Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression
Abstract
:1. Introduction: The Problem of TRD
2. Glutamate and GABA Dysfunction in Depression
2.1. Glutamatergic Abnormalities
2.2. GABAergic Abnormalities
3. Methods: Clinical Studies of Investigational Compounds Targeting Glutamate and GABA
4. Clinical Studies with Glutamate Modulators in TRD
4.1. Ketamine and Similar Compounds
4.2. Dextromethorphan and Similar Compounds
4.3. Glycine Site NMDA Receptor Modulation
4.4. Metabotropic Glutamate Receptor Negative Modulation
4.5. AMPA Receptor Positive Modulation and Other Mechanisms
5. Clinical Studies with GABA Modulation in TRD
GABAA Receptor Positive Modulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuhl, E. Quantifying the Cost of Depression. 2020. Available online: http://www.workplacementalhealth.org/Mental-Health-Topics/Depression/Quantifying-the-Cost-of-Depression (accessed on 4 September 2023).
- WHO. Mental Health in the Workplace. 2019. Available online: https://www.who.int/mental_health/in_the_workplace/en/ (accessed on 4 September 2023).
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; et al. Medication Augmentation after the Failure of SSRIs for Depression. N. Engl. J. Med. 2006, 354, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Gaynes, B.N.; Asher, G.; Gartlehner, G.; Hoffman, V.; Green, J.; Boland, E.; Lux, L.; Weber, R.P.; Randolph, C.; Bann, C.; et al. Definition of Treatment-Resistant Depression in the Medicare Population; AHRQ Technology Assessments; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2018. Available online: http://www.ncbi.nlm.nih.gov/books/NBK526366/ (accessed on 20 April 2023).
- Friedman, H.S.; Kern, M.L. Personality, Well-Being, and Health. Annu. Rev. Psychol. 2014, 65, 719–742. [Google Scholar] [CrossRef] [PubMed]
- Machado-Vieira, R.; Yuan, P.; Brutsche, N.; DiazGranados, N.; Luckenbaugh, D.; Manji, H.K.; Zarate, C.A. Brain-Derived Neurotrophic Factor and Initial Antidepressant Response to an N-Methyl-D-Aspartate Antagonist. J. Clin. Psychiatry 2009, 70, 1662–1666. [Google Scholar] [CrossRef]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, C.; Montemitro, C.; Fiengo, A.L.C.; Santone, C.; Orsolini, L.; Valchera, A.; Carano, A.; Pompili, M.; Serafini, G.; Perna, G.; et al. Novel Pathways in the Treatment of Major Depression: Focus on the Glutamatergic System. Curr. Pharm. Des. 2019, 25, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Berman, R.M.; Narasimhan, M.; Charney, D.S. Treatment-refractory depression: Definitions and characteristics. Depress. Anxiety 1997, 5, 154–164. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Paul, S.M.; Covey, D.F.; Mennerick, S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol. Stress 2019, 11, 100196. [Google Scholar] [CrossRef] [PubMed]
- Machado-Vieira, R.; Ibrahim, L.; Henter, I.D.; Zarate, C.A. Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol. Biochem. Behav. 2012, 100, 678–687. [Google Scholar] [CrossRef]
- Wierońska, J.M.; Pilc, A. Depression and schizophrenia viewed from the perspective of amino acidergic neurotransmission: Antipodes of psychiatric disorders. Pharmacol. Ther. 2019, 193, 75–82. [Google Scholar] [CrossRef]
- Demenescu, L.R.; Colic, L.; Li, M.; Safron, A.; Biswal, B.; Metzger, C.D.; Li, S.; Walter, M. A spectroscopic approach toward depression diagnosis: Local metabolism meets functional connectivity. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 95–105. [Google Scholar] [CrossRef] [PubMed]
- MacQueen, G.; Frodl, T. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry 2011, 16, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, C.G.; Averill, C.L.; Salas, R.; Averill, L.A.; Baldwin, P.R.; Krystal, J.H.; Mathew, S.J.; Mathalon, D.H. Prefrontal Connectivity and Glutamate Transmission: Relevance to Depression Pathophysiology and Ketamine Treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.G.; Peltier, S.; Nee, D.E.; Kross, E.; Deldin, P.J.; Jonides, J. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 2011, 6, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Gabbay, V. Anterior Cingulate Cortexγ-Aminobutyric Acid in Depressed Adolescents: Relationship to Anhedonia. Arch. Gen. Psychiatry 2012, 69, 139–149. [Google Scholar] [CrossRef]
- Horn, D.I.; Yu, C.; Steiner, J.; Buchmann, J.; Kaufmann, J.; Osoba, A.; Eckert, U.; Zierhut, K.C.; Schiltz, K.; He, H.; et al. Glutamatergic and resting state functional connectivity correlates of severity in major depression—The role of pregenual anterior cingulate cortex and anterior insula. Front. Syst. Neurosci. 2010, 4, 33. [Google Scholar] [CrossRef]
