N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review
Abstract
:1. Introduction
2. Literature Search Methodology
2.1. CFTR Protein
2.2. Lung Pathophysiology
2.3. Biofilm in CF Airways
3. N-acetylcysteine
3.1. Routes of Administration
3.1.1. Oral Administration of NAC
3.1.2. Intravenous Administration of NAC
3.1.3. Inhaled Administration of NAC
3.1.4. Transdermal Administration of NAC
3.2. Mechanism of Action
3.2.1. Antioxidant Activity
3.2.2. Disulfide Breaking Agent
3.2.3. Antibiofilm Activity
4. The Role of NAC in Cystic Fibrosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellani, C.; Assael, B.M. Cystic fibrosis: A clinical view. Cell. Mol. Sci. 2017, 74, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Boeck, K.D. Cystic fibrosis in the year 2020: A disease with a new face. Acta Pediatrica. 2020, 9, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.C.; Mall, M.A.; Gutierrez, E.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [Green Version]
- Newman, S.P. Drug delivery to the lungs: Challenges and opportunities. Ther. Deliv. 2017, 8, 647–661. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Fothergill, J.L. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol. Lett. 2017, 364, fnx128. [Google Scholar] [CrossRef] [PubMed]
- Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of antibiotic resistance Pseudomonas aeruginosain intensive care unit: A critical review. Genes Dis. 2019, 2, 109–119. [Google Scholar] [CrossRef]
- Waters, V.J.; Kidd, T.J.; Canton, R.; Ekkelenkamp, M.B.; Johansen, H.K.; LiPuma, J.J.; Bell, S.C.; Elborn, J.S.; Flume, P.A.; Van Devanter, D.R.; et al. Reconciling Antimicrobial susceptibility testing and clinical response in antimicrobial treatment of chronic cystic fibrosis lung infections. Clin. Infect. Dis. 2019, 69, 1812–1816. [Google Scholar] [CrossRef]
- Kolpen, M.; Hansen, C.R.; Bjarnsholt, T.; Moser, C.; Christensen, L.D.; van Gennip, M.; Ciofu, O.; Mandsberg, L.; Kharazmi, A.; Döring, G.; et al. Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 2010, 65, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, L.R.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2020, 19, 331–342. [Google Scholar] [CrossRef]
- Dludla, P.V.; Tiano, L.; Louw, J.; Mxinwa, V.; Tiano, L.; Marcheggiani, F.; Cirilli, I.; Louw, J.; Nkambule, B.B. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated com- plications: A systematic review of pre-clinical studies. Pharmacol. Res. 2019, 146, 104332. [Google Scholar] [CrossRef]
- Ooi, S.L.; Green, R.; Pak, S.C. N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence. BioMed Res. Int. 2018, 2018, 2469486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerry, K. Schwalfenberg, N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar]
- Shi, Z.; Puyo, C.A. N-acetylcysteine to combat COVID-19: An evidence review. Ther. Clin. Risk Manag. 2020, 16, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Borgstrom, L.; Kgtgedal, B.; Paulsen, O. Pharmacokinetics of N-Acetylcysteine in Man. Eur. J. Clin. Pharmacol. 1986, 31, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Johansson, M.; Gabrielsson, J.; Bolme, P. Pharmacokinetics and Bioavailability of Reduced and Oxidized N-Acetylcysteine. Eur. J. Clin. Pharmacol. 1988, 34, 77–82. [Google Scholar] [CrossRef]
- Rind, L.; Ahmad, M.; Khan, M.I.; Badrudeen; Akhtar, J.; Ahmad, U.; Yadav, C.; Owais, M. An insight of safety, efficacy, and molecular docking study reportsof N-acetylcysteine and its compound formulations. J. Basic Clin. Physiol. Pharmacol. 2021, 20200099. [Google Scholar] [CrossRef]
- DeCaro, L.; Ghizzzi, A.; Costa, R.; Longo, A.; Ventresca, G.P. Pharmacokinetics and bioavailability of oral acetylcysteine in healthy volunteers. Arzneim. -Forsch. 1989, 39, 382–386. [Google Scholar]
