P. Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 206–226. [Google Scholar] [CrossRef] [PubMed]
- Hawking, F.; Walker, P.J. Analysis of the development of arsenical resistance in trypanosomes in vitro. Exp. Parasitol. 1966, 18, 63–86. [Google Scholar] [CrossRef]
- Brun, R.; Schönenberger, M. Cultivation and in vivo cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979, 36, 289–292. [Google Scholar]
- Berens, R.L.; Brun, R.; Krassner, S.M. A simple monophasic medium for axenic culture of hemoflagellates. J. Parasitol. 1976, 62, 360–365. [Google Scholar] [CrossRef]
- Krassner, S.M.; Flory, B. Proline metabolism in Leishmania donovani promastigotes. J. Protozool. 1972, 19, 682–685. [Google Scholar] [CrossRef]
- Baltz, T.; Baltz, D.; Giroud, C.; Crockett, J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985, 4, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Balanco, J.M.; Pral, E.M.; da Silva, S.; Bijovsky, A.T.; Mortara, R.A.; Alfieri, S.C. Axenic cultivation and partial characterization of Leishmania braziliensis amastigote-like stages. Parasitology 1998, 116, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.C.; Dvorak, J.A. Trypanosoma cruzi: Cell biological behavior of epimastigote and amastigote forms in axenic culture. J. Protozool. 1988, 35, 513–518. [Google Scholar] [CrossRef]
- Revollo, S.; Oury, B.; Vela, A.; Tibayrenc, M.; Sereno, D. In Vitro Benznidazole and Nifurtimox Susceptibility Profile of Trypanosoma cruzi Strains Belonging to Discrete Typing Units TcI, TcII, and TcV. Pathogens 2019, 8, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Koning, H. Uptake of pentamidine in Trypanosoma brucei is mediated by three distinct transporters: Implications for cross-resistance with arsenicals. Mol. Pharmacol. 2001, 59, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Ziegelbauer, K.; Overath, P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J. Biol. Chem. 1992, 267, 10791–10796. [Google Scholar] [CrossRef]
- Nyeko, J.H.; Golder, T.K.; Otieno, L.H. Selection for drug resistance in Trypanosoma congolense during cyclic transmissions through Glossina morsitans morsitans and drug treated rabbits. Acta Trop. 1988, 45, 21–26. [Google Scholar]
- Mäser, P.; Sütterlin, C.; Kralli, A.; Kaminsky, R. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 1999, 285, 242–244. [Google Scholar] [CrossRef]
- Matovu, E.; Stewart, M.L.; Geiser, F.; Brun, R.; Mäser, P.; Wallace, L.J.; Burchmore, R.J.; Enyaru, J.C.; Barrett, M.P.; Kaminsky, R.; et al. Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryot. Cell 2003, 2, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Raju, T.N.M. The Nobel Chronicles. 1908: Elie Metchnikoff (1845–1916) and Paul Ehrlich (1854–1915). Lancet 1998, 352, 661. [Google Scholar] [CrossRef]
T. brucei | T. cruzi | L. donovani | |
---|---|---|---|
Genome size [4,5,6] | 26.1 Mb | 60.4 Mb | 32.4 Mb |
Protein-coding genes [4,5,6] | 9068 | ~12,000 | >8000 |
Genes of RNAi pathway [7,8,9,10] | present | partially present | absent |
RNAi gene silencing [7,8,9,10] | functional | non-functional | non-functional |
CRISPR/Cas9 editing [11,12,13,14] | established | established | established |
Mammalian stages | extracell. trypomastigotes | intracell. amastigote, extracell. trypomastigote | intracell. amastigote |
Vector stages | procyclic trypomastigote, epimastigote, metacyclic trypomastigote | procyclic epimastigote, metacyclic trypomastigote | procyclic promastigote, metacyclic promastigote |
Parasite | Drug | Mammalian Stage Intracellular | Mammalian Stage Axenic | Vector Stage |
---|---|---|---|---|
T. brucei | Pentamidine | n.a. | 0.001 | 0.43 |
Suramin | n.a. | 0.056 | >10 | |
Melarsoprol | n.a. | 0.004 | 0.057 | |
Eflornithine | n.a. | 2.0 | >100 | |
Nifurtimox | n.a. | 0.31 | 1.6 | |
Fexinidazole | n.a. | 0.62 | 1.2 | |
T. cruzi | Benznidazole | 0.47 | n.a. | 3.1 |
Nifurtimox | 0.14 | n.a. | 0.87 | |
L. donovani | Pentostam | 92 | 220 | >1000 |
Miltefosine | 1.4 | 0.29 | 3.8 | |
Amphotericin B | 0.33 | 0.26 | 0.03 | |
Paromomycin | 28 | >30 | 10 |
