Fludarabine, a Potential DNA-Dependent RNA Polymerase Inhibitor, as a Prospective Drug against Monkeypox Virus: A Computational Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sequence Alignment
2.2. Modeling and Active Site Prediction
2.3. Molecular Docking
2.4. Molecular Dynamic Simulation
2.5. MM/GBSA Analysis
2.6. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME/T) Profiles
3. Methods
3.1. Homology Modeling and Multiple Sequence Alignment
3.2. Active Site Prediction
3.3. Structure Preparation and Molecular Docking
3.4. Molecular Dynamic (MD) Simulation
3.5. MM-GBSA
3.6. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME/T) Profiles
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkhalil, A.; Strand, S.; Mucker, E.; Huggins, J.W.; Jahrling, P.B.; Ibrahim, S.M. Inhibition of Monkeypox virus replication by RNA interference. Virol. J. 2009, 6, 188. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Epidemiological Update: Monkeypox Multi-Country Outbreak, Epidemiological Update. Available online: https://www.ecdc.europa.eu/en/news−events/epidemiological-update-monkeypox-multi-country-outbreak (accessed on 25 May 2022).
- Walker, M. Monkeypox Virus Hosts and Transmission Routes: A Systematic Review of a Zoonotic Pathogen., Biological Sciences Undergraduate Honors Theses. 2022. Available online: https://scholarworks.uark.edu/biscuht/69 (accessed on 20 August 2022).
- Damon, I.K.; Roth, C.E.; Chowdhary, V. Discovery of monkeypox in Sudan. N. Engl. J. Med. 2006, 355, 962–963. [Google Scholar] [CrossRef] [PubMed]
- Faye, O.; Pratt, C.B.; Faye, M.; Fall, G.; Chitty, J.A.; Diagne, M.M.; Wiley, M.R.; Yinka-Ogunleye, A.F.; Aruna, S.; Etebu, E.N. Genomic characterisation of human monkeypox virus in Nigeria. Lancet Infect. Dis. 2018, 18, 246. [Google Scholar] [CrossRef]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef]
- UK Health Security Agency. Latest Updates on Cases of Monkeypox Identified by the UK Health Security Agency (UKHSA). Available online: https://www.gov.uk/government/news/monkeypox-cases-confirmed-in-england-latest-updates (accessed on 26 May 2022).
- Joana Isidro, V.B.; Pinto, M.; Ferreira, R.; Sobral, D.; Nunes, A.; Santos, J.D.; Borrego, M.J.; Núncio, S.; Pelerito, A.; Cordeiro, R.; et al. First Draft Genome Sequence of Monkeypox Virus Associated with the Suspected Multi-Country Outbreak, May 2022 (Confirmed Case in Portugal). Available online: https://virological.org/t/first-draft-genome-sequence-of-monkeypox-virus-associated-with-the-suspected-multi-country-outbreak-may-2022-confirmed-case-in-portugal/799 (accessed on 26 May 2022).
- Markus, H.; Antwerpen, D.L.; Zange, S.; Walter, M.C.; Wölfel, R. First German Genome Sequence of Monkeypox Virus Associated to Multi-Country Outbreak in May 2022. Available online: https://virological.org/t/first-german-genome-sequence-of-monkeypox-virus-associated-to-multi-country-outbreak-in-may-2022/812 (accessed on 31 May 2022).
- World Health Organization. Multi-Country Monkeypox Outbreak in Non-Endemic Countries. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385 (accessed on 26 May 2022).