- Ershad, M.; Naji, A.; Vearrier, D.N. Acetylcysteine. Eur. PMC 2019. Available online: https://europepmc.org/article/nbk/nbk537183 (accessed on 20 December 2021). [PubMed]
- Salamon, S.; Kramar, B.; Marolt, T.P.; Poljska, B.; Milisav, I. Medical and Dietary uses of N-acetylcysteine. Antioxidants 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Harada, D.; Naito, S.; Hiraoka, I.; Otagiri, M. In vivo kinetic analysis of covalent binding between N-acetyl-L-cysteine and plasma protein through the formation of mixed disulfide in rats. Pharm. Res. 2002, 19, 615–620. [Google Scholar]
- Cotgreave, I.A.; Moldeus, P. Methodologies for the analysis of reduced and oxidized N-acetylcysteine in biological systems. Biopharm. Drug Dispos. 1987, 8, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F.; Donovan, J.W.; Jarvie, D.R.; Proudfoot, A.T. The disposition and kinetics of intravenous N-acetylcysteine in patients with paracetamol overdosage. Eur. J. Clin. Pharmacol. 1989, 37, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Teder, K.; Maddison, L.; Soeorg, H.; Meos, A.; Karjagin, J. The Pharmacokinetic Profile and Bioavailability of Enteral N-Acetylcysteine in Intensive Care Unit. Medicine 2021, 57, 218. [Google Scholar] [CrossRef]
- Bridgeman, M.M.; Marsden, M.; Selby, C.; Morrison, D.; MacNee, W. Effect of N-acetyl cysteine on the concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue. Thorax 1994, 49, 670–675. [Google Scholar] [CrossRef] [Green Version]
- Tam, J.; Nash, E.F.; Ratjen, F.; Tullis, E.; Stephenson, A. Nebulized and oral thiol derivatives for pulmonary disease in cystic fibrosis. Cochrane Database Syst. Rev. 2013, 7, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, Y.; Sugino, K.; Ishida, F.; Tatebe, J.; Morita, T.; Homma, S. Effect of inhaled N-acetylcysteine monotherapy on lung function and redox balance in idiopathic pulmonary fibrosis. Respir. Investig. 2016, 54, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Calverley, P.; Rogliani, P.; Papi, A. Safety of N-acetylcysteine at high doses in chronic respiratory diseases: A review. Drug Saf. 2021, 44, 273–290. [Google Scholar] [CrossRef]
- Bartek, J.; Labudde, J.A.; Maibach, H.I. Skin permeability in vivo: Comparison in rat, rabbit, pig and man. J. Investig. Dermatol. 1972, 3, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Friden, P.M. Method of Enhancing Iontophoretic Delivery of a Peptide. U.S. Patent Application No. 12/234,071, 26 March 2009. [Google Scholar]
- González-Vázquez, P.; Larrañeta, E.; McCrudden, M.T.C.; Jarrahian, C.; Rein-Weston, A.; Quintanar-Solares, M.; Zehrung, D.; McCarthy, H.; Courtenay, A.J.; Donnelly, R.F. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J. Control. Release 2017, 265, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Cazzola, M.; Calzetta, L.; Facciolo, F.; Rogliani, P.; Matera, M.G. Pharmacological investigation on the anti-oxidant and anti-inflammatory activity of N-acetylcysteine in an ex vivo model of COPD exacerbation. Respir. Res. 2017, 18, 26. [Google Scholar] [CrossRef]
- Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem. Biol. 2018, 25, 447–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Su, W.; Ying, Z.; Chen, Y.; Zhou, L.; Li, Y.; Zhang, J.; Zhang, L.; Wang, T. N-acetylcysteine attenuates intrauterine growth retardation-induced hepatic damage in suckling piglets by improving glutathione synthesis and cellular homeostasis. Eur. J. Nutr. 2018, 57, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef]
- Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 2014, 141, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Calzetta, L.; Matera, M.G.; Rogliani, P.; Cazzola, M. Multifaceted activity of N-acetyl-L-cysteine in chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2018, 12, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Page, C.; Rogliani, P.; Matera, M.G. Thiol-Based drugs in pulmonary medicine: Much more than mucoltycs. Trend Pharm. Sci. 2019, 40, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Hollinger, M.; Lachowicz-Scroggins, M.E.; Kerr, S.C.; Dunican, E.M.; Daniel, B.M.; Ghosh, S.; Erzurum, S.C.; Willard, B.; Hazen, S.L.; et al. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci. Transl. Med. 2015, 7, 276ra27. [Google Scholar] [CrossRef] [Green Version]
- Kundukad, B.; Schussman, M.; Yang, K.; Seviour, T.; Yang, L.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S. Mechanistic action of weak acid drugs on biofilms. Sci. Rep. 2017, 7, 4783. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Liu, Y. N-acetylcysteine inhibits biofilms produced by Pseudomonas Aeruginosa. BMC Microbiol. 2010, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Guerini, M.; Perugini, P.; Grisoli, P. Evaluation of the Effectiveness of N-Acetylcysteine (NAC) and N-acetylcysteine-cyclodextrins Multi-Composite in Pseudomonas aeruginosa Biofilm Formation. Appl. Sci. 2020, 10, 3466. [Google Scholar] [CrossRef]
- Marchese, A.; Bozzolasco, M.; Gualco, L.; Debbia, E.A.; Schito, G.C.; Schito, A.M. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Intern. J. Antimicrob. Agent 2003, 22, S95–S100. [Google Scholar] [CrossRef]
- Olofsson, A.C.; Hermansson, M.; Elwing, H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Env. Microbiol. 2003, 69, 4814–4822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsen, A.; Gomaa, A.; Mohamed, F.; Ragab, R.; Eid, M.; Ahmed, A.H.; Khalaf, A.; Kamal, M.; Mokhtar, S.; Mohamed, H.; et al. Antibacterial, anti-biofilm activity of some non-steroidal anti-inflammatory drugs and N-acetyl cysteine against some biofilm producing uropathogens. Am. J. Epidemiol. Infect. Dis. 2015, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lea, J.; Conlin, A.E.; Sekirov, I.; Restelli, V.; Ayakar, K.G.; Turnbull, L.; Doyle, P.; Noble, M.; Rennie, R.; Schreiber, W.E.; et al. In vitro efficacy of N-acetylcysteine on bacteria associated with chronic suppurative otitis media. J. Otolaryngol. Head Neck Surg. 2014, 43, 20. [Google Scholar] [CrossRef] [Green Version]
- El-Feky, M.A.; El-Rehewy, M.S.; Hassan, M.A.; Abolella, H.A.; Abd El-Baky, R.M.; Gad, G.F. Effect of ciprofloxacin and N-acetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces. Pol. J. Microbiol. 2009, 58, 261–267. [Google Scholar]
- Guerini, M.; Grisoli, P.; Pane, C.; Perugini, P. Microstructured Lipid Carriers (MLC) Based on N-Acetylcysteine and Chitosan Preventing Pseudomonas aeruginosa Biofilm. Int. J. Mol. Sci. 2021, 22, 891. [Google Scholar] [CrossRef]
- Onger, M.E.; Gocer, H.; Emir, D.; Kaplan, S. N-acetylcysteine eradicates Pseudomonas aeruginosa biofilms in bone cement. J. Scann Microsc. 2016, 38, 766–770. [Google Scholar]
- Perez, A.; van Heeckeren, A.M.; Nichols, D.; Gupta, S.; Eastman, J.F.; Davis, P.B. Peroxisome proliferator- activated receptor-gamma in cystic fibrosis lung epithelium. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L303–L313. [Google Scholar] [CrossRef]
- Quah, S.Y.; Wu, S.; Lui, J.N.; Sum, C.P.; Tan, K.S. N-Acetylcysteine Inhibits Growth and Eradicates Biofilm of Enterococcus faecalis. J. Endod. 2012, 38, 81–85. [Google Scholar] [CrossRef]
