UHPLC-MS/MS Analysis of Antibiotics Transfer and Concentrations in Porcine Oral Fluid after Intramuscular Application
Abstract
:1. Introduction
2. Results
2.1. Validation of an Analytical Method
2.2. Detection and Quantification of SDX, TRMP, TYL, TIAM, LIN, AMX and PEN G in Oral Fluid Samples
3. Discussion
4. Materials and Methods
4.1. Animal Experiment and Sample Collection
4.2. Quantitative Analysis by UHPLC-MS/MS
4.2.1. Reagents and Chemicals
4.2.2. Preparation of the Standard Stock Solutions and Working Solutions
4.2.3. Extraction and Cleanup
4.2.4. LC-MS/MS Analysis
4.3. Method Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brill, N.; Krasse, B.O. The passage of tissue fluid into the clinically healthy gingival pocket. Acta Odontol. Scand. 1958, 16, 233–245. [Google Scholar] [CrossRef]
- Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union L 2009, 47, 5–13.
- Van de Veerd, H.; Ison, S. Providing Effective Environmental Enrichment to Pigs: How Far Have We Come? Animals 2019, 9, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council Directive 96/23/EC on Measures to Monitor Certain Substances and Residues Thereof in Live Animals and Animal Products and Repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:31996L0023 (accessed on 1 July 2019).
- Prickett, J.R.; Zimmerman, J.J. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim. Health Res. Rev. 2010, 11, 207–216. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Rotolo, M.; Olsen, C.; Wang, C.H.; Prickett, J.; Kittawornrat, A.; Panyasing, Y.; Main, R.; Rademacher, C.H.; Hoogland, M.; et al. Recommendations for pen-based oral-fluid collection in growing pigs. J. Swine Health Prod. 2014, 22, 138–141. [Google Scholar]
- Michaels, P. Saliva as an aid in the detection of diathetic diseases. Dent. Digest. 1901, 7, 105–110. [Google Scholar]
- Drobitch, R.K.; Svensson, C.K. Therapeutic drug monitoring in saliva. An update. Clin. Pharamcokinet. 1992, 23, 365–379. [Google Scholar] [CrossRef]
- Pfaffe, T.; Cooper-White, J.; Beyerlin, P.; Kostner, K.; Punyadeera, C.H. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Mandel, I.D. Salivary diagnosis: Promises, promises. Ann. N. Y. Acad. Sci. 1993, 694, 1–10. [Google Scholar] [CrossRef]
- Ghalaut, P.; Ghalaut, V.; Yadav, S.; Lekhvani, S.; Yadav, A. Diagnostic applications of saliva. J. Clin. Diagn. Res. 2010, 4, 2330–2336. [Google Scholar]
- Prickett, J.R.; Kim, W.; Simer, R.; Yoon, K.J.; Zimmerman, J. Oral-fluid samples for surveillance of commercial growing pigs for porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 infections. J. Swine Health Prod. 2008, 16, 86–91. [Google Scholar]
- Kittawornrat, A.; Engle, M.; Johnson, J.; Prickett, J.; Schwartz, T.; Whitney, D.; Olsen, C.; Chittick, W.; Schwartz, K.; Wang, C.; et al. Porcine reproductive and respiratory syndrome virus (PRRSV) in serum and oral fluid samples from individual boars:will oral fluid replace serum for PRRSV surveillance? Virus Res. 2010, 154, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Pink, R.; Simek, J.; Vondrakova, J.; Faber, E.; Michl, P.; Pazdera, J.; Indrak, K. Saliva as a diagnostic medium. Biomed. Pap. 2009, 153, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Meiszberg, A.; Karriker, L.; Zimmerman, J.; Irwin, C.H.; Coetzee, J. Detection of ceftiofur and oxytetracycline in oral fluids of swine with a pen-side competitive ELISA test after intramuscular injection. J. Vet. Pharmacol. Ther. 2011, 34, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Oruc, H.H.; Olsen, C.H.; Rumbeiha, W.K.; Schrunk, D.E.; Ensley, S. Simultaneous detection of six different groups of antimicrobial drugs on porcine oral fluids using a biochip array-based immunoassays. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 407–412. [Google Scholar]
- Gajda, A.; Jablonski, A.; Bladek, T.; Posyniak, A. Oral fluid as a biological material for antemortem detection of oxytetracycline in pigs by liquid chromatography—Tandem mass spectrometry. J. Agric. Food Chem. 2017, 65, 494–500. [Google Scholar] [CrossRef]
- Pejsak, Z.; Truszczynski, M. Antimicrobial drugs used in swine. Zycie Wet. 2016, 91, 254–257. [Google Scholar]
- Sommer, M.O.A.; Dantas, G.; Church, G.M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009, 325, 1128–1131. [Google Scholar] [CrossRef] [Green Version]
- Delima, A.J.; Van Dyke, T.E. Origin and function of the cellular components in gingival cervice fluid. Periodontol 2003, 31, 55–76. [Google Scholar] [CrossRef]
- Kaufman, E.; Lamster, I.B. The diagnostic applications of saliva—A revive. Crit. Rev. Oral Biol. Med. 2002, 13, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Haeckel, R. Factor influencing the saliva/plasma ratio of drugs. Ann. N. Y. Acad. Sci. 1993, 20, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Barza, M. Challenges to antibiotic activity in tissue. Clin. Infect. Dis. 1994, 19, 910–915. [Google Scholar] [CrossRef]
- Haeckel, R.; Hanecke, P. Application of saliva for drug monitoring. An in vivo mode for transmembrane transport. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 171–191. [Google Scholar] [PubMed]
- Giguere, S. Lincosamides, Pleuromutilins and Streptogramins. In Antimicrobial Therapy in Veterinary Medicine, 4th ed.; Chapter 11; Giguere, S., Prescott, J.F., Baggot, J.D., Walker, R.D., Dowling, P.M., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 179–191. [Google Scholar]
- Giguere, S. Macrolides, Azalides and Ketolides. In Antimicrobial Therapy in Veterinary Medicine, 4th ed.; Chapter 12; Giguere, S., Prescott, J.F., Baggot, J.D., Walker, R.D., Dowling, P.M., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 191–207. [Google Scholar]
- Giguere, S. Beta-lactam Antibiotics: Penam Penicillins. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Chapter 8; Giguere, S., Prescott, J.F., Baggot, J.D., Walker, R.D., Dowling, P.M., Eds.; Blackwell Publishing: Ames, IA, USA, 2013; pp. 133–152. [Google Scholar]
- Riviere, J.; Lees, P. USP Veterinary Pharmaceutical Information Monographs—Antibiotics: Aminopenicillins. J. Vet. Pharmacol. Ther. 2003, 26, 33–46. [Google Scholar]
- Giguere, S. Sulfonamides, Diaminopyrimidines and Their Combinantions. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Chapter 17; Giguere, S., Prescott, J.F., Baggot, J.D., Walker, R.D., Dowling, P.M., Eds.; Blackwell Publishing: Ames, IA, USA, 2013; pp. 279–294. [Google Scholar]
- Riviere, J.; Lees, P. USP Veterinary Pharmaceutical Information Monographs—Antibiotics: Macrolides. J. Vet. Pharmacol. Ther. 2003, 26, 119–144. [Google Scholar]
- Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). Off. J. Eur. Union L 2002, 221, 8–36.
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; JRC Technical Report; European Commission: Brussels, Belgium, 2016; EUR 28099 EN; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC102946 (accessed on 11 June 2019).
Analyte | Repeatability (CV, %) | Reproducibility (CV, %) | Recovery (%) | LOD (µg/L) | LOQ (µg/L) |
---|---|---|---|---|---|
Sulfadoxine | 6.39 ± 1.3 | 12.7 ± 2.6 | 87.6 ± 6.6 | 2 | 5 |
Trimetophrim | 8.92 ± 1.1 | 11.45 ± 2.4 | 97.3 ± 4.4 | 2 | 5 |
Lincomycin | 7.07 ± 1.5 | 13.2 ± 2.9 | 94.2 ± 4.2 | 1 | 2 |
Tiamulin | 4.66 ± 1.1 | 10.1 ± 2.2 | 106 ± 5.6 | 1 | 2 |
Tylosin | 9.59 ± 1.6 | 14.2 ± 3.1 | 87.9 ± 4.9 | 2 | 5 |
Amoxycyllin | 9.55 ± 1.8 | 14.9 ± 3.8 | 107 ± 4.6 | 5 | 10 |
Penicillin G | 9.91 ± 1.9 | 12.0 ± 2.7 | 101 ± 4.1 | 2 | 5 |
Avarage Concentrations (µg/L) | ||||||||
---|---|---|---|---|---|---|---|---|
Period | Time (d) | SDX + TRMP | LIN | TIAM | TYL | AMX | PEN G | |
Treatment | 1 | 22,300 ± 3555 | 14,100 ± 2556 | 10,500 ± 1889 | 7600 ± 1055 | 396 ± 68 | 11.3 ± 1.6 | 93 ± 21 |
2 | 5860 ± 1155 | 2810 ± 556 | 2960 ± 446 | 2520 ± 355 | 958 ± 166 | 15.2 ± 2.3 | 50 ± 15 | |
3 | 4570 ± 766 | 1810 ± 311 | 4250 ± 559 | 2460 ± 311 | 832 ± 142 | 14.6 ± 1.8 | 11 ± 4.6 | |
Posttreatment | 4 | 4010 ± 601 | 1030 ± 221 | 1550 ± 211 | 1560 ± 225 | 654 ± 111 | 11.4 ± 1.4 | 16 ± 5.4 |
5 | 5780 ± 788 | 1400 ± 255 | 1674 ± 199 | 1540 ± 233 | 538 ± 96 | 11.2 ± 1.6 | 5.2 ± 1.1 | |
6 | 4070 ± 669 | 1280 ± 198 | 1790 ± 203 | 2960 ± 299 | 475 ± 89 | <LOQ | 52 ± 13 | |
7 | 310 ± 98 | 264 ± 73 | 1480 ± 186 | 2570 ± 254 | 175 ± 54 | <LOQ | 32 ± 7.2 | |
8 | 392 ± 88 | 125 ± 41 | 437 ± 101 * | 875 ± 156 | 118 ± 41 | <LOQ | 6 ± 1.2 | |
9 | 386 ± 72 | 128 ± 38 | 457 ± 96 | 567 ± 111 | 158 ± 62 | <LOQ | <LOQ * | |
10 | 134 ± 49 | 36.4 ± 15 | 420 ± 83 | 621 ± 124 | 49.3 ± 13 | <LOQ | <LOQ | |
11 | 247 ± 62 * | 67.1 ± 20 * | 194 ± 55 | 279 ± 66 | 54.4 ± 16 | <LOQ * | <LOQ | |
12 | 74.8 ± 21 | 25.2 ± 9.6 | 257 ± 76 | 254 ± 69 | 140 ± 36 | <LOQ | <LOQ | |
13 | 68.0 ± 16 | 22.0 ± 8.7 | 131 ± 41 | 138 ± 43 * | 32.3 ± 11 | <LOQ | <LOQ | |
14 | 77.4 ± 18 | 22.1 ± 6.4 | 125 ± 33 | 269 ± 71 | 30.6 ± 8.4 | <LOQ | <LOQ | |
15 | 69.8 ± 14 | 31.6 ± 11 | 277 ± 61 | 156 ± 41 | 19.2 ± 5.2 | <LOQ | <LOQ | |
16 | 78.4 ± 12 | 24.2 ± 8.2 | 337 ± 69 | 279 ± 68 | 52.8 ± 33 | <LOQ | <LOQ | |
17 | 47.0 ± 18 | 18.9 ± 4.8 | 128 ± 28 | 182 ± 49 | 31.9 ± 10 | <LOQ | <LOQ | |
18 | 44.2 ± 16 | 13.0 ± 3.6 | 302 ± 51 | 176 ± 52 | 13.9 ± 3.6 | <LOQ | <LOQ | |
19 | 58.4 ± 11 | 42.0 ± 14 | 279 ± 44 | 202 ± 45 | 16.1 ± 4.6 | <LOQ | <LOQ | |
20 | 76.4 ± 14 | 36.4 ± 10 | 376 ± 52 | 133 ± 36 | 25.4 ± 7.7 | <LOQ | <LOQ | |
21 | 21.4 ± 7.3 | 10.2 ± 4.4 | 252 ± 39 | 148 ± 32 | 9.2 ± 2.1 | <LOQ | <LOQ | |
22 | 25.3 ± 6.9 | 46.4 ± 16 | 142 ± 24 | 220 ± 44 | 5.5 ± 1.1 | <LOQ | <LOQ | |
23 | 15.9 ± 7.2 | 6.9 ± 2.4 | 298 ± 33 | 146 ± 29 | 5.4 ± 0.8 | <LOQ | <LOQ | |
24 | 37.0 ± 5.4 | 19.4 ± 5.5 | 326 ± 47 | 310 ± 55 | 6.6 ± 0.9 * | <LOQ | <LOQ | |
25 | 31.5 ± 6.3 | 17.8 ± 4.1 | 180 ± 44 | 193 ± 33 | 5.0 ± 1.3 | <LOQ | <LOQ | |
26 | 19.1 ± 4.2 | 15.9 ± 3.6 | 160 ± 36 | 66.4 ± 12 | 3.0 ± 0.5 | <LOQ | <LOQ | |
27 | 19.3 ± 3.7 | 10.4 ± 2.9 | 205 ± 43 | 54.3 ± 14 | 6.8 ± 1.7 | <LOQ | <LOQ | |
28 | 35.0 ± 8.1 | 16.5 ± 6.2 | 103 ± 26 | 35.8 ± 17 | <LOQ | <LOQ | <LOQ | |
29 | 30.4 ± 7.6 | 21.2 ± 9.4 | 85.6 ± 16 | 40.6 ± 21 | <LOQ | <LOQ | <LOQ | |
30 | 23.0 ± 6.2 | 22.4 ± 9.1 | 58.1 ± 12 | 46.9 ± 19 | <LOQ | <LOQ | <LOQ |
Administered Drug | Active Substance | Group of Antibacterials | Withdrawal Period for Tissues (Days) | Dosage (Active Substance Per 1 kg of Body Weight) | Practical Dosage |
---|---|---|---|---|---|
Borgal 24% | trimethoprim | diaminopyrimidines | 8 | 3 mg of trimethoprim and 12 mg of sulfadoxine | 1 mL for 16 kg, 2× with 48 h interval |
sulfadoxine | sulfonamides | ||||
Biotyl 200 | tylosin | macrolide | 21 | 5 mg | 1 mL for 40 kg, 3× with 24 h interval |
Lincomycin VMD | lincomycin | lincosamides | 5 | 10 mg | 1 mL for 10 kg, 3× with 24 h interval |
Probencil | penicillin G | penicillins | 6 | 10 mg | 1 mL for 30 kg, 3× with 24 h interval |
Tiamowet 200 | tiamuline | pleuromutilins | 10 | 6 mg | 1 mL for 20 kg, 3× with 24 h interval |
Vetrimoxin LA | amoxicillin | penicillins | 8 | 15 mg | 1 mL for 10 kg, 2× with 48 h interval |
Analyte | Parent Ion (m/z) | Daughter Ion(s) (m/z) | CXP (V) | DP (V) | CE (eV) | Dwell Time (msec) |
---|---|---|---|---|---|---|
SDX | 310.9 | 156; 108 | 13 | 60 | 25; 40 | 50 |
TRMP | 292.1 | 262; 231 | 5 | 52 | 36; 33 | 70 |
LIN | 407.2 | 126; 359 | 7 | 74 | 36; 28 | 50 |
TIAM | 494.4 | 192; 119 | 18 | 128 | 30; 56 | 50 |
TYL | 916 | 174; 772 | 20 | 110 | 52; 42 | 50 |
AMX | 366.1 | 349; 208 | 8 | 45 | 12; 18 | 100 |
PEN G | 335.1 | 160; 176 | 12 | 60 | 17; 48 | 100 |
SFF (IS) | 315.1 | 156 | 15 | 90 | 26 | 50 |
LIN d3 (IS) | 410.0 | 129 | 13 | 66 | 44 | 50 |
AMX d4 (IS) | 371.0 | 354 | 13 | 35 | 15 | 50 |
AZT (IS) | 759.0 | 591 | 13 | 89 | 40 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajda, A.; Nowacka-Kozak, E.; Gbylik-Sikorska, M.; Cybulski, P. UHPLC-MS/MS Analysis of Antibiotics Transfer and Concentrations in Porcine Oral Fluid after Intramuscular Application. Pharmaceuticals 2022, 15, 225. https://doi.org/10.3390/ph15020225
Gajda A, Nowacka-Kozak E, Gbylik-Sikorska M, Cybulski P. UHPLC-MS/MS Analysis of Antibiotics Transfer and Concentrations in Porcine Oral Fluid after Intramuscular Application. Pharmaceuticals. 2022; 15(2):225. https://doi.org/10.3390/ph15020225
Chicago/Turabian StyleGajda, Anna, Ewelina Nowacka-Kozak, Małgorzata Gbylik-Sikorska, and Piotr Cybulski. 2022. "UHPLC-MS/MS Analysis of Antibiotics Transfer and Concentrations in Porcine Oral Fluid after Intramuscular Application" Pharmaceuticals 15, no. 2: 225. https://doi.org/10.3390/ph15020225
APA StyleGajda, A., Nowacka-Kozak, E., Gbylik-Sikorska, M., & Cybulski, P. (2022). UHPLC-MS/MS Analysis of Antibiotics Transfer and Concentrations in Porcine Oral Fluid after Intramuscular Application. Pharmaceuticals, 15(2), 225. https://doi.org/10.3390/ph15020225