Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys
Abstract
:1. Introduction
2. Results
2.1. Assessment of Kidney Function
2.2. Histopathological Examination
2.3. Assessment of Oxidative Status
2.4. Immunohistochemical Assessment of IL-6 and TNF-α Expression in Kidney Tissues
2.5. mRNA Expression of Bax and Bcl-2
2.6. Effect of Omeprazole on Colistin Serum and Kidney Concentration
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Animals
4.3. Experimental Protocol
4.4. Biochemical Assays of Renal Function
4.5. Histopathological Examination
4.6. Assessment of Oxidative Stress Markers
4.7. Immunohistochemistry Evaluation of Inflammatory Markers
4.8. Quantitative Polymerase Chain Reaction (qPCR) for Bax and Bcl-2
4.9. Assessment of Serum and Kidney Colistin Using Liquid Chromatography-Mass Spectrometry
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Nation, R.L.; Turnidge, J.D.; Milne, R.W.; Coulthard, K.; Rayner, C.R.; Paterson, D.L. Colistin: The Re-Emerging Antibiotic for Multidrug-Resistant Gram-Negative Bacterial Infections. Lancet. Infect. Dis. 2006, 6, 589–601. [Google Scholar] [CrossRef]
- Bergen, P.J.; Li, J.; Rayner, C.R.; Nation, R.L. Colistin Methanesulfonate Is an Inactive Prodrug of Colistin against Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.A.C.; Burdmann, E.A. Polymyxins—Review with Emphasis on Nephrotoxicity. Rev. Assoc. Med. Bras. 2009, 55, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Bidell, M.R.; Gandhi, R.G.; Alshehri, S.; Enani, M.A.; Al-Jedai, A.; Lee, T.C. Colistin Nephrotoxicity: Meta-Analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2021, 8, ofab026. [Google Scholar] [CrossRef]
- Spapen, H.; Jacobs, R.; van Gorp, V.; Troubleyn, J.; Honoré, P.M. Renal and Neurological Side Effects of Colistin in Critically Ill Patients. Ann. Intensive Care 2011, 1, 14. [Google Scholar] [CrossRef]
- Ordooei Javan, A.; Shokouhi, S.; Sahraei, Z. A Review on Colistin Nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef]
- Hartzell, J.D.; Neff, R.; Ake, J.; Howard, R.; Olson, S.; Paolino, K.; Vishnepolsky, M.; Weintrob, A.; Wortmann, G. Nephrotoxicity Associated with Intravenous Colistin (Colistimethate Sodium) Treatment at a Tertiary Care Medical Center. Clin. Infect. Dis. 2009, 48, 1724–1728. [Google Scholar] [CrossRef]
- Dai, C.; Li, J.; Tang, S.; Li, J.; Xiao, X. Colistin-Induced Nephrotoxicity in Mice Involves the Mitochondrial, Death Receptor, and Endoplasmic Reticulum Pathways. Antimicrob. Agents Chemother. 2014, 58, 4075–4085. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamaguchi, H.; Ogura, J.; Kobayashi, M.; Yamada, T.; Iseki, K. Megalin Contributes to Kidney Accumulation and Nephrotoxicity of Colistin. Antimicrob. Agents Chemother. 2013, 57, 6319–6324. [Google Scholar] [CrossRef]
- Yun, B.; Azad, M.A.K.; Wang, J.; Nation, R.L.; Thompson, P.E.; Roberts, K.D.; Velkov, T.; Li, J. Imaging the Distribution of Polymyxins in the Kidney. J. Antimicrob. Chemother. 2015, 70, 827–829. [Google Scholar] [CrossRef]
- Jeong, E.S.; Kim, G.; Moon, K.S.; Kim, Y.B.; Oh, J.H.; Kim, H.S.; Jeong, J.; Shin, J.G.; Kim, D.H. Characterization of Urinary Metabolites as Biomarkers of Colistin-Induced Nephrotoxicity in Rats by a Liquid Chromatography/Mass Spectrometry-Based Metabolomics Approach. Toxicol. Lett. 2016, 248, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Visentin, M.; Gai, Z.; Torozi, A.; Hiller, C.; Kullak-Ublick, G.A. Colistin Is Substrate of the Carnitine/Organic Cation Transporter 2 (OCTN2, SLC22A5). Drug Metab. Dispos. 2017, 45, 1240–1244. [Google Scholar] [CrossRef] [PubMed]