- Isaacson, J.S.; Scanziani, M. How Inhibition Shapes Cortical Activity. Neuron 2011, 72, 231–243. [Google Scholar] [CrossRef]
- Pizzagalli, D.A.; Webb, C.A.; Dillon, D.G.; Tenke, C.E.; Kayser, J.; Goer, F.; Fava, M.; McGrath, P.; Weissman, M.; Parsey, R.; et al. Pretreatment Rostral Anterior Cingulate Cortex Theta Activity in Relation to Symptom Improvement in Depression: A Randomized Clinical Trial. JAMA Psychiatry 2018, 75, 547–554. [Google Scholar] [CrossRef]
- Price, R.B.; Shungu, D.C.; Mao, X.; Nestadt, P.; Kelly, C.; Collins, K.A.; Murrough, J.W.; Charney, D.S.; Mathew, S.J. Amino Acid Neurotransmitters Assessed by Proton Magnetic Resonance Spectroscopy: Relationship to Treatment Resistance in Major Depressive Disorder. Biol. Psychiatry 2009, 65, 792–800. [Google Scholar] [CrossRef]
- Walton, N.; Maguire, J. Allopregnanolone-based treatments for postpartum depression: Why/how do they work? Neurobiol. Stress 2019, 11, 100198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-X.; Chen, X.; Shen, Y.-Q.; Li, L.; Chen, N.-X.; Zhu, Z.-C.; Castellanos, F.X.; Yan, C.-G. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. NeuroImage 2020, 206, 116287. [Google Scholar] [CrossRef] [PubMed]
- Deligiannidis, K.M.; Fales, C.L.; Kroll-Desrosiers, A.R.; Shaffer, S.A.; Villamarin, V.; Tan, Y.; Hall, J.E.; Frederick, B.B.; Sikoglu, E.M.; Edden, R.A.; et al. Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: A functional magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 2019, 44, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.L.; Hyde, T.M.; Deep-Soboslay, A.; Kleinman, J.E.; Sodhi, M.S. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol. Psychiatry 2015, 20, 1057–1068. [Google Scholar] [CrossRef]
- Levinson, A.J.; Fitzgerald, P.B.; Favalli, G.; Blumberger, D.M.; Daigle, M.; Daskalakis, Z.J. Evidence of Cortical Inhibitory Deficits in Major Depressive Disorder. Biol. Psychiatry 2010, 67, 458–464. [Google Scholar] [CrossRef]
- Papp, M.; Moryl, E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur. J. Pharmacol. 1994, 263, 1–7. [Google Scholar] [CrossRef]
- Seney, M.L.; Huo, Z.; Cahill, K.; French, L.; Puralewski, R.; Zhang, J.; Logan, R.W.; Tseng, G.; Lewis, D.A.; Sibille, E. Opposite Molecular Signatures of Depression in Men and Women. Biol. Psychiatry 2018, 84, 18–27. [Google Scholar] [CrossRef]
- Tripp, A.; Kota, R.S.; Lewis, D.A.; Sibille, E. Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol. Dis. 2011, 42, 116–124. [Google Scholar] [CrossRef]
- Zhao, J.; Verwer, R.W.H.; Gao, S.-F.; Qi, X.-R.; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J. Psychiatr. Res. 2018, 102, 261–274. [Google Scholar] [CrossRef]
- Sanacora, G.; Banasr, M. From Pathophysiology to Novel Antidepressant Drugs: Glial Contributions to the Pathology and Treatment of Mood Disorders. Biol. Psychiatry 2013, 73, 1172–1179. [Google Scholar] [CrossRef]
- Arnone, D.; Mumuni, A.N.; Jauhar, S.; Condon, B.; Cavanagh, J. Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: Meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur. Neuropsychopharmacol. 2015, 25, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Koolschijn, P.C.M.P.; Van Haren, N.E.M.; Lensvelt-Mulders, G.J.L.M.; Hulshoff Pol, H.E.; Kahn, R.S. Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Hum. Brain Mapp. 2009, 30, 3719–3735. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J. Glutamine in the central nervous system: Function and dysfunction. Front. Biosci. 2007, 12, e43. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, V.; Knöpfel, T. Book Review: Metabotropic Glutamate Receptors: Electrical and Chemical Signaling Properties. Neuroscientist 2002, 8, 551–561. [Google Scholar] [CrossRef]
- Lu, Y.-M.; Jia, Z.; Janus, C.; Henderson, J.T.; Gerlai, R.; Wojtowicz, J.M.; Roder, J.C. Mice Lacking Metabotropic Glutamate Receptor 5 Show Impaired Learning and Reduced CA1 Long-Term Potentiation (LTP) But Normal CA3 LTP. J. Neurosci. 1997, 17, 5196–5205. [Google Scholar] [CrossRef]
- Manahan-Vaughan, D.; Braunewell, K.-H. The Metabotropic Glutamate Receptor, mGluR5, is a Key Determinant of Good and Bad Spatial Learning Performance and Hippocampal Synaptic Plasticity. Cereb. Cortex 2005, 15, 1703–1713. [Google Scholar] [CrossRef]
- Shin, S.; Kwon, O.; Kang, J.I.; Kwon, S.; Oh, S.; Choi, J.; Kim, C.H.; Kim, D.G. mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat. Neurosci. 2015, 18, 1017–1024. [Google Scholar] [CrossRef]
- Vialou, V.; Robison, A.J.; LaPlant, Q.C.; Covington, H.E.; Dietz, D.M.; Ohnishi, Y.N.; Mouzon, E.; Rush, A.J.; Watts, E.L.; Wallace, D.L.; et al. ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat. Neurosci. 2010, 13, 745–752. [Google Scholar] [CrossRef]
