Sarcosine May Induce EGF Production or Inhibit the Decline in EGF Concentrations in Patients with Chronic Schizophrenia (Results of the PULSAR Study)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants and Study Design
4.2. Measurements
4.2.1. Clinical Evaluation
4.2.2. Blood
4.2.3. Anthropometry
4.2.4. Body Composition
4.2.5. Determination of Metabolic Syndrome and Other Measurements
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Lopez-Virgen, V.; Gomez-Plascencia, J.; Ramos-Zuniga, R.; Gonzalez-Perez, O. Growth Factors as Clinical Biomarkers of Prognosis and Diagnosis in Psychiatric Disorders. Cytokine Growth Factor Rev. 2016, 32, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, M.G.; Scassellati, C.; Cattane, N.; Riva, M.A.; Cattaneo, A. Neurotrophic Factors, Childhood Trauma and Psychiatric Disorders: A Systematic Review of Genetic, Biochemical, Cognitive and Imaging Studies to Identify Potential Biomarkers. J. Affect. Disord. 2022, 308, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Plata-Salamán, C.R. Epidermal Growth Factor and the Nervous System. Peptides 1991, 12, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Oyagi, A.; Hara, H. Essential Roles of Heparin-Binding Epidermal Growth Factor-like Growth Factor in the Brain. CNS Neurosci. Ther. 2012, 18, 803–810. [Google Scholar] [CrossRef]
- Futamura, T.; Toyooka, K.; Iritani, S.; Niizato, K.; Nakamura, R.; Tsuchiya, K.; Someya, T.; Kakita, A.; Takahashi, H.; Nawa, H. Abnormal Expression of Epidermal Growth Factor and Its Receptor in the Forebrain and Serum of Schizophrenic Patients. Mol. Psychiatry 2002, 7, 673–682. [Google Scholar] [CrossRef]
- Sotoyama, H.; Namba, H.; Chiken, S.; Nambu, A.; Nawa, H. Exposure to the Cytokine EGF Leads to Abnormal Hyperactivity of Pallidal GABA Neurons: Implications for Schizophrenia and Its Modeling. J. Neurochem. 2013, 126, 518–528. [Google Scholar] [CrossRef]
- Nawa, H.; Sotoyama, H.; Iwakura, Y.; Takei, N.; Namba, H. Neuropathologic Implication of Peripheral Neuregulin-1 and EGF Signals in Dopaminergic Dysfunction and Behavioral Deficits Relevant to Schizophrenia: Their Target Cells and Time Window. Biomed. Res. Int. 2014, 2014, 697935. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Chen, K.Y.; Zhao, Y.; Ye, F.; Tang, X.; Du, X. Decreased Serum EGF in First-Episode and Chronic Schizophrenia Patients: Negative Correlation with Psychopathology. Sci. Rep. 2020, 10, 6506. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Chen, K.; Zhao, Y.; Ye, F.; Tang, X.; Du, X. Serum Epidermal Growth Factor Is Low in Schizophrenia and Not Affected by Antipsychotics Alone or Combined With Electroconvulsive Therapy. Front. Psychiatry 2020, 11, 104. [Google Scholar] [CrossRef]
- Koido, K.; Innos, J.; Haring, L.; Zilmer, M.; Ottas, A.; Vasar, E. Taurine and Epidermal Growth Factor Belong to the Signature of First-Episode Psychosis. Front. Neurosci. 2016, 10, 331. [Google Scholar] [CrossRef]
- Haring, L.; Koido, K.; Vasar, V.; Leping, V.; Zilmer, K.; Zilmer, M.; Vasar, E. Antipsychotic Treatment Reduces Psychotic Symptoms and Markers of Low-Grade Inflammation in First Episode Psychosis Patients, but Increases Their Body Mass Index. Schizophr. Res. 2015, 169, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Mendez, I.; Dagher, A.; Hong, M.; Hebb, A.; Gaudet, P.; Law, A.; Weerasinghe, S.; King, D.; Desrosiers, J.; Darvesh, S.; et al. Enhancement of Survival of Stored Dopaminergic Cells and Promotion of Graft Survival by Exposure of Human Fetal Nigral Tissue to Glial Cell Line- Derived Neurotrophic Factor in Patients with Parkinson’s Disease. J. Neurosurg. 2000, 92, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Buytaert-Hoefen, K.A.; Alvarez, E.; Freed, C.R. Generation of Tyrosine Hydroxylase Positive Neurons from Human Embryonic Stem Cells after Coculture with Cellular Substrates and Exposure to GDNF. Stem Cells 2004, 22, 669–674. [Google Scholar] [CrossRef]