- Targownik, L.E.; Metge, C.; Roos, L.; Leung, S. The Prevalence of and the Clinical and Demographic Characteristics Associated with High-Intensity Proton Pump Inhibitor Use. Am. J. Gastroenterol. 2007, 102, 942–950. [Google Scholar] [CrossRef]
- Ikemura, K.; Oshima, K.; Enokiya, T.; Okamoto, A.; Oda, H.; Mizuno, T.; Ishinaga, H.; Muraki, Y.; Iwamoto, T.; Takeuchi, K.; et al. Co-Administration of Proton Pump Inhibitors Ameliorates Nephrotoxicity in Patients Receiving Chemotherapy with Cisplatin and Fluorouracil: A Retrospective Cohort Study. Cancer Chemother. Pharmacol. 2017, 79, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, S.I.; Ikemura, K.; Fujisawa, Y.; Iwamoto, T.; Okuda, M. Concomitant Lansoprazole Ameliorates Cisplatin-Induced Nephrotoxicity by Inhibiting Renal Organic Cation Transporter 2 in Rats. Biopharm. Drug Dispos. 2020, 41, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Hacker, K.; Maas, R.; Kornhuber, J.; Fromm, M.F.; Zolk, O. Substrate-Dependent Inhibition of the Human Organic Cation Transporter OCT2: A Comparison of Metformin with Experimental Substrates. PLoS ONE 2015, 10, e0136451. [Google Scholar] [CrossRef] [PubMed]
- Nies, A.T.; Hofmann, U.; Resch, C.; Schaeffeler, E.; Rius, M.; Schwab, M. Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs). PLoS ONE 2011, 6, e22163. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, S.; Hu, T.; Qu, X.; Zhai, J.; Zhang, Y.; Tao, L.; Yin, J.; Song, Y. Omeprazole Protects against Cisplatin-Induced Nephrotoxicity by Alleviating Oxidative Stress, Inflammation, and Transporter-Mediated Cisplatin Accumulation in Rats and HK-2 Cells. Chem. Biol. Interact. 2019, 297, 130–140. [Google Scholar] [CrossRef]
- Patil, A.S.; Singh, A.D.; Mahajan, U.B.; Patil, C.R.; Ojha, S.; Goyal, S.N. Protective Effect of Omeprazole and Lansoprazole on β-Receptor Stimulated Myocardial Infarction in Wistar Rats. Mol. Cell. Biochem. 2019, 456, 105–113. [Google Scholar] [CrossRef]
- Özay, R.; Türkoğlu, M.E.; Gürer, B.; Dolgun, H.; Evirgen, O.; Ergüder, B.İ.; Hayırlı, N.; Gürses, L.; Şekerci, Z. The Protective Effect of Omeprazole Against Traumatic Brain Injury: An Experimental Study. World Neurosurg. 2017, 104, 634–643. [Google Scholar] [CrossRef]
- Lee, Y.J.; Wi, Y.M.; Kwon, Y.J.; Kim, S.R.; Chang, S.H.; Cho, S. Association between Colistin Dose and Development of Nephrotoxicity. Crit. Care Med. 2015, 43, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Mirzaei, E.; Vazin, A. Pharmacological Agents for the Prevention of Colistin-Induced Nephrotoxicity. Eur. J. Med. Res. 2022, 27, 64. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; de Gioia, S.; Ciofani, G.; Festi, D.; Cuccurullo, F. Antioxidant Properties of Omeprazole. FEBS Lett. 1996, 382, 189–192. [Google Scholar] [CrossRef]
- Abed, M.N.; Alassaf, F.A.; Jasim, M.H.M.; Alfahad, M.; Qazzaz, M.E. Comparison of Antioxidant Effects of the Proton Pump-Inhibiting Drugs Omeprazole, Esomeprazole, Lansoprazole, Pantoprazole, and Rabeprazole. Pharmacology 2020, 105, 645–651. [Google Scholar] [CrossRef]
- Gai, Z.; Samodelov, S.L.; Kullak-Ublick, G.A.; Visentin, M. Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 2019, 24, 653. [Google Scholar] [CrossRef]