Drug | Species | Stage | Mutagen | Pressure | Duration | RF | Ref. |
---|---|---|---|---|---|---|---|
DB75 | T. b. brucei | BSF | no | steady | 2.5 mth | 20 | [65] |
Berenil | T. b. brucei Δat1 | BSF | no | steady | 5 mth | 9.2 | [66] |
Eflornithine | T. b. brucei | BSF | no | steady | 2 mth | 41 | [67] |
Eflornithine, pentamidine, 1433 | T. b. brucei | BSF | no | steady | 50–120 d | 32 | [68] |
Melarsenoxide cysteamine | T. b. brucei | BSF | no | steady | 4 mth | 15 | [59] |
Mycophenolic acid | T. b. gambiense | PCF | no | steady | n.s. | 17 | [69] |
Nifurtimox | T. b. brucei | BSF | no | steady | 4.7 mth | 8 | [70] |
Pentamidine | T. b. brucei | BSF | no | steady | 2 mth | 26 | [71] |
Pentamidine | T. b. brucei Δat1 | BSF | no | steady | several mth | 130 | [72] |
Pentamidine, melarsoprol | T. b. rhodesiense | BSF | no | steady | 21 mth | 140, 24 | [73] |
Pyrimidine analogs | T. b. brucei | BSF | no | steady | several mth | 83–830 | [74] |
Suramin | T. b. rhodesiense | BSF | no | shock | 6 d | 96 | [51] |
Benznidazole | T. cruzi | epi | no | steady | n.s. | 26 | [75] |
Benznidazole | T. cruzi | epi | no | intermittent | 15 w | ≥4.7 | [76] |
Benznidazole | T. cruzi | epi | no | steady | n.s. | 9-26 | [77] |
Benznidazole | T. cruzi | epi | no | steady | several w | n.s. | [78] |
Benznidazole | T. cruzi | epi | no | steady | 4 mth | 9–26 | [79] |
Benznidazole | T. cruzi | epi | no | steady | n.s. | 23 | [80] |
Fluconazole | T. cruzi | epi | no | steady | 4 mth | 100 | [81] |
Nifurtimox | T. cruzi | epi | no | steady | 8 mth | 4 | [82] |
Nifurtimox | T. cruzi | epi, trypo | no | steady | 60 d | 3–10 | [83] |
Tubercidin | T. cruzi | epi | yes | shock | 1 mth | 180–260 | [84] |
CB3717 | L. tropica | pro | no | steady | 3–12 mth | 25000 | [85] |
Allopurinol | L. infantum | pro | no | steady | 23 w | 20 | [86] |
Amphotericin B, miltefosine paromomycin, SbIII | L. donovani | pro | no | steady | 18 w | 11–20 | [87] |
Methotrexate | L. tropica | pro | no | steady | 3–11 mth | n.s. | [88] |
Arsenite | L. mex., L. amazon. | pro | no | steady | 1 mth | 12 | [89] |
Hoechst 33342 | L. donovani | pro | no | steady | n.s. | 30 | [90] |
Daunomycin | L. tropica | pro | no | steady | 6 mth | 62 | [91] |
Methotrexate | L. donovani | pro | no | shock | 7–10 gen | n.s. | [92] |
Methotrexate | L. major | pro | no | steady | n.s. | n.s. | [93] |
Miltefosine | L. donovani | pro | no | steady | 6 mth | 15 | [94] |
Miltefosine, paromomycin | L. infantum | pro | yes | steady | 10 d | 2.5–8.5 | [95] |
Paromomycin | L. donovani | pro | no | steady | 3 mth | 3 | [96] |
Pentostam | L. donovani | pro | no | steady | n.s. | 26 | [97] |
Primaquin, pentamidine, terbinafine, chloroquine | L. major | pro | no | steady | n.s. | 2.0–4.4 | [98] |
Pyrimidine analogs | L. mex., L. major | pro | no | steady | 12 mth | 1–>3500 | [99] |
Sinefugin | L. infantum | pro | no | steady | n.s. | n.s. | [95] |
Sodium arsenite | L. mex., L. amazon. | pro | no | steady | >1 mth | 12 | [89] |
SbIII | L. major | pro | no | shock | n.s. | 30 | [90] |
Countries | T. brucei | T. cruzi | L. donovani |
---|---|---|---|
USA | 2 | 2 | 2 |
AU/NZ | 2 | 2 | n.s. |
EU | 2 (Tbb), 3 * (Tbr) | 3 | 3 * |
UK | 2 (Tbb), 3 * (Tbr) | 3 | 3 * |
CH | 2 | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beilstein, S.; El Phil, R.; Sahraoui, S.S.; Scapozza, L.; Kaiser, M.; Mäser, P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals 2022, 15, 135. https://doi.org/10.3390/ph15020135
Beilstein S, El Phil R, Sahraoui SS, Scapozza L, Kaiser M, Mäser P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals. 2022; 15(2):135. https://doi.org/10.3390/ph15020135
Chicago/Turabian StyleBeilstein, Sabina, Radhia El Phil, Suzanne Sherihan Sahraoui, Leonardo Scapozza, Marcel Kaiser, and Pascal Mäser. 2022. "Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance" Pharmaceuticals 15, no. 2: 135. https://doi.org/10.3390/ph15020135
APA StyleBeilstein, S., El Phil, R., Sahraoui, S. S., Scapozza, L., Kaiser, M., & Mäser, P. (2022). Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals, 15(2), 135. https://doi.org/10.3390/ph15020135