- Pollini, S.; Di Pilato, V.; Landini, G.; Di Maggio, T.; Cannatelli, A.; Sottotetti, S.; Cariani, L.; Aliberti, S.; Blasi, F.; Sergio, F.; et al. In vitro activity of N-acetylcysteine against Stenotrophomonas maltophilia and Burkholderia cepacia complex grown in planktonic phase and biofilm. PLoS ONE 2018, 13, e0203941. [Google Scholar] [CrossRef] [Green Version]
- Pintucci, J.P.; Corno, S.; Garotta, M. Biofilm and infections of the upper respiratory tract. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 683–690. [Google Scholar]
- Volgers, C.; Benedikter, B.J.; Grauls, G.E.; Hellebrand, P.H.M.; Savelkoul, P.H.M.; Stassen, F.R. Effects of N-acetyl-L-cysteine on the membrane vesicle release and growth of respiratory pathogens. FEMS Microbiol. 2017, 364, fnx087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, S.; Jiang, B.; Huang, G.; Zhang, Y.; You, B.; Chen, Y.; Chen, J.; Yuan, Z.; Zhao, Y.; Li, M.; et al. The interaction of N-acetylcysteine and serum transferrin promotes bacterial biofilm formation. Cell Physiol. Biochem. 2018, 45, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Reniere, M.L. Reduce, induce, thrive: Bacterial redox sensing during pathogenesis. J. Bacteriol. 2018, 200, e00128-e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzetta, L.; Luongo, L.; Cazzola, M.; Page, C.; Rogliani, P.; Facciolo, F.; Maione, S.; Capuano, A.; Rinaldi, B.; Matera, M.G.; et al. Contribution of sensory nerves to LPS-induced hyperresponsiveness of human iso- lated bronchi. Life Sci. 2015, 131, 44–50. [Google Scholar] [CrossRef]
- Calzetta, L.; Rogliani, P.; Facciolo, F.; Rinaldi, B.; Cazzola, M.; Matera, M.G. N-Acetylcysteine protects human bronchi by modulating the release of T neurokinin A in an ex vivo model of COPD exacerbation. Biomed. Pharmacother. 2018, 103, 1–8. [Google Scholar] [CrossRef]
- Jennings, M.T.; Flume, P.A. Cystic fibrosis: Traslating molecular mechanisms into effective therapies. Ann. Am. Thorac. Soc. 2018, 15, 897–902. [Google Scholar] [CrossRef]
- Tirouvanziam, R.; Conrad, C.K.; Bottiglieri, T.; Herzenberg, L.A. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. PNSA 2006, 103, 4628–4633. [Google Scholar] [CrossRef] [Green Version]
- Desaki, M.; Takizawa, H.; Kasama, T.; Kobayashi, K.; Morita, Y.; Yamamoto, K. Nuclear factor-kb activation in silica-induced interleukin 8 production by human bronchial epithelial cells. Cytokine 2000, 12, 1257–1260. [Google Scholar] [CrossRef]
- Luciani, A.; Villella, V.R.; Esposito, S.; Brunetti-Pierri, N.; Medina, D.; Settembre, C.; Gavina, M.; Pulze, L.; Giardino, I.; Pettoello-Mantovani, M.; et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 2010, 12, 863–875. [Google Scholar] [CrossRef]
- Chen, J.; Kinter, M.; Shank, S.; Cotton, C.; Kelley, T.J.; Ziady, A.G. Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS ONE 2008, 3, e3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, C.; Newbold, P.; White, P.; Thong, B.; Stone, H.; Stockley, R. A3-Chlorotyrosine in sputum of COPD patients: Relationship with airway inflammation. COPD 2010, 6, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, C.L.; Davies, M.J. Role of myeloperoxidase and oxidant formation in the extracellular enviroment in inflammation-induced tissue damage. Free. Radic. Biol. Med. 2021, 172, 633–651. [Google Scholar] [CrossRef] [PubMed]
- Thai, T.; Salisbury, B.H.; Zito, P.M. Ciprofloxacin; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Gurjar, M. Colistin for lung infection: An update. J. Intensive Care 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Aiyer, A.; Visser, S.K.; Bye, P.; Britton, W.J.; Whiteley, G.S.; Glasbey, T.; Kriel, F.H.; Farrell, J.; Das, T.; Manos, J. Effect of N-Acetylcysteine in Combination with Antibiotics on the Biofilms of Three Cystic Fibrosis Pathogens of Emerging Importance. Antibiotics 2021, 10, 1176. [Google Scholar] [CrossRef]