- Levone, B.R.; Cryan, J.F.; O’Leary, O.F. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol. Stress 2015, 1, 147–155. [Google Scholar] [CrossRef]
- Wagner, K.V.; Hartmann, J.; Labermaier, C.; Häusl, A.S.; Zhao, G.; Harbich, D.; Schmid, B.; Wang, X.-D.; Santarelli, S.; Kohl, C.; et al. Homer1/mGluR5 Activity Moderates Vulnerability to Chronic Social Stress. Neuropsychopharmacology 2015, 40, 1222–1233. [Google Scholar] [CrossRef]
- Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov. 2017, 16, 472–486. [Google Scholar] [CrossRef] [PubMed]
- Beneyto, M.; Kristiansen, L.V.; Oni-Orisan, A.; McCullumsmith, R.E.; Meador-Woodruff, J.H. Abnormal Glutamate Receptor Expression in the Medial Temporal Lobe in Schizophrenia and Mood Disorders. Neuropsychopharmacology 2007, 32, 1888–1902. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef]
- Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol. 1990, 185, 1–10. [Google Scholar] [CrossRef]
- Klumpers, U.M.H.; Veltman, D.J.; Drent, M.L.; Boellaard, R.; Comans, E.F.I.; Meynen, G.; Lammertsma, A.A.; Hoogendijk, W.J.G. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: Preliminary results. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 565–574. [Google Scholar] [CrossRef]
- Lindholm, J.S.O.; Castrén, E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front. Behav. Neurosci. 2014, 8, 143. [Google Scholar] [CrossRef]
- Groves, J.O. Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatry 2007, 12, 1079–1088. [Google Scholar] [CrossRef]
- Castrén, E.; Antila, H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry 2017, 22, 1085–1095. [Google Scholar] [CrossRef]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021, 184, 1299–1313.e19. [Google Scholar] [CrossRef]
- Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur. J. Neurosci. 2021, 53, 126–139. [Google Scholar] [CrossRef]
- Moliner, R.; Girych, M.; Brunello, C.A.; Kovaleva, V.; Biojone, C.; Enkavi, G.; Antenucci, L.; Kot, E.F.; Goncharuk, S.A.; Kaurinkoski, K.; et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat. Neurosci. 2023, 26, 1032–1041. [Google Scholar] [CrossRef]
- Palhano-Fontes, F.; Barreto, D.; Onias, H.; Andrade, K.C.; Novaes, M.M.; Pessoa, J.A.; Mota-Rolim, S.A.; Osório, F.L.; Sanches, R.; Dos Santos, R.G.; et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: A randomized placebo-controlled trial. Psychol. Med. 2019, 49, 655–663. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; et al. Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up. Psychopharmacology 2018, 235, 399–408. [Google Scholar] [CrossRef]
- Nichols, D.E. Psychedelics. Pharmacol. Rev. 2016, 68, 264–355. [Google Scholar] [CrossRef]
- Ly, C.; Greb, A.C.; Cameron, L.P.; Wong, J.M.; Barragan, E.V.; Wilson, P.C.; Burbach, K.F.; Soltanzadeh Zarandi, S.; Sood, A.; Paddy, M.R.; et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018, 23, 3170–3182. [Google Scholar] [CrossRef]
- Farmer, C.A.; Gilbert, J.R.; Moaddel, R.; George, J.; Adeojo, L.; Lovett, J.; Nugent, A.C.; Kadriu, B.; Yuan, P.; Gould, T.D.; et al. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology 2020, 45, 1398–1404. [Google Scholar] [CrossRef]
- Grunebaum, M.F.; Galfalvy, H.C.; Choo, T.-H.; Parris, M.S.; Burke, A.K.; Suckow, R.F.; Cooper, T.B.; Mann, J.J. Ketamine metabolite pilot study in a suicidal depression trial. J. Psychiatr. Res. 2019, 117, 129–134. [Google Scholar] [CrossRef]
- Lüscher, B.; Möhler, H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Research 2019, 8, 751. [Google Scholar] [CrossRef]
- Romeo, B.; Choucha, W.; Fossati, P.; Rotge, J.-Y. Meta-analysis of central and peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. J. Psychiatry Neurosci. 2018, 43, 58–66. [Google Scholar] [CrossRef]
- Evans, J.; Sun, Y.; McGregor, A.; Connor, B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 2012, 63, 1315–1326. [Google Scholar] [CrossRef]
- Yin, H.; Pantazatos, S.P.; Galfalvy, H.; Huang, Y.; Rosoklija, G.B.; Dwork, A.J.; Burke, A.; Arango, V.; Oquendo, M.A.; Mann, J.J. A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Poulter, M.O.; Du, L.; Weaver, I.C.G.; Palkovits, M.; Faludi, G.; Merali, Z.; Szyf, M.; Anisman, H. GABAA Receptor Promoter Hypermethylation in Suicide Brain: Implications for the Involvement of Epigenetic Processes. Biol. Psychiatry 2008, 64, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.S.; Bell, C.E.; Pollard, D.A. Revisiting the Monoamine Hypothesis of Depression: A New Perspective. Perspect. Med. Chem. 2014, 6, PMC.S11375. [Google Scholar] [CrossRef]