- Berlanga, J.; Fernández, J.I.; López, E.; López, P.A.; del Río, A.; Valenzuela, C.; Baldomero, J.; Muzio, V.; Raíces, M.; Silva, R.; et al. Heberprot-P: A Novel Product for Treating Advanced Diabetic Foot Ulcer. MEDICC Rev. 2013, 15, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Geng, Z.; Ma, K.; Sun, X.; Fu, X. Efficacy of Topical Recombinant Human Epidermal Growth Factor for Treatment of Diabetic Foot Ulcer: A Systematic Review and Meta-Analysis. Int. J. Low. Extrem. Wounds 2016, 15, 120–125. [Google Scholar] [CrossRef]
- Pei, J.C.; Luo, D.Z.; Gau, S.S.; Chang, C.Y.; Lai, W.S. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front. Psychiatry 2021, 12, 742058. [Google Scholar] [CrossRef] [PubMed]
- Zakowicz, P.; Pawlak, J. Glycine Transporters in Schizophrenia. A New Hope or Informational Noise? Psychiatr. Pol. 2022, 56, 217–228. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Tang, K. Interneuron Development and Dysfunction. FEBS J. 2022, 289, 2318–2336. [Google Scholar] [CrossRef]
- Nakazawa, K.; Sapkota, K. The Origin of NMDA Receptor Hypofunction in Schizophrenia. Pharmacol. Ther. 2020, 205, 107426. [Google Scholar] [CrossRef]
- Marchi, M.; Galli, G.; Magarini, F.M.; Mattei, G.; Galeazzi, G.M. Sarcosine as an Add-on Treatment to Antipsychotic Medication for People with Schizophrenia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Expert Opin. Drug Metab. Toxicol. 2021, 17, 483–493. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.H.; Liu, C.Y.; Chen, S.J.; Lane, H.Y. Efficacy and Cognitive Effect of Sarcosine (N-Methylglycine) in Patients with Schizophrenia: A Systematic Review and Meta-Analysis of Double-Blind Randomised Controlled Trials. J. Psychopharmacol. 2020, 34, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex. Int. J. Mol. Sci. 2015, 16, 24475–24489. [Google Scholar] [CrossRef]
- Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Gawlik-Kotelnicka, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Supplementation of Antipsychotic Treatment with Sarcosine—GlyT1 Inhibitor—Causes Changes of Glutamatergic 1NMR Spectroscopy Parameters in the Left Hippocampus in Patients with Stable Schizophrenia. Neurosci. Lett. 2015, 606, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Gawlik-Kotelnicka, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia. Nutrients 2015, 7, 8767–8782. [Google Scholar] [CrossRef] [PubMed]
- Strzelecki, D.; Kałuzyńska, O.; Wysokiński, A. BDNF Serum Levels in Schizophrenic Patients during Treatment Augmentation with Sarcosine (Results of the PULSAR Study). Psychiatry Res. 2016, 242, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.S.; Swanson, C.R.; Cherng, H.R.; Unger, T.L.; Xie, S.X.; Weintraub, D.; Marek, K.; Stern, M.B.; Siderowf, A.; Trojanowski, J.Q.; et al. Plasma EGF and Cognitive Decline in Parkinson’s Disease and Alzheimer’s Disease. Ann. Clin. Transl. Neurol. 2016, 3, 346–355. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, J.; Ma, J.; Li, D.; Gu, Q.; Chen, S.; Wang, Z.; Sun, W.; Li, M. Correlation between Serum IGF-1 and EGF Levels and Neuropsychiatric and Cognitive in Parkinson’s Disease Patients. Neurol. Sci. 2023, 44, 881–887. [Google Scholar] [CrossRef]
- Deng, C.; Pan, B.; Engel, M.; Huang, X.F. Neuregulin-1 Signalling and Antipsychotic Treatment: Potential Therapeutic Targets in a Schizophrenia Candidate Signalling Pathway. Psychopharmacology 2013, 226, 201–215. [Google Scholar] [CrossRef]
- Götze, T.; Soto-Bernardini, M.C.; Zhang, M.; Mießner, H.; Linhoff, L.; Brzózka, M.M.; Velanac, V.; Dullin, C.; Ramos-Gomes, F.; Peng, M.; et al. Hyperactivity Is a Core Endophenotype of Elevated Neuregulin-1 Signaling in Embryonic Glutamatergic Networks. Schizophr. Bull. 2021, 47, 1409–1420. [Google Scholar] [CrossRef]
- Werner, F.-M.; Coveñas, R. Risk Genes in Schizophrenia and Their Importance in Choosing the Appropriate Antipsychotic Treatment. Curr. Pharm. Des. 2021, 27, 3281–3292. [Google Scholar] [CrossRef]
- Perez-Saad, H.; Subiros, N.; Berlanga, J.; Aldana, L.; Garcia del Barco, D. Neuroprotective Effect of Epidermal Growth Factor in Experimental Acrylamide Neuropathy: An Electrophysiological Approach. J. Peripher. Nerv. Syst. 2017, 22, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Subirós, N.; Pérez-Saad, H.; Aldana, L.; Gibson, C.L.; Borgnakke, W.S.; Garcia-del-Barco, D. Neuroprotective Effect of Epidermal Growth Factor plus Growth Hormone-Releasing Peptide-6 Resembles Hypothermia in Experimental Stroke. Neurol. Res. 2016, 38, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Casper, D.; Blum, M. Epidermal Growth Factor and Basic Fibroblast Growth Factor Protect Dopaminergic Neurons from Glutamate Toxicity in Culture. J. Neurochem. 1995, 65, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Honegger, P.; Guentert-Lauber, B. Epidermal Growth Factor (EGF) Stimulation of Cultured Brain Cells. I. Enhancement of the Developmental Increase in Glial Enzymatic Activity. Dev. Brain Res. 1983, 11, 245–251. [Google Scholar] [CrossRef]
- Liu, A.; Li, S.; Jiao, Y.; Kong, H.; Zhang, Z. Overexpressed Cold Inducible RNA-Binding Protein Improves Cell Viability and EGF Expression in Glial Cells. BMC Mol. Cell Biol. 2022, 23, 58. [Google Scholar] [CrossRef]
- Kahn, R.S.; Sommer, I.E. The Neurobiology and Treatment of First-Episode Schizophrenia. Mol. Psychiatry 2015, 20, 84–97. [Google Scholar] [CrossRef]
- Huang, Z.; Ruan, D.; Huang, B.; Zhou, T.; Shi, C.; Yu, X.; Chan, R.C.K.; Wang, Y.; Pu, C. Negative Symptoms Correlate with Altered Brain Structural Asymmetry in Amygdala and Superior Temporal Region in Schizophrenia Patients. Front. Psychiatry 2022, 13, 1000560. [Google Scholar] [CrossRef]
- Shahab, S.; Mulsant, B.H.; Levesque, M.L.; Calarco, N.; Nazeri, A.; Wheeler, A.L.; Foussias, G.; Rajji, T.K.; Voineskos, A.N. Brain Structure, Cognition, and Brain Age in Schizophrenia, Bipolar Disorder, and Healthy Controls. Neuropsychopharmacology 2019, 44, 898–906. [Google Scholar] [CrossRef]
- Figiel, M.; Maucher, T.; Rozyczka, J.; Bayatti, N.; Engele, J. Regulation of Glial Glutamate Transporter Expression by Growth Factors. Exp. Neurol. 2003, 183, 124–135. [Google Scholar] [CrossRef]
- Custo, S.; Baron, B.; Felice, A.; Seria, E. A Comparative Profile of Total Protein and Six Angiogenically-Active Growth Factors in Three Platelet Products. GMS Interdiscip. Plast. Reconstr. Surg. DGPW 2022, 11, Doc06. [Google Scholar] [CrossRef]
- Venturi, S.; Venturi, M. Iodine in Evolution of Salivary Glands and in Oral Health. Nutr. Health 2009, 20, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, V.F.; Gleber-Netto, F.O.; Sousa, S.F.; Silva, T.A.; Abreu, M.H.N.G.; Aguiar, M.C.F. EGF in Saliva and Tumor Samples of Oral Squamous Cell Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Veerman, S.R.T.; Schulte, P.F.J.; Begemann, M.J.H.; Engelsbel, F.; de Haan, L. Clozapine Augmented with Glutamate Modulators in Refractory Schizophrenia: A Review and Metaanalysis. Pharmacopsychiatry 2014, 47, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.Y.; Huang, C.L.; Wu, P.L.; Liu, Y.C.; Chang, Y.C.; Lin, P.Y.; Chen, P.W.; Tsai, G. Glycine Transporter I Inhibitor, N-Methylglycine (Sarcosine), Added to Clozapine for the Treatment of Schizophrenia. Biol. Psychiatry 2006, 60, 645–649. [Google Scholar] [CrossRef] [PubMed]
Sarcosine (n = 28) | Placebo (n = 30) | p | |
---|---|---|---|
Men | 20 (71.4%) | 15 (50.0%) | NS |
Age (years) | 36.7 ± 11.2 | 40.2 ± 10.1 | NS |
Smoking | 10 (35.7%) | 19 (63.3%) | NS |
Cardio-metabolic characteristics | |||
SBP (mm Hg) | 125.2 ± 15.9 | 126.7 ± 16.4 | NS |
DBP (mm Hg) | 75.1 ± 9.4 | 79.3 ± 9.2 | NS |
TC (mg/dL) | 200.7 ± 30.8 | 221.2 ± 54.1 | NS |
HDL (mg/dL) | 45.72 ± 18.8 | 45.5 ± 14.8 | NS |
LDL (mg/dL) | 123.5 ± 30.6 | 143.6 ± 43.9 | NS |
TGA (mg/dL) | 156.9 ± 86.6 | 161.3 ± 106.8 | NS |
FPG (mg/dL) | 95.7 ± 13.9 | 97.6 ± 22.9 | NS |
TSH (μIU/mL) | 1.8 ± 0.9 | 1.5 ± 0.7 | NS |
PRL (ng/mL) | 31.6 ± 29.1 | 31.5 ± 36.4 | NS |
Antihypertensive treatment | 4 (14.8%) | 7 (23.3%) | NS |
Lipid-lowering treatment | 1 (3.7%) | 2 (6.7%) | NS |
Antidiabetic treatment | 1 (3.7%) | 0 | NS |
Metabolic syndrome | 14 (51.8%) | 18 (60.0%) | NS |
Dyslipidemia | 22 (81.5%) | 25 (83.3%) | NS |
Impaired fasting glucose | 7 (25.9%) | 9 (30.0%) | NS |
Clinical characteristics | |||
Treatment duration (years) | 14.3 ± 9.1 | 11.6 ± 5.0 | NS |
Number of hospitalizations | 4.8 ± 5.7 | 4.2 ± 4.8 | NS |
Time from last hospitalization (years) | 3.1 ± 4.2 | 4.7 ± 4.6 | NS |
Number of APs | NS | ||
1 | 15 (55.6%) | 13 (44.9%) | |
2 | 11 (40.7%) | 14 (48.3%) | |
3 | 1 (3.7%) | 2 (6.9%) | |
SGAs | 25 (92.6%) | 28 (96.5%) | NS |
FGAs | 3 (11.1%) | 8 (26.7%) | NS |
Antidepressants | 9 (33.3%) | 6 (20.7%) | NS |
Initial PANSS score | 68.2 ± 13.2 | 72.5 ± 12.5 | NS |
Positive subscale | 9.7 ± 2.6 | 10.4 ± 3.15 | NS |
Negative subscale | 25.2 ± 5.0 | 26.1 ± 5.0 | NS |
General subscale | 33.4 ± 7.9 | 35.9 ± 7.5 | NS |
Initial CDSS score | 3.4 ± 2.9 | 3.6 ± 2.8 | NS |
Patients with depression | 4 (14.8%) | 5 (16.7%) | NS |
Body composition | |||
Weight (kg) | 93.6 ± 23.1 | 86.43 ± 16.4 | NS |
BMI (kg/m2) | 34.8 ± 22.6 | 29.5 ± 4.9 | NS |
FMI (kg/m2) | 12.0 ± 8.6 | 10.5 ± 4.7 | NS |
Abdominal circumference (cm) | 105.7 ± 17.9 | 103.3 ± 11.9 | NS |
Waist circumference (cm) | 97.3 ± 16.9 | 96.1 ± 10.7 | NS |
Hip circumference (cm) | 107.7 ± 16.4 | 105.6 ± 12.4 | NS |
WHR | 0.9 ± 0.1 | 0.9 ± 0.1 | NS |
Total body fat (kg) | 32.5 ± 17.9 | 30.4 ± 12.7 | NS |
Total body fat (%) | 32.6 ± 11.5 | 34.3 ± 11.4 | NS |
Lean body mass (kg) | 61.1 ± 8.9 | 55.9 ± 11.1 | NS |
Lean body mass (%) | 67.4 ± 11.5 | 65.7 ± 11.4 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, A.; Kaczmarek, B.; Wysokiński, A.; Strzelecki, D. Sarcosine May Induce EGF Production or Inhibit the Decline in EGF Concentrations in Patients with Chronic Schizophrenia (Results of the PULSAR Study). Pharmaceuticals 2023, 16, 1557. https://doi.org/10.3390/ph16111557
Pawlak A, Kaczmarek B, Wysokiński A, Strzelecki D. Sarcosine May Induce EGF Production or Inhibit the Decline in EGF Concentrations in Patients with Chronic Schizophrenia (Results of the PULSAR Study). Pharmaceuticals. 2023; 16(11):1557. https://doi.org/10.3390/ph16111557
Chicago/Turabian StylePawlak, Agnieszka, Bartosz Kaczmarek, Adam Wysokiński, and Dominik Strzelecki. 2023. "Sarcosine May Induce EGF Production or Inhibit the Decline in EGF Concentrations in Patients with Chronic Schizophrenia (Results of the PULSAR Study)" Pharmaceuticals 16, no. 11: 1557. https://doi.org/10.3390/ph16111557
APA StylePawlak, A., Kaczmarek, B., Wysokiński, A., & Strzelecki, D. (2023). Sarcosine May Induce EGF Production or Inhibit the Decline in EGF Concentrations in Patients with Chronic Schizophrenia (Results of the PULSAR Study). Pharmaceuticals, 16(11), 1557. https://doi.org/10.3390/ph16111557