- Ciacci, N.; Boncopagni, S.; Valzano, F.; Cariani, L.; Alberti, S.; Blasi, F.; Pollini, S.; Rossolini, G.M.; Pallecchi, L. In vitro synergism of colistinand N-acetylcysteine against Stenotrophomonas maltophilia. Antibiotics 2019, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C. Long-term treatment with oral N-acetylcysteine: Affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. J. Cyst. Fibros. 2015, 14, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Stafanger, G.; Koch, C. N-acetylcysteine in cystic fibrosis and Pseudomonas aeruginosa infection: Clinical score, spirometry and ciliary motility. Eur. Resp. J. 1989, 2, 234–237. [Google Scholar]
- Dauletbaev, N.; Fischer, P.; Aulbach, B.; Gross, J.; Kusche, W.; Thyroff-Friesinger, U.; Bargon, J. A phase II study on safety and efficacy of high-dose N-acetylcysteine in patients with cystic fibrosis. Eur. J. Med. Res. 2009, 14, 359. [Google Scholar] [CrossRef] [Green Version]
- Skov, M.; Pressler, T.; Lykkesfeldt, J.; Poulsen, E.E.; Østrup Jensen, P.; Johansen, H.K.; Qvist, T.; Kræmer, D.; Høiby, N.; Ciofu, O. The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection—A pilot study. J. Cyst. Fibros. 2015, 14, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Dal Negro, R.; Pozzi, E.; Cella, S.G. Erdosteine: Drug exhibiting polypharmacy for the treatment of respiratory diseases. Pulm Pharm. 2018, 53, 80–85. [Google Scholar] [CrossRef] [PubMed]
Bacteria Strains | Effective NAC Concentration | Comments | Reference |
---|---|---|---|
P. aeruginosa ATCC 10145 | 0.5, 2 and 4 mg/mL | Biofilm prevention activity: reduction of biofilm growth by 19.42%, 20.87%, and 89.52% at NAC concentration of 0.5, 2, and 4 mg/mL. | [41] |
P. aeruginosa PAO1 | 0.5–1 mg/mL | Combination of NAC and Ciprofloxacin shows synergy (50%) or no interaction (50%). Extracellular polysaccharides (EPS) production decreased by 27.64% and 44.59% at NAC concentrations of 0.5 mg/mL and 1 mg/mL. | [40] |
P. aeruginosa ATCC 10145 | 2.5 mg/mL | NAC shows a higher inhibitory effect in bacterial adherence, combined with NSAIDs *. | [44] |
15 strains of P. aeruginosa isolated from clinical specimens of patients with CSOM *; P. aeruginosa ATCC 35032 used as a quality control organism | 2.5, 5 and 12.5 mg/mL | P. aeruginosa strains in the sessile (33–40%) and planktonic (13%) state demonstrates resistance to Ciprodex® and ciprofloxacin. When NAC ≥0.5% was used in isolation or as an adjunct to either of these medications, no resistance was found in the sessile or planktonic state among all 15 strains. | [45] |
2 strains of P. aeruginosa isolated from urine samples and stent segment | 2–4 mg/mL | NAC at 2 mg/mL reduces more than 60% of biofilm synthesis, and at 4 mg/mL reduces 76.7% of biofilm synthesis. Ciprofloxacin/NAC combination reveals a reduction power of 94–100% | [46] |
P. aeruginosa ATCC 17334 | 0.5–2 mg/mL | 0.5 mg/mL of NAC inside microstructured lipid carrier produce a reduction of 64.74% ± 6.2% biofilm growth, while the same amount of placebo MLC (without NAC) produced a reduction of only 8.57% ± 1.2% (p < 0.05). NAC concentration of 2 mg/mL is able to reduce 83.74% ± 9.95% of biofilm, compared to a reduction of 10.53% ± 0.6% made by the same amount of placebo MLC (p < 0.05). | [47] |
P. aeruginosa ATCC 15692 | 6 mg | NAC can enhance ciprofloxacin effect when used in combination with it in bone cement. | [48] |
15 strains of S. epidermidis | 0.003–8 mg/mL | A dose-related decrease in biofilm is observed: a decrease of 63%, 55%, 46%, 34%, 26%, and 26% is noticed in the presence of 0.25, 0.5, 1, 2, 4, and 8 mg/mL of NAC, respectively. The inhibitory effect of 2 mg/mL of NAC on slime formation was also verified by electron microscopy. | [49] |