- Zhong, H.; Rong, J.; Zhu, C.; Liang, M.; Li, Y.; Zhou, R. Epigenetic Modifications of GABAergic Interneurons Contribute to Deficits in Adult Hippocampus Neurogenesis and Depression-Like Behavior in Prenatally Stressed Mice. Int. J. Neuropsychopharmacol. 2020, 23, 274–285. [Google Scholar] [CrossRef]
- Du, J.; Gray, N.A.; Falke, C.A.; Chen, W.; Yuan, P.; Szabo, S.T.; Einat, H.; Manji, H.K. Modulation of Synaptic Plasticity by Antimanic Agents: The Role of AMPA Glutamate Receptor Subunit 1 Synaptic Expression. J. Neurosci. 2004, 24, 6578–6589. [Google Scholar] [CrossRef]
- Kraus, C.; Castrén, E.; Kasper, S.; Lanzenberger, R. Serotonin and neuroplasticity—Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017, 77, 317–326. [Google Scholar] [CrossRef]
- Duman, R.S.; Li, N. A neurotrophic hypothesis of depression: Role of synaptogenesis in the actions of NMDA receptor antagonists. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2475–2484. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Izumi, Y.; Mennerick, S. Ketamine: NMDA Receptors and Beyond. J. Neurosci. 2016, 36, 11158–11164. [Google Scholar] [CrossRef]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Zarate, C.A.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A Randomized Trial of an N-methyl-D-aspartate Antagonist in Treatment-Resistant Major Depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef]
- Hashimoto, K. Are NMDA and opioid receptors involved in the antidepressant actions of ketamine? Proc. Natl. Acad. Sci. USA 2020, 117, 11200–11201. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chang, L.; Hashimoto, K. Molecular mechanisms underlying the antidepressant actions of arketamine: Beyond the NMDA receptor. Mol. Psychiatry 2022, 27, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yang, J.; Luo, A.; Hashimoto, K. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl. Psychiatry 2019, 9, 280. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K. Synaptic Dysfunction in Depression: Potential Therapeutic Targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Hess, E.M.; Riggs, L.M.; Michaelides, M.; Gould, T.D. Mechanisms of ketamine and its metabolites as antidepressants. Biochem. Pharmacol. 2022, 197, 114892. [Google Scholar] [CrossRef]
- Abdallah, C.G.; Averill, L.A.; Gueorguieva, R.; Goktas, S.; Purohit, P.; Ranganathan, M.; Sherif, M.; Ahn, K.-H.; D’Souza, D.C.; Formica, R.; et al. Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology 2020, 45, 990–997. [Google Scholar] [CrossRef]
- Moda-Sava, R.N.; Murdock, M.H.; Parekh, P.K.; Fetcho, R.N.; Huang, B.S.; Huynh, T.N.; Witztum, J.; Shaver, D.C.; Rosenthal, D.L.; Alway, E.J.; et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 2019, 364, eaat8078. [Google Scholar] [CrossRef]
- Fundytus, M.E. Glutamate Receptors and Nociception: Implications for the Drug Treatment of Pain. CNS Drugs 2001, 15, 29–58. [Google Scholar] [CrossRef]
- Mion, G.; Villevieille, T. Ketamine Pharmacology: An Update (Pharmacodynamics and Molecular Aspects, Recent Findings). CNS Neurosci. Ther. 2013, 19, 370–380. [Google Scholar] [CrossRef]
- Williams, N.R.; Heifets, B.D.; Blasey, C.; Sudheimer, K.; Pannu, J.; Pankow, H.; Hawkins, J.; Birnbaum, J.; Lyons, D.M.; Rodriguez, C.I.; et al. Attenuation of Antidepressant Effects of Ketamine by Opioid Receptor Antagonism. Am. J. Psychiatry 2018, 175, 1205–1215. [Google Scholar] [CrossRef]
- Williams, N.R.; Heifets, B.D.; Bentzley, B.S.; Blasey, C.; Sudheimer, K.D.; Hawkins, J.; Lyons, D.M.; Schatzberg, A.F. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol. Psychiatry 2019, 24, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.; Petrakis, I.L.; Krystal, J.H. Association of Combined Naltrexone and Ketamine with Depressive Symptoms in a Case series of Patients with Depression and Alcohol Use Disorder. JAMA Psychiatry 2019, 76, 337–338. [Google Scholar] [CrossRef]
- Gill, H.; Gill, B.; Rodrigues, N.B.; Lipsitz, O.; Rosenblat, J.D.; El-Halabi, S.; Nasri, F.; Mansur, R.B.; Lee, Y.; McIntyre, R.S. The Effects of Ketamine on Cognition in Treatment-Resistant Depression: A Systematic Review and Priority Avenues for Future Research. Neurosci. Biobehav. Rev. 2021, 120, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, M.; Hu, Y.; Zhan, Y.; Zhou, Y.; Zheng, W.; Liu, W.; Wang, C.; Zhong, X.; Li, H.; et al. Working memory associated with anti-suicidal ideation effect of repeated-dose intravenous ketamine in depressed patients. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A.C.; Ballard, E.D.; Gould, T.D.; Park, L.T.; Moaddel, R.; Brutsche, N.E.; Zarate, C.A. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol. Psychiatry 2019, 24, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.W.; Szczepanik, J.; Brutsché, N.; Park, L.T.; Nugent, A.C.; Zarate, C.A. Default Mode Connectivity in Major Depressive Disorder Measured up to 10 Days after Ketamine Administration. Biol. Psychiatry 2018, 84, 582–590. [Google Scholar] [CrossRef]