- Miyasato, Y.; Yoshizawa, T.; Sato, Y.; Nakagawa, T.; Miyasato, Y.; Kakizoe, Y.; Kuwabara, T.; Adachi, M.; Ianni, A.; Braun, T.; et al. Sirtuin 7 Deficiency Ameliorates Cisplatin-Induced Acute Kidney Injury Through Regulation of the Inflammatory Response. Sci. Rep. 2018, 8, 5927. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Qu, X.; Zhai, J.; Tao, L.; Zhang, Y.; Song, Y.; Zhang, W. Omeprazole Attenuates Cisplatin-Induced Kidney Injury through Suppression of the TLR4/NF-ΚB/NLRP3 Signaling Pathway. Toxicology 2020, 440, 152487. [Google Scholar] [CrossRef]
- Ramesh, G.; Reeves, W.B. TNFR2-Mediated Apoptosis and Necrosis in Cisplatin-Induced Acute Renal Failure. Am. J. Physiol. Renal Physiol. 2003, 285, F610–F618. [Google Scholar] [CrossRef]
- Sahu, B.D.; Kumar, J.M.; Sistla, R. Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-ΚB Pathways. PLoS ONE 2015, 10, e0134139. [Google Scholar] [CrossRef]
- Yousef, J.M.; Chen, G.; Hill, P.A.; Nation, R.L.; Li, J. Melatonin Attenuates Colistin-Induced Nephrotoxicity in Rats. Antimicrob. Agents Chemother. 2011, 55, 4044–4049. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ohta, Y.; Inui, K.; Yoshino, J.; Nakazawa, S. Protective Effect of Omeprazole against Acute Gastric Mucosal Lesions Induced by Compound 48/80, a Mast Cell Degranulator, in Rats. Pharmacol. Res. 2002, 46, 75–84. [Google Scholar] [CrossRef]
- Ceylan, B.; Ozansoy, M.; Kılıç, Ü.; Yozgat, Y.; Ercan, Ç.; Yıldız, P.; Aslan, T. N-Acetylcysteine Suppresses Colistimethate Sodium-Induced Nephrotoxicity via Activation of SOD2, ENOS, and MMP3 Protein Expressions. Ren. Fail. 2018, 40, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, M.G.; Shin, H.S.; Lee, I. Changes in Omeprazole Pharmacokinetics in Rats with Diabetes Induced by Alloxan or Streptozotocin: Faster Clearance of Omeprazole Due to Induction of Hepatic CYP1A2 and 3A1. J. Pharm. Pharm. Sci. 2007, 10, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Sirwi, A.; Shaik, R.A.; Alamoudi, A.J.; Eid, B.G.; Kammoun, A.K.; Ibrahim, S.R.M.; Mohamed, G.A.; Abdallah, H.M.; Abdel-Naim, A.B. Mokko Lactone Attenuates Doxorubicin-Induced Hepatotoxicity in Rats: Emphasis on Sirt-1/FOXO1/NF-ΚB Axis. Nutrients 2021, 13, 4142. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Matar, K.M.; Al-Refai, B. Quantification of Colistin in Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study. Sci. Rep. 2020, 10, 8198. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrullah, M.Z.; Eljaaly, K.; Neamatallah, T.; Fahmy, U.A.; Alamoudi, A.J.; Bakhsh, H.T.; Abdel-Naim, A.B. Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys. Pharmaceuticals 2022, 15, 782. https://doi.org/10.3390/ph15070782
Nasrullah MZ, Eljaaly K, Neamatallah T, Fahmy UA, Alamoudi AJ, Bakhsh HT, Abdel-Naim AB. Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys. Pharmaceuticals. 2022; 15(7):782. https://doi.org/10.3390/ph15070782
Chicago/Turabian StyleNasrullah, Mohammed Z., Khalid Eljaaly, Thikryat Neamatallah, Usama A. Fahmy, Abdulmohsin J. Alamoudi, Hussain T. Bakhsh, and Ashraf B. Abdel-Naim. 2022. "Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys" Pharmaceuticals 15, no. 7: 782. https://doi.org/10.3390/ph15070782
APA StyleNasrullah, M. Z., Eljaaly, K., Neamatallah, T., Fahmy, U. A., Alamoudi, A. J., Bakhsh, H. T., & Abdel-Naim, A. B. (2022). Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys. Pharmaceuticals, 15(7), 782. https://doi.org/10.3390/ph15070782