- Di Giulio, D.B.; Eckburg, P.B. Human monkeypox: An emerging zoonosis. Lancet Infect. Dis. 2004, 4, 15–25. [Google Scholar] [CrossRef]
- Sliva, K.; Schnierle, B. From actually toxic to highly specific–novel drugs against poxviruses. Virol. J. 2007, 4, 8. [Google Scholar] [CrossRef]
- Kmiec, D.; Kirchhoff, F. Monkeypox: A new threat? Int. J. Mol. Sci. 2022, 23, 7866. [Google Scholar] [CrossRef]
- Cadet, V.E. Discovering Novel Poxvirus-specific Drug Targets. Ph.D. Dissertation, University of Georgia, Athens, GA, USA, 2012. [Google Scholar]
- Alakunle, E.; Moens, U.; Nchinda, G.; Okeke, M.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020, 12, 1257. [Google Scholar] [CrossRef]
- Shiryaev, V.A.; Skomorohov, M.Y.; Leonova, M.V.; Bormotov, N.I.; Serova, O.A.; Shishkina, L.N.; Agafonov, A.P.; Maksyutov, R.A.; Klimochkin, Y.N. Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity. Eur. J. Med. Chem. 2021, 221, 113485. [Google Scholar] [CrossRef]
- Jordan, R.; Leeds, J.M.; Tyavanagimatt, S.; Hruby, D.E. Development of ST-246® for treatment of poxvirus infections. Viruses 2010, 2, 2409–2435. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, A. Cytomegalovirus and the eye. Eye 2012, 26, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wen, C.; Li, Z.; Lin, S.; Gao, S.; Ding, H.; Zou, P.; Xing, Z.; Yu, Y. Fludarabine Inhibits Infection of Zika Virus, SFTS Phlebovirus, and Enterovirus A71. Viruses 2021, 13, 774. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, V.; Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet. 2002, 41, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Moufarij, M.A.; Sampath, D.; Keating, M.J.; Plunkett, W. Fludarabine increases oxaliplatin cytotoxicity in normal and chronic lymphocytic leukemia lymphocytes by suppressing interstrand DNA crosslink removal. Blood 2006, 108, 4187–4193. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Treatment|Monkeypox|Poxvirus|CDC. Available online: https://www.cdc.gov/poxvirus/monkeypox/treatment.html (accessed on 30 May 2022).
- Schoeniger, J.S.; Hadi, M.Z.; Light, Y.K.; Roe, D.C.; Ayson, M.; Segelke, B.; Zemla, A. Structural Basis of Poxvirus Interaction with Cell-Surface Receptors and Synthetic Ligands; Sandia National Laboratories (SNL-CA): Livermore, CA, USA, 2008. [Google Scholar]
- Reynolds, S.E.; Moss, B. Characterization of a large, proteolytically processed cowpox virus membrane glycoprotein conserved in most chordopoxviruses. Virology 2015, 483, 209–217. [Google Scholar] [CrossRef]
- Beg, M.; Thakur, S.C.; Meena, L.S. Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Adv. Bioinform. 2018, 2018, 6152014. [Google Scholar] [CrossRef]
- Ghattas, M.A.; Raslan, N.; Sadeq, A.; Al Sorkhy, M.; Atatreh, N. Druggability analysis and classification of protein tyrosine phosphatase active sites. Drug Des. Dev. Ther. 2016, 10, 3197. [Google Scholar] [CrossRef]
- Hsiao, J.-C.; Chung, C.-S.; Chang, W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J. Virol. 1999, 73, 8750–8761. [Google Scholar] [CrossRef]
- Hirano, Y.; Okimoto, N.; Fujita, S.; Taiji, M. Molecular Dynamics Study of Conformational Changes of Tankyrase 2 Binding Subsites upon Ligand Binding. ACS Omega 2021, 6, 17609–17620. [Google Scholar] [CrossRef]
- Xue, W.; Yang, F.; Wang, P.; Zheng, G.; Chen, Y.; Yao, X.; Zhu, F. What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci. 2018, 9, 1128–1140. [Google Scholar] [CrossRef]
- Samad, A.; Huq, M.; Rahman, M. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer. Sci. Rep. 2022, 12, 1539. [Google Scholar] [CrossRef]
- Chaieb, K.; Kouidhi, B.; Hosawi, S.B.; Baothman, O.A.; Zamzami, M.A.; Altayeb, H.N. Computational screening of natural compounds as putative quorum sensing inhibitors targeting drug resistance bacteria: Molecular docking and molecular dynamics simulations. Comput. Biol. Med. 2022, 145, 105517. [Google Scholar] [CrossRef]
- Choudhary, M.I.; Shaikh, M.; tul-Wahab, A.; ur-Rahman, A. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS ONE 2020, 15, e0235030. [Google Scholar] [CrossRef]
- McEvoy, G. Drug Information. Bethesda, Maryland: American Society of Health-System Pharmacists. Inc. AHFS Drug Inf. 2006, 22, 975–978. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins Struct. Funct. Bioinform. 2004, 55, 351–367. [Google Scholar] [CrossRef]
- Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef]
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Release, S. 2: LigPrep, Schrödinger, LLC, New York. Sci. Rep. 2021, 11, 9510. [Google Scholar]
- Buller, R.; Palumbo, G.J. Poxvirus pathogenesis. Microbiol. Rev. 1991, 55, 80–122. [Google Scholar] [CrossRef]
- Biovia Discovery Studio. Discovery Studio Visualizer; Biovia Discovery Studio: San Diego, CA, USA, 2017; Volume 936, Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 29 May 2022).
- Fu, Y.; Ye, T.; Liu, Y.-X.; Wang, J.; Ye, F. Based on the virtual screening of multiple pharmacophores, docking and molecular dynamics simulation approaches toward the discovery of novel HPPD inhibitors. Int. J. Mol. Sci. 2020, 21, 5546. [Google Scholar] [CrossRef]
- Poli, G.; Granchi, C.; Rizzolio, F.; Tuccinardi, T. Application of MM-PBSA methods in virtual screening. Molecules 2020, 25, 1971. [Google Scholar] [CrossRef]
- Zamzami, M.A. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J. Biomol. Struct. Dyn. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Zhang, Y.; Huang, S.-Y. Improving protein–peptide docking results via pose-clustering and rescoring with a combined knowledge-based and MM–GBSA scoring function. J. Chem. Inf. Model. 2020, 60, 2377–2387. [Google Scholar] [CrossRef] [PubMed]
Compound Name | ZINC_ID | Pharmacological Function | XP GScore | Glide Energy |
---|---|---|---|---|
A6R | ||||
Fludarabine | ZINC000004216238 | Anti-cancer | −7.53 | −30.234 |
Adenosine | ZINC000002169830 | Antidysrhythmics | −7.448 | −33.69 |
Adrenor | ZINC000000057624 | Anti-hypotensive | −6.408 | −33.238 |
Cladribine | ZINC000003798064 | Anti-cancer | −6.121 | −34.906 |
Azacitidine | ZINC000003861768 | Anti-cancer | −6.435 | −32.87 |
Epinephrine | ZINC000000039089 | Hormone and neurotransmitter | −6.011 | −32.531 |
Epivir | ZINC000000012346 | Antiviral | −5.903 | −29.345 |
Cytarabine | ZINC000003795098 | Anti-cancer | −5.89 | −31.304 |
Zolmitriptan | ZINC000000015515 | Used to treat the symptoms of migraine | −5.656 | −34.463 |
Levonordefrin | ZINC000000034157 | Vasoconstrictor | −5.616 | −27.364 |
Cidofovir | ZINC000001530600 | −4.5 | −30.9 | |
D8L | ||||
Iohexol | ZINC000003830943 | Diagnostic contrast agent | −9.124 | −51.614 |
Iopromide | ZINC000003830957 | Low-osmolar, non-ionic contrast agent | −9.054 | −58.806 |
Isovue-M | ZINC000003830947 | Diagnostic contrast agent | −7.56 | −54.575 |
Risedronate | ZINC000001531009 | Use to treat osteoporosis | −7.736 | −41.476 |
Ioxilan | ZINC000085540219 | Diagnostic contrast agent | −7.381 | −48.531 |
Risedronate | ZINC000001531009 | Use for slowing bone loss | −7.082 | −39.754 |
Fludarabine | ZINC000003927870 | Anti-cancer | −6.642 | −42.27 |
Pitavastatin | ZINC000001534965 | Used to lower LDL (bad) cholesterol | −6.147 | −40.438 |
Chondroitin sulfate | ZINC000012494114 | −9.124 | −61.519 | |
F13L | ||||
Ioxilan | ZINC000085540215 | Diagnostic contrast agent | −9.227 | −58.068 |
Iohexol | ZINC000003830945 | Diagnostic contrast agent | −9.029 | −54.74 |
Iopromide | ZINC000003830957 | Low osmolar, non-ionic contrast agent | −8.246 | −55.739 |
Adenosine | ZINC000002169830 | Antidysrhythmics | −8.008 | −37.689 |
Cedax | ZINC000003871967 | Antibacterial | −7.985 | −43.492 |
Idarubicin | ZINC000003920266 | Anti-cancer | −7.984 | −41.742 |
Dobutamine | ZINC000000057278 | Used in the treatment of cardiogenic shock | −7.769 | −38.923 |
Fludarabine | ZINC000003927870 | Anti-cancer | −7.66 | −40.897 |
Tafluprost | ZINC000013912394 | Used to treat glaucoma | −7.452 | −39.127 |
Zetia | ZINC000003810860 | Used to treat high cholesterol levels in adults | −7.406 | −42.326 |
Tecovirimat | ZIN0000C35323125 | −9.22 | −45.100 |
Complex. | MM/GBSA | rGyr (Å) | MolSA (Å) | SASA (Å) | PSA (Å) | ||
---|---|---|---|---|---|---|---|
dG(NS) Average | Range | Standard Deviation | |||||
A6R–Fludarabine | −44.62 | −53.26 to −35.49 | 3.76 | 3.4 | 236 | 125 | 260 |
D8L–Fludarabine | −39.47 | −55.62 to −26.06 | 6.23 | 4.32 | 448 | 300 | 340 |
F13L–Fludarabine | −51.65 | −72.88 to −24.72 | 10.24 | 4.1 | 420 | 160 | 310 |
A6R–Cidofovir | −16.15 | −36.9 to 0.708 | 12.02 | 3.28 | 240 | 380 | 290 |
F13L–Tecovirimat | −44.84 | −53.17 to −28.73 | 4.04 | 4.7 | 316 | 120 | 117 |
D8L–Chondroitin sulfate | −54.41 | −73.42 to −34.11 | 8.58 | 4.05 | 348 | 140 | 440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altayb, H.N. Fludarabine, a Potential DNA-Dependent RNA Polymerase Inhibitor, as a Prospective Drug against Monkeypox Virus: A Computational Approach. Pharmaceuticals 2022, 15, 1129. https://doi.org/10.3390/ph15091129
Altayb HN. Fludarabine, a Potential DNA-Dependent RNA Polymerase Inhibitor, as a Prospective Drug against Monkeypox Virus: A Computational Approach. Pharmaceuticals. 2022; 15(9):1129. https://doi.org/10.3390/ph15091129
Chicago/Turabian StyleAltayb, Hisham N. 2022. "Fludarabine, a Potential DNA-Dependent RNA Polymerase Inhibitor, as a Prospective Drug against Monkeypox Virus: A Computational Approach" Pharmaceuticals 15, no. 9: 1129. https://doi.org/10.3390/ph15091129
APA StyleAltayb, H. N. (2022). Fludarabine, a Potential DNA-Dependent RNA Polymerase Inhibitor, as a Prospective Drug against Monkeypox Virus: A Computational Approach. Pharmaceuticals, 15(9), 1129. https://doi.org/10.3390/ph15091129