10 strains isolated from paper mill: Acinetobacter baumannii, Acinetobacter lwoffii, Bacillus sp., Bacillus cereus, bacillus megaterium, bacillus subtilis, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas mendocina, Staphylococcus warneri. | 0.25, 0.5, 1 mg/mL | Gram-positive strains appear more sensitive to NAC, which decreases bacterial adhesion and detaches bacteria from the stainless-steel surface. Moreover, NAC decreases EPS production in most bacteria tested. | [43] |
Four strains of uropathogenic Escherichia coli | 0.007–8 mg/mL | NAC (2 mg/mL) used in combination with fosfomycin (2000 mg/L) enhances the anti-biofilm effect with a reduction of 99.99% of viable cells. | [42] |
Enterococcus faecalis ATCC 29212 | 1.56–12.5 mg/mL | NAC results in bactericidal at pH 11 (MIC = 1.56 mg/mL; MBC = 12.5 mg/mL) and results able to eradicate E. faecalis biofilm. | [50] |
Stenotrophomonas maltophilia and Burkholderia cepacia complex (Bcc) | 8, 16, 32 mg/mL | Dose- and time-dependent antibiofilm activity of NAC was observed against the majority of S. maltophilia and Bcc strains tested. MIC S. maltophilia: 16–32 mg/mL; MIC Bcc: >32 mg/mL | [51] |
Administration Route | Posology | NAC Activity | Comments | Reference |
---|---|---|---|---|
Oral | 0.6 to 1.0 g three times daily, for 4 weeks | Inflammation modulator/antioxidant | Safe treatment; decrease of sputum elastase activity (p = 0.006); decrease of neutrophil burden in CF airways (p = 0.003); pulmonary function measures not improved. | [59] |
Oral | 900 mg three times/day for 24 weeks | Inflammation modulator/antioxidant | Lung function (FEV1 and FEF 25–75% remained stable or increased slightly in the NAC group but decreased in the placebo group (p = 0.02 and 0.02). Log10 HNE activity remained equal between cohorts (difference 0.21, 95% CI −0.07 to 0.48, p = 0.14). | [69] |
Oral | 200 mg three times/daily or 400 mg three times daily | Inflammation modulator/antioxidant | Patients with PEFR below 70% of predicted normal values showed a satisfactory significant increase in PEFR, FVC and in one second FEV during NAC treatment. No effect of NAC on ciliary activity was observed. | [70] |
Oral | 700 mg /daily (low dose) or 2800 mg/daily (high dose) | Inflammation modulator/antioxidant | High-dose NAC was a well-tolerated and safe medication. High-dose NAC did not alter clinical or inflammatory parameters. However, extracellular glutathione in induced sputum tended to increase on high-dose NAC. | [71] |
Oral | 2400 mg/ daily for 4 weeks | Inflammation modulator/antioxidant | A better lung function was observed in the NAC treated group with a mean (SD) change compared to baseline of FEV1% predicted of 2.11 (4.6), while a decrease was observed in the control group (change—1.4 (4.6)), though not statistically significant. | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerini, M.; Condrò, G.; Friuli, V.; Maggi, L.; Perugini, P. N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals 2022, 15, 217. https://doi.org/10.3390/ph15020217
Guerini M, Condrò G, Friuli V, Maggi L, Perugini P. N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals. 2022; 15(2):217. https://doi.org/10.3390/ph15020217
Chicago/Turabian StyleGuerini, Marta, Giorgia Condrò, Valeria Friuli, Lauretta Maggi, and Paola Perugini. 2022. "N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review" Pharmaceuticals 15, no. 2: 217. https://doi.org/10.3390/ph15020217
APA StyleGuerini, M., Condrò, G., Friuli, V., Maggi, L., & Perugini, P. (2022). N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals, 15(2), 217. https://doi.org/10.3390/ph15020217