Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Molecular Docking Study
2.3. Pharmacological Activities
2.3.1. In Vitro Cytotoxicity Activity
2.3.2. Tubulin Polymerization Assay
2.4. In Silico Computational Studies
3. Materials and Methods
3.1. General Chemistry
3.1.1. Synthesis of Substituted (E)-1-(1-(4-(Benzyloxy)phenyl)ethylidene)-2-phenylhydrazine (3)
3.1.2. Synthesis of Substituted (E)-3-(4-(Benzyloxy)phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (4)
3.1.3. Synthesis of (E)-3-(3-(4-(Benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one derivatives (5a–r)
3.2. Molecular Docking Simulation
3.3. Biological Activity
3.3.1. In Vitro Anticancer Activity by MTT Assay
Materials and Methods
Cell Line and Culture Conditions
In Vitro Cytotoxicity
3.3.2. In Vitro Tubulin Polymerization Assay
3.3.3. In Silico Bioactivity Study
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frankish, H. 15 million new cancer cases per year by 2020, says WHO. Lancet 2003, 361, 1278. [Google Scholar] [CrossRef]
- American Cancer Society. American Cancer Society: Cancer Facts and Figures 2016; American Cancer Society: Atlanta, GA, USA, 2016. [Google Scholar]
- Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 15 September 2021).
- Belpomme, D.; Irigaray, P.; Sasco, A.J.; Newby, J.A.; Howard, V.; Clapp, R.; Hardell, L. The growing incidence of cancer: Role of lifestyle and screening detection (review). Int. J. Oncol. 2007, 30, 1037–1049. [Google Scholar] [CrossRef] [Green Version]
- Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer multidrug resistance: Mechanisms involved and strategies for circumvention using a drug delivery system. Arch. Pharm. Res. 2014, 37, 4–15. [Google Scholar] [CrossRef]
- Negi, A.S.; Gautam, Y.; Alam, S.; Chanda, D.; Luqman, S.; Sarkar, J.; Khan, F.; Konwar, R. Natural anti-tubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment. Bioorg. Med. Chem. 2015, 23, 373–389. [Google Scholar] [CrossRef]
- Vindya, N.G.; Sharma, N.; Yadav, M.; Ethiraj, K.R. Tubulins—The target for anticancer therapy. Curr. Top. Med. Chem. 2015, 15, 73–82. [Google Scholar] [CrossRef]
- Barbier, P.; Tsvetkov, P.O.; Breuzard, G.; Devred, F. Deciphering the molecular mechanisms of anti-tubulin plant-derived drugs. Phytochem. Rev. 2014, 13, 157–169. [Google Scholar] [CrossRef]
- Field, J.J.; Kanakkanthara, A.; Miller, J.H. Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg. Med. Chem. 2014, 22, 5050–5059. [Google Scholar] [CrossRef]
- Pettit, G.R.; Cragg, G.M.; Herald, D.L.; Schmidt, J.M.; Lohavanijaya, P. Isolation, and structure of combretastatin. Can. J. Chem. 1982, 60, 1374–1376. [Google Scholar] [CrossRef]
- Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428, 198–202. [Google Scholar] [CrossRef]
- Bohlin, L.; Rosen, B. Podophyllotoxin derivatives: Drug discovery and development. Drug Discov. Today 1996, 1, 343–351. [Google Scholar] [CrossRef]
- Kuehne, M.E.; Marko, I.; Brossi, A. (Eds.) The Alkaloids; Academic Press: San Diego, CA, USA, 1990; Volume 37, pp. 77–132. [Google Scholar]
- Jimenez, C.; Ellahioui, Y.; Alvarez, R.; Aramburu, L.; Riesco, A.; Gonzalez, M.; Vicente, A.; Dandouh, A.; Ibn Mansour, A.; Jimenez, C.; et al. Exploring the size adaptability of the B ring binding zone of the colchicine site of the tubulin with para-nitrogen substituted isocombretastatins. Eur. J. Med. Chem. 2015, 100, 210–222. [Google Scholar] [CrossRef]
- Nickel, H.C.; Schmidt, P.; Bohm, K.J.; Baasner, S.; Muller, K.; Gerlach, M.; Unger, E.; Gunthe, E.G.; Prinz, H. Synthesis, antiproliferative activity and inhibition of tubulin polymerization by 1,5- and 1,8-disubstituted 10H-anthracen-9-ones bearing a 10-benzylidene or 10-(2-oxo-2-phenylethylidene) moiety. Eur. J. Med. Chem. 2010, 45, 3420–3438. [Google Scholar] [CrossRef]
- Pellegrini, F.; Budman, D.R. Review: Tubulin function, action of anti-tubulin drugs, and new drug development. Cancer Investig. 2005, 23, 264–273. [Google Scholar] [CrossRef]
- Tron, G.C.; Pagliai, F.; Del Grosso, E.; Genazzani, A.A.; Sorba, G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem. 2005, 48, 3260–3268. [Google Scholar] [CrossRef]
- Doi, S.; Fujioka, N.; Ohtsuka, S.; Kondo, R.; Yamamoto, M.; Denda, M.; Magari, M.; Kanayama, N.; Hatano, N.; Morishita, R.; et al. Regulation of the tubulin polymerization-promoting protein by Ca2+/S100 proteins. Cell Calcium. 2021, 96, 102404. [Google Scholar] [CrossRef]
- Liu, W.; Wang, G.; Peng, Z.; Li, Y. Design, synthesis and biological evaluation of novel 4-(4-methoxynaphthalen-1-yl)-5-arylpyrimidin-2-amines as tubulin polymerization inhibitors. Chem. Pharm. Bull. 2020, 68, 1184–1192. [Google Scholar] [CrossRef]
- Kamal, A.; Kumar, G.B.; Vishnuvardhan, M.V.P.S.; Shaik, A.B.; Reddy, V.S.; Mahesh, R.; Sayeeda, I.B.; Kapure, J.S. Synthesis of phenstatin/isocombretastatin–chalcone conjugates as potent tubulin polymerization inhibitors and mitochondrial apoptotic inducers. Org. Biomol. Chem. 2015, 13, 3963–3981. [Google Scholar] [CrossRef]
- Nakagawa-Goto, K.; Oda, A.; Hamel, E.; Ohkoshi, E.; Lee, K.-H.; Goto, M. Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. J. Med. Chem. 2015, 58, 2378–2389. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem. 2013, 69, 735–753. [Google Scholar] [CrossRef]
- Harras, M.F.; Sabour, R. Design, synthesis and biological evaluation of novel 1, 3, 4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorg. Chem. 2018, 78, 149–157. [Google Scholar] [CrossRef]
- Kumar, H.; Saini, D.; Jain, S.; Jain, N. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem. 2013, 70, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; Luo, J.Z.; Duan, P.P.; Shao, J.; Zhao, B.X.; Miao, J.Y. Synthesis of pyrazole peptidomimetics and their inhibition against A549 lung cancer cells. Bioorg. Med. Chem. Lett. 2012, 22, 6882–6887. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Chhabra, S.; Shrivastava, S.K.; Mishra, P. Benzimidazole: A promising pharmacophore. Med. Chem. Res. 2013, 22, 5077–5104. [Google Scholar] [CrossRef]
- Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A medicinally important heterocyclic moiety. Med. Chem. Res. 2012, 21, 269–283. [Google Scholar] [CrossRef]
- Sharp, S.Y.; Boxall, K.; Rowlands, M.; Prodromou, C.; Roe, S.M.; Maloney, A.; Powers, M.; Clarke, P.A.; Box, G.; Sanderson, S.; et al. In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors. Cancer Res. 2007, 67, 2206–2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrot, V.; Leynadier, D.; Sarrazin, M.; Briand, C.; Menendez, M.; Laynez, J.; Andreu, J.M. Mechanism of binding of the new antimitotic drug MDL 27048 to the colchicine site of tubulin: Equilibrium studies. Biochemistry 1992, 31, 11125–11132. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Shaik, A.B.; Jain, N.; Kishor, C.; Nagabhushana, A.; Supriya, B.; Kumar, G.B.; Chourasiya, S.S.; Suresh, Y.; Mishra, R.K. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur. J. Med. Chem. 2013, 92, 501–513. [Google Scholar] [CrossRef]
- Yang, X.H.; Wen, Q.; Zhao, T.T.; Sun, J.; Li, X.; Xing, M.; Lu, X.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of acyl 1,3,4-thiadiazole amide derivatives as novel anti-tubulin agents. Bioorg. Med. Chem. 2012, 20, 1181–1187. [Google Scholar] [CrossRef]
- Srinivasa, R.T.; Ganga, R.V.; Kulhari, H.; Shukla, R.; Kamal, A.; Bansal, V. Synthesis of Z-1-(1,3-diphenyl-1H-pyrazol—4-yl)-3-(phenylamino)prop-2-en-one derivatives as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem. 2016, 117, 157–166. [Google Scholar] [CrossRef]
- Kamal, A.; Shaik, A.B.; Bhaskara, R.B.; Khan, I.; Kumara, G.B.; Jainc, N. Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents. Org. Biomol. Chem. 2015, 40, 10162–10178. [Google Scholar] [CrossRef]
- Nam, N.H. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr. Med. Chem. 2003, 10, 1697–1722. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. 2013, 15, 3667–3672. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [PubMed]
- PASS Software Free Molecular Property Calculation Services. Available online: http://www.pharmaexpert.ru/passonline/predict.php (accessed on 15 February 2019).
- Mosmann, T.J. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Kaushik, D.; Khan, S.A.; Chawla, G.; Kumar, S. N′-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity. Eur. J. Med. Chem. 2010, 45, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Ragab, F.A.; Abdel Gawad, N.M.; Georgey, H.H.; Said, M.F. Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2013, 63, 645–654. [Google Scholar] [CrossRef]
- Mehdi, S.J.; Ahmad, A.; Irshad, M.; Manzoor, N.; Rizvi, M.M.A. Cytotoxic effect of carvacrol on human cervical cancer cells. Biol. Med. 2011, 2, 307–312. [Google Scholar]
- Kamal, A.; Srinivasa, R.T.; Vardhan, V.; Kumar, V.; Nimbarte, D.; Subba, A.V.R.; Srinivasulu, V.; Shankaraiah, N. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem. 2015, 23, 4608–4623. [Google Scholar] [CrossRef]
- LLC. Schrodinger, Maestro, Version 10.1; LLC: New York, NY, USA, 2018. [Google Scholar]
- Huang, X.F.; Lu, X.; Zhang, Y.; Song, G.Q.; He, Q.L.; Li, Q.S.; Yang, X.H.; Wei, Y.; Zhu, H.L. Synthesis, biological evaluation, and docking studies of N-((1,3-diphenyl-1H-pyrazol-4yl)methyl)aniline derivatives as novel anticancer agents. Bioorg. Med. Chem. 2012, 20, 4895–4900. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Zhang, W.; Xu, X.J. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? Chem. Inf. Model. 2007, 47, 460–463. [Google Scholar] [CrossRef]
- Molinspiration Software or Free Molecular Property Calculation Services (2 Screens). Available online: www.molinspiration.com/cgi-bin/properties (accessed on 15 February 2021).
- Sander, T. Osiris Property, Explore. 2001. Available online: http://www.organic-chemistry.org/prog/peo/ (accessed on 15 February 2018).
- Meanwell, N.A. Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 2014, 13, 105–121. [Google Scholar] [CrossRef] [PubMed]
Comp. | Ar | Docking Score | % Inhibition of Tubulin Polymerization at 10 µM b | Inhibition of Tubulin Polymerization IC50 (μM) a |
---|---|---|---|---|
5a | −5.994 | Nd | Nd | |
5b | −5.934 | Nd | Nd | |
5c | −5.873 | Nd | Nd | |
5d | −6.967 | 49.78 | 1.65 ± 0.06 | |
5e | −6.937 | 48.44 | 1.58 ± 0.04 | |
5f | −6.241 | Nd | Nd | |
5g | −5.531 | Nd | Nd | |
5h | −5.752 | Nd | Nd | |
5i | −6.249 | 28.42 | 3.58 ± 0.83 | |
5j | −5.952 | Nd | Nd | |
5k | −6.432 | 32.79 | 3.03 ± 0.44 | |
5l | −7.072 | 55.17 | 1.73 ± 0.04 | |
5m | −6.664 | 33.76 | 2.97 ± 0.03 | |
5n | −6.751 | 47.56 | 2.73 ± 0.07 | |
5o | −7.002 | 66.40 | 1.15 ± 0.06 | |
5p | −7.277 | 51.11 | 1.93 ± 0.03 | |
5q | −6.111 | Nd | Nd | |
5r | −6.367 | 31.50 | 2.34 ± 0.63 | |
Co-crystal–colchicine | ---- | −7.059 | ---- | ---- |
Control | ---- | --- | 0.0 | 0.0 |
Paclitaxel (3 µM) | ---- | --- | −25.73 | 0.53 ± 0.12 |
Combretastatin A-4 (6 µM) | ---- | --- | 72.30 | 1.46 ± 0.05 |
Vincristine (3 µM) | ---- | --- | 75.45 | 1.54 ± 0.54 |
Comp. | Cell Line (IC50) a | |||
---|---|---|---|---|
MCF-7 b | SiHa c | PC3 d | HEK-293 e | |
5d | 4.10 ± 1.12 | 4.85 ± 0.89 | 2.97 ± 0.88 | >50 |
5e | 11.50 ± 1.62 | 12.3 ± 1.32 | 9.68 ± 1.42 | >50 |
5i | 42.70 ± 0.34 | 34.53 ± 0.90 | 13.14 ± 1.6 | 45.23 ± 2.60 |
5k | 7.23 ± 0.74 | 5.65 ± 0.71 | 5.45 ± 0.94 | >50 |
5l | 8.23 ± 1.45 | 11.70 ± 2.83 | 5.84 ± 1.65 | >50 |
5m | 17.14 ± 2.25 | 6.46 ± 1.52 | 11.22 ± 1.44 | >50 |
5n | 6.98 ±1.12 | 3.60 ± 0.45 | 3.56 ± 0.63 | >50 |
5o | 2.13 ± 0.80 | 4.34 ± 0.98 | 4.46 ± 0.53 | >50 |
5p | 3.45 ± 1.28 | 4.98 ± 0.54 | 6.52 ± 1.23 | >50 |
5r | 14.82 ± 2.76 | >50 | >50 | 38.3 ± 1.72 |
CA-4 | 4.12 ± 0.38 | 5.23 ± 0.85 | 3.86 ± 0.39 | 19.25 ± 1.65 |
Comp. | Cancer Treatment | cLogP | cLogS | n OHNH | n ON | MW | Rotatable Bonds | Drug Likeness | Drug Score | TPSA | Toxicity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pa | Pa-Pi | |||||||||||
5a | 0.65 | 0.64 | 4.59 | −4.60 | 0 | 4 | 456.18 | 8 | 0.97 | 0.34 | 61.80 | NM, NC |
5b | 0.40 | 0.30 | 3.20 | −2.23 | 1 | 4 | 491.88 | 8 | 1.23 | 0.24 | 63.08 | NM. NC |
5c | 0.25 | 0.08 | 4.20 | −3.42 | 1 | 4 | 501.17 | 8 | −2.34 | 0.26 | 39.08 | SR |
5d | 0.43 | 0.34 | 4.34 | −3.36 | 0 | 4 | 472.18 | 8 | 3.45 | 0.35 | 65.08 | NM, NC |
5e | 0.40 | 0.29 | 4.80 | −2.07 | 1 | 4 | 491.88 | 8 | 4.62 | 0.05 | 68.08 | NM, NC |
5f | 0.37 | 0.25 | 3.40 | −4.34 | 0 | 4 | 477.70 | 8 | 2.82 | 0.36 | 63.60 | NM, NC |
5g | 0.47 | 0.46 | 3.60 | −3.45 | 0 | 4 | 535.09 | 8 | 1.24 | 0.32 | 70.08 | NM, NC |
5h | 0.43 | 0.42 | 4.56 | −2.67 | 1 | 4 | 472.18 | 8 | 2.87 | 0.23 | 62.07 | NM, NC |
5i | 0.35 | 0.23 | 4.90 | −3.60 | 1 | 4 | 501.17 | 8 | −2.24 | 0.25 | 80.08 | SM |
5j | 0.49 | 0.493 | 4.90 | −3.78 | 1 | 4 | 471.20 | 8 | 1.37 | 0.11 | 102.30 | SM |
5k | 0.44 | 0.36 | 2.34 | −3.56 | 0 | 10 | 487.19 | 10 | −1.92 | 0.34 | 87.00 | NM, NC |
5l | 0.43 | 0.42 | 2.23 | −4.02 | 1 | 7 | 524.11 | 9 | 3.45 | 0.25 | 62.90 | NM, NC |
5m | 0.23 | 0.22 | 4.25 | −3.35 | 2 | 5 | 524.11 | 8 | 2.64 | 0.15 | 59.31 | NM, NC |
5n | 0.49 | 0.41 | 3.60 | −2.54 | 1 | 5 | 488.17 | 9 | −1.56 | 0.56 | 63.31 | NM, NC |
5o | 0.47 | 0.40 | 3.45 | −2.63 | 1 | 6 | 516.20 | 10 | 1.67 | 0.34 | 63.56 | NM, NC |
5p | 0.48 | 0.41 | 2.50 | −2.67 | 1 | 4 | 516.20 | 8 | 2.12 | 0.27 | 63.34 | NM, NC |
5q | 0.29 | 0.13 | 5.20 | −3.24 | 3 | 7 | 525.17 | 9 | 3.44 | 0.48 | 80.20 | NM, NC |
5r | 0.31 | 0.16 | 4.50 | −3.48 | 3 | 7 | 554.17 | 9 | 2.65 | 0.65 | 75.23 | NM, NC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.J.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Naidu, V.G.M.; Imran, M.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Pharmaceuticals 2022, 15, 280. https://doi.org/10.3390/ph15030280
Alam MJ, Alam O, Perwez A, Rizvi MA, Naim MJ, Naidu VGM, Imran M, Ghoneim MM, Alshehri S, Shakeel F. Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Pharmaceuticals. 2022; 15(3):280. https://doi.org/10.3390/ph15030280
Chicago/Turabian StyleAlam, Md. Jahangir, Ozair Alam, Ahmad Perwez, Moshahid Alam Rizvi, Mohd Javed Naim, Vegi G. M. Naidu, Mohd Imran, Mohammed M. Ghoneim, Sultan Alshehri, and Faiyaz Shakeel. 2022. "Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors" Pharmaceuticals 15, no. 3: 280. https://doi.org/10.3390/ph15030280
APA StyleAlam, M. J., Alam, O., Perwez, A., Rizvi, M. A., Naim, M. J., Naidu, V. G. M., Imran, M., Ghoneim, M. M., Alshehri, S., & Shakeel, F. (2022). Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Pharmaceuticals, 15(3), 280. https://doi.org/10.3390/ph15030280