- Medeiros, G.C.; Gould, T.D.; Prueitt, W.L.; Nanavati, J.; Grunebaum, M.F.; Farber, N.B.; Singh, B.; Selvaraj, S.; Machado-Vieira, R.; Achtyes, E.D.; et al. Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Mol. Psychiatry 2022, 27, 3658–3669. [Google Scholar] [CrossRef]
- Kryst, J.; Kawalec, P.; Mitoraj, A.M.; Pilc, A.; Lasoń, W.; Brzostek, T. Efficacy of single and repeated administration of ketamine in unipolar and bipolar depression: A meta-analysis of randomized clinical trials. Pharmacol. Rep. 2020, 72, 543–562. [Google Scholar] [CrossRef]
- Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Green, C.E.; Perez, A.M.; Iqbal, S.; Pillemer, S.; Foulkes, A.; Shah, A.; et al. Antidepressant Efficacy of Ketamine in Treatment-Resistant Major Depression: A Two-Site Randomized Controlled Trial. Am. J. Psychiatry 2013, 170, 1134–1142. [Google Scholar] [CrossRef]
- Zanos, P.; Gould, T.D. Mechanisms of ketamine action as an antidepressant. Mol. Psychiatry 2018, 23, 801–811. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Carvalho, I.P.; Lui, L.M.W.; Majeed, A.; Masand, P.S.; Gill, H.; Rodrigues, N.B.; Lipsitz, O.; Coles, A.C.; Lee, Y.; et al. The effect of intravenous, intranasal, and oral ketamine in mood disorders: A meta-analysis. J. Affect. Disord. 2020, 276, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Arabzadeh, S.; Hakkikazazi, E.; Shahmansouri, N.; Tafakhori, A.; Ghajar, A.; Jafarinia, M.; Akhondzadeh, S. Does oral administration of ketamine accelerate response to treatment in major depressive disorder? Results of a double-blind controlled trial. J. Affect. Disord. 2018, 235, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-D.; Xiang, Y.-T.; Fang, J.-X.; Zu, S.; Sha, S.; Shi, H.; Ungvari, G.S.; Correll, C.U.; Chiu, H.F.K.; Xue, Y.; et al. Single i.v. ketamine augmentation of newly initiated escitalopram for major depression: Results from a randomized, placebo-controlled 4-week study. Psychol. Med. 2016, 46, 623–635. [Google Scholar] [CrossRef]
- Chen, M.-H.; Cheng, C.-M.; Gueorguieva, R.; Lin, W.-C.; Li, C.-T.; Hong, C.-J.; Tu, P.-C.; Bai, Y.-M.; Tsai, S.-J.; Krystal, J.H.; et al. Maintenance of antidepressant and antisuicidal effects by D-cycloserine among patients with treatment-resistant depression who responded to low-dose ketamine infusion: A double-blind randomized placebo–control study. Neuropsychopharmacology 2019, 44, 2112–2118. [Google Scholar] [CrossRef]
- Wilkinson, S.T.; Ballard, E.D.; Bloch, M.H.; Mathew, S.J.; Murrough, J.W.; Feder, A.; Sos, P.; Wang, G.; Zarate, C.A.; Sanacora, G. The Effect of a Single Dose of Intravenous Ketamine on Suicidal Ideation: A Systematic Review and Individual Participant Data Meta-Analysis. Am. J. Psychiatry 2018, 175, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Zorumski, C.F.; Nagele, P.; Mennerick, S.; Conway, C.R. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy. Front. Psychiatry 2015, 6, 172. [Google Scholar] [CrossRef]
- Gálvez, V.; Li, A.; Huggins, C.; Glue, P.; Martin, D.; Somogyi, A.A.; Alonzo, A.; Rodgers, A.; Mitchell, P.B.; Loo, C.K. Repeated intranasal ketamine for treatment-resistant depression—The way to go? Results from a pilot randomised controlled trial. J. Psychopharmacol. 2018, 32, 397–407. [Google Scholar] [CrossRef]
- Chen, L.; Chen, C.; Chen, C.; Chang, H.; Huang, M.; Xu, K. Association of Craving and Depressive Symptoms in Ketamine-Dependent Patients Undergoing Withdrawal Treatment. Am. J. Addict. 2020, 29, 43–50. [Google Scholar] [CrossRef]
- Hashimoto, K.; Ide, S.; Ikeda, K. (Eds.) Ketamine: From Abused Drug to Rapid-Acting Antidepressant; Springer: Singapore, 2020; ISBN 9789811529016. [Google Scholar]
- Lener, M.S.; Kadriu, B.; Zarate, C.A. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression. Drugs 2017, 77, 381–401. [Google Scholar] [CrossRef]
- Fu, D.-J.; Ionescu, D.F.; Li, X.; Lane, R.; Lim, P.; Sanacora, G.; Hough, D.; Manji, H.; Drevets, W.C.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Major Depressive Disorder Symptoms in Patients Who Have Active Suicidal Ideation with Intent: Double-Blind, Randomized Study (ASPIRE I). J. Clin. Psychiatry 2020, 81, 6605. [Google Scholar] [CrossRef]
- Pierce, S. FDA Approves Spravato, a Fast-Acting Antidepressant Nasal Spray. 2019. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified (accessed on 4 September 2023).
- BBC. Antidepressant Spray Not Recommended on NHS. 2020. Available online: https://www.bbc.com/news/health-51279176 (accessed on 4 September 2023).
- Agboola, F.; Atlas, S.J.; Touchette, D.R.; Fazioli, K.; Pearson, S.D. The Effectiveness and Value of Esketamine for the Management of Treatment-Resistant Depression: A Summary from the Institute for Clinical and Economic Review’s Midwest Comparative Effectiveness Public Advisory Council. J. Manag. Care Spec. Pharm. 2020, 26, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.L.; Soeteman, D.I. Cost-Effectiveness of Esketamine Nasal Spray for Patients with Treatment-Resistant Depression in the United States. Psychiatr. Serv. 2020, 71, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Ochs-Ross, R.; Daly, E.J.; Zhang, Y.; Lane, R.; Lim, P.; Morrison, R.L.; Hough, D.; Manji, H.; Drevets, W.C.; Sanacora, G.; et al. Efficacy and Safety of Esketamine Nasal Spray Plus an Oral Antidepressant in Elderly Patients with Treatment-Resistant Depression—TRANSFORM-3. Am. J. Geriatr. Psychiatry 2020, 28, 121–141. [Google Scholar] [CrossRef]
- Popova, V.; Daly, E.J.; Trivedi, M.; Cooper, K.; Lane, R.; Lim, P.; Mazzucco, C.; Hough, D.; Thase, M.E.; Shelton, R.C.; et al. Efficacy and Safety of Flexibly Dosed Esketamine Nasal Spray Combined With a Newly Initiated Oral Antidepressant in Treatment-Resistant Depression: A Randomized Double-Blind Active-Controlled Study. Am. J. Psychiatry 2019, 176, 428–438. [Google Scholar] [CrossRef]
- Fedgchin, M.; Trivedi, M.; Daly, E.J.; Melkote, R.; Lane, R.; Lim, P.; Vitagliano, D.; Blier, P.; Fava, M.; Liebowitz, M.; et al. Efficacy and Safety of Fixed-Dose Esketamine Nasal Spray Combined with a New Oral Antidepressant in Treatment-Resistant Depression: Results of a Randomized, Double-Blind, Active-Controlled Study (TRANSFORM-1). Int. J. Neuropsychopharmacol. 2019, 22, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.J.; Trivedi, M.H.; Janik, A.; Li, H.; Zhang, Y.; Li, X.; Lane, R.; Lim, P.; Duca, A.R.; Hough, D.; et al. Efficacy of Esketamine Nasal Spray Plus Oral Antidepressant Treatment for Relapse Prevention in Patients with Treatment-Resistant Depression: A Randomized Clinical Trial. JAMA Psychiatry 2019, 76, 893–903. [Google Scholar] [CrossRef]
- Wajs, E.; Aluisio, L.; Holder, R.; Daly, E.J.; Lane, R.; Lim, P.; George, J.E.; Morrison, R.L.; Sanacora, G.; Young, A.H.; et al. Esketamine Nasal Spray Plus Oral Antidepressant in Patients with Treatment-Resistant Depression: Assessment of Long-Term Safety in a Phase 3, Open-Label Study (SUSTAIN-2). J. Clin. Psychiatry 2020, 81, 10773. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.; Chen, L.; Lane, R.; Doherty, T.; Drevets, W.C.; Morrison, R.L.; Sanacora, G.; Wilkinson, S.T.; Popova, V.; Fu, D.-J. Long-term safety and maintenance of response with esketamine nasal spray in participants with treatment-resistant depression: Interim results of the SUSTAIN-3 study. Neuropsychopharmacology 2023, 48, 1225–1233. [Google Scholar] [CrossRef]
- Gastaldon, C.; Raschi, E.; Kane, J.M.; Barbui, C.; Schoretsanitis, G. Post-Marketing Safety Concerns with Esketamine: A Disproportionality Analysis of Spontaneous Reports Submitted to the FDA Adverse Event Reporting System. Psychother. Psychosom. 2021, 90, 41–48. [Google Scholar] [CrossRef]
- Doherty, T.; Daly, E.J.; Miller, J.; Popova, V.; Cepeda, M.S.; Drevets, W.C.; Canuso, C.M. Comments to Drs. Gastaldon, Raschi, Kane, Barbui, and Schoretsanitis. Psychother. Psychosom. 2021, 90, 138–139. [Google Scholar] [CrossRef]
- FDA, S. Prescribing Information; Black Box Warning. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211243lbl.pdf (accessed on 4 September 2023).
- Bahji, A.; Vazquez, G.H.; Zarate, C.A. Comparative efficacy of racemic ketamine and esketamine for depression: A systematic review and meta-analysis. J. Affect. Disord. 2021, 278, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Correia-Melo, F.S.; Leal, G.C.; Vieira, F.; Jesus-Nunes, A.P.; Mello, R.P.; Magnavita, G.; Caliman-Fontes, A.T.; Echegaray, M.V.F.; Bandeira, I.D.; Silva, S.S.; et al. Efficacy and safety of adjunctive therapy using esketamine or racemic ketamine for adult treatment-resistant depression: A randomized, double-blind, non-inferiority study. J. Affect. Disord. 2020, 264, 527–534. [Google Scholar] [CrossRef] [PubMed]
- AClinicalTrials.gov Identifier: NCT04599855. Study of Esketamine Nasal Spray, Administered as Monotherapy, in Adult Participants with Treatment-resistant Depression. 2020. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04599855 (accessed on 4 September 2023).
- Leal, G.C.; Bandeira, I.D.; Correia-Melo, F.S.; Telles, M.; Mello, R.P.; Vieira, F.; Lima, C.S.; Jesus-Nunes, A.P.; Guerreiro-Costa, L.N.F.; Marback, R.F.; et al. Intravenous arketamine for treatment-resistant depression: Open-label pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 577–582. [Google Scholar] [CrossRef]
- Leal, G.C.; Souza-Marques, B.; Mello, R.P.; Bandeira, I.D.; Caliman-Fontes, A.T.; Carneiro, B.A.; Faria-Guimarães, D.; Guerreiro-Costa, L.N.F.; Jesus-Nunes, A.P.; Silva, S.S.; et al. Arketamine as adjunctive therapy for treatment-resistant depression: A placebo-controlled pilot study. J. Affect. Disord. 2023, 330, 7–15. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov Identifier: NCT05414422. A Randomized, Placebo-Controlled, Double-Blind Study to Assess Safety and Efficacy of PCN-101 in TRD. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05414422 (accessed on 4 September 2023).
- Mathai, D.S.; Meyer, M.J.; Storch, E.A.; Kosten, T.R. The relationship between subjective effects induced by a single dose of ketamine and treatment response in patients with major depressive disorder: A systematic review. J. Affect. Disord. 2020, 264, 123–129. [Google Scholar] [CrossRef]
- Serafini, M.; Cargnin, S.; Massarotti, A.; Pirali, T.; Genazzani, A.A. Essential Medicinal Chemistry of Essential Medicines. J. Med. Chem. 2020, 63, 10170–10187. [Google Scholar] [CrossRef]
- Nagele, P.; Duma, A.; Kopec, M.; Gebara, M.A.; Parsoei, A.; Walker, M.; Janski, A.; Panagopoulos, V.N.; Cristancho, P.; Miller, J.P.; et al. Nitrous Oxide for Treatment-Resistant Major Depression: A Proof-of-Concept Trial. Biol. Psychiatry 2015, 78, 10–18. [Google Scholar] [CrossRef]
- Yan, D.; Liu, B.; Wei, X.; Ou, W.; Liao, M.; Ji, S.; Peng, Y.; Liu, J.; Wu, S.; Wang, M.; et al. Efficacy and safety of nitrous oxide for patients with treatment-resistant depression, a randomized controlled trial. Psychiatry Res. 2022, 317, 114867. [Google Scholar] [CrossRef]
- Garakani, A.; Jaffe, R.J.; Savla, D.; Welch, A.K.; Protin, C.A.; Bryson, E.O.; McDowell, D.M. Neurologic, psychiatric, and other medical manifestations of nitrous oxide abuse: A systematic review of the case literature: Toxic Effects of Nitrous Oxide Abuse. Am. J. Addict. 2016, 25, 358–369. [Google Scholar] [CrossRef]
- Liu, H.; Kerzner, J.; Demchenko, I.; Wijeysundera, D.N.; Kennedy, S.H.; Ladha, K.S.; Bhat, V. Nitrous oxide for the treatment of psychiatric disorders: A systematic review of the clinical trial landscape. Acta Psychiatr. Scand. 2022, 146, 126–138. [Google Scholar] [CrossRef]
- Mohammadi, M.; Kazeminia, M.; Abdoli, N.; Khaledipaveh, B.; Shohaimi, S.; Salari, N.; Hosseinian-Far, M. The effect of methadone on depression among addicts: A systematic review and meta-analysis. Health Qual. Life Outcomes 2020, 18, 373. [Google Scholar] [CrossRef] [PubMed]
- Fogaça, M.V.; Fukumoto, K.; Franklin, T.; Liu, R.-J.; Duman, C.H.; Vitolo, O.V.; Duman, R.S. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology 2019, 44, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Relmada. Relmada Therapeutics Announces Top-Line Results from REL-1017 Phase 2 Study in Individuals with Treatment Resistant Depression. 2019. Available online: https://www.prnewswire.com/news-releases/relmada-therapeutics-announces-top-line-results-from-rel-1017-phase-2-study-in-individuals-with-treatment-resistant-depression-300938577.html (accessed on 4 September 2023).
- Nemeroff, C.B. Back to the Future: Esmethadone, the (Maybe) Nonopiate Opiate, and Depression. Am. J. Psychiatry 2022, 179, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Stahl, S.; Pani, L.; De Martin, S.; Pappagallo, M.; Guidetti, C.; Alimonti, A.; Bettini, E.; Mangano, R.M.; Wessel, T.; et al. REL-1017 (Esmethadone) as Adjunctive Treatment in Patients with Major Depressive Disorder: A Phase 2a Randomized Double-Blind Trial. Am. J. Psychiatry 2022, 179, 122–131. [Google Scholar] [CrossRef]
- Guidetti, C.; Serra, G.; Pani, L.; Pappagallo, M.; Maglio, G.; Martin, S.D.; Mattarei, A.; Folli, F.; Manfredi, P.L.; Fava, M. Subanalysis of Subjective Cognitive Measures from a Phase 2, Double-Blind, Randomized Trial of REL-1017 in Patients with Major Depressive Disorder. Prim. Care Companion CNS Disord. 2023, 25, 45626. [Google Scholar] [CrossRef]
- Relmada Therapeutics NCT05081167. 2022. Available online: https://www.relmada.com/for-investors/news/detail/269/relmada-therapeutics-announces-top-line-results-from-phase (accessed on 4 September 2023).
- Relmada Therapeutics NCT04688164. 2022. Available online: https://www.relmada.com/for-investors/news/detail/272/relmada-therapeutics-announces-top-line-results-from-phase (accessed on 4 September 2023).
- ClinicalTrials.gov Identifier: NCT04855747. A Study to Assess the Efficacy and Safety of REL-1017 as Adjunctive Treatment for Major Depressive Disorder (MDD) (RELIANCE-II). 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04855747?term=reliance+II&draw=2&rank=1 (accessed on 4 September 2023).
- Ghaemi, N.; Sverdlov, A.; Shelton, R.; Litman, R. Efficacy and safety of mij821 in patients with treatment-resistant depression: Results from a randomized, placebo-controlled, proof-of-concept study. Eur. Psychiatry 2021, 64, S334–S335. [Google Scholar] [CrossRef]
- Umbricht, D.; Niggli, M.; Sanwald-Ducray, P.; Deptula, D.; Moore, R.; Grünbauer, W.; Boak, L.; Fontoura, P. Randomized, Double-Blind, Placebo-Controlled Trial of the mGlu2/3 Negative Allosteric Modulator Decoglurant in Partially Refractory Major Depressive Disorder. J. Clin. Psychiatry 2020, 81, 467. [Google Scholar] [CrossRef]
- Watanabe, M.; Marcy, B.; Hiroki, A.; Watase, H.; Kinoshita, K.; Iijima, M.; Marumo, T.; Zarate, C.A.; Chaki, S. Evaluation of the Safety, Tolerability, and Pharmacokinetic Profiles of TP0473292 (TS-161), A Prodrug of a Novel Orthosteric mGlu2/3 Receptor Antagonist TP0178894, in Healthy Subjects and Its Antidepressant-Like Effects in Rodents. Int. J. Neuropsychopharmacol. 2022, 25, 106–117. [Google Scholar] [CrossRef]
- Zarate, C.A.; Mathews, D.; Ibrahim, L.; Chaves, J.F.; Marquardt, C.; Ukoh, I.; Jolkovsky, L.; Brutsche, N.E.; Smith, M.A.; Luckenbaugh, D.A. A Randomized Trial of a Low-Trapping Nonselective N-Methyl-D-Aspartate Channel Blocker in Major Depression. Biol. Psychiatry 2013, 74, 257–264. [Google Scholar] [CrossRef]
- Ibrahim, L.; DiazGranados, N.; Jolkovsky, L.; Brutsche, N.; Luckenbaugh, D.A.; Herring, W.J.; Potter, W.Z.; Zarate, C.A. A Randomized, Placebo-Controlled, Crossover Pilot Trial of the Oral Selective NR2B Antagonist MK-0657 in Patients With Treatment-Resistant Major Depressive Disorder. J. Clin. Psychopharmacol. 2012, 32, 551–557. [Google Scholar] [CrossRef]
- Kadriu, B.; Musazzi, L.; Henter, I.D.; Graves, M.; Popoli, M.; Zarate, C.A. Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int. J. Neuropsychopharmacol. 2019, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Sanacora, G.; Schatzberg, A.F. Ketamine: Promising Path or False Prophecy in the Development of Novel Therapeutics for Mood Disorders? Neuropsychopharmacology 2015, 40, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Zarate, C.A.; Singh, J.B.; Quiroz, J.A.; De Jesus, G.; Denicoff, K.K.; Luckenbaugh, D.A.; Manji, H.K.; Charney, D.S. A Double-Blind, Placebo-Controlled Study of Memantine in the Treatment of Major Depression. Am. J. Psychiatry 2006, 163, 153–155. [Google Scholar] [CrossRef]
- Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther. 2016, 159, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Robson, M.J.; Healy, J.R.; Scandinaro, A.L.; Matsumoto, R.R. Involvement of Sigma-1 Receptors in the Antidepressant-like Effects of Dextromethorphan. PLoS ONE 2014, 9, e89985. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Matsumoto, R.R. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Behav. Brain Res. 2015, 295, 26–34. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chen, S.-L.; Chang, Y.-H.; Chen, S.-H.; Chu, C.-H.; Huang, S.-Y.; Tzeng, N.-S.; Wang, C.-L.; Lee, I.H.; Yeh, T.L.; et al. The DRD2/ANKK1 gene is associated with response to add-on dextromethorphan treatment in bipolar disorder. J. Affect. Disord. 2012, 138, 295–300. [Google Scholar] [CrossRef]
- Olney, N.; Rosen, H. AVP-923, a combination of dextromethorphan hydrobromide and quinidine sulfate for the treatment of pseudobulbar affect and neuropathic pain. IDrugs Investig. Drugs J. 2010, 13, 254–265. [Google Scholar]
- Murrough, J.W.; Stade, E.; Sayed, S.; Ahle, G.; Kiraly, D.D.; Welch, A.; Collins, K.A.; Soleimani, L.; Iosifescu, D.V.; Charney, D.S. Dextromethorphan/quinidine pharmacotherapy in patients with treatment resistant depression: A proof of concept clinical trial. J. Affect. Disord. 2017, 218, 277–283. [Google Scholar] [CrossRef]
- Khoury, R. Deuterated dextromethorphan/quinidine for agitation in Alzheimer’s disease. Neural Regen. Res. 2022, 17, 1013. [Google Scholar] [CrossRef]
- Jones, G.; Hinman, H.; Mays, E.; Liaou, D. Psychedelics and Response Duration. J. Psychedelic Psychiatry 2021, 3. Available online: https://www.journalofpsychedelicpsychiatry.org/_files/ugd/e07c59_079905f8245149a98c2f468a583a9f98.pdf (accessed on 4 September 2023).
- Tabuteau, H.; Jones, A.; Anderson, A.; Jacobson, M.; Iosifescu, D.V. Effect of AXS-05 (Dextromethorphan-Bupropion) in Major Depressive Disorder: A Randomized Double-Blind Controlled Trial. Am. J. Psychiatry 2022, 179, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Axsome Therapeutics. Axsome Therapeutics Announces Topline Results of the STRIDE-1 Phase 3 Trial in Treatment Resistant Depression and Expert Call to Discuss Clinical Implications. 2020. Available online: https://www.biospace.com/article/releases/axsome-therapeutics-announces-topline-results-of-the-stride-1-phase-3-trial-in-treatment-resistant-depression-and-expert-call-to-discuss-clinical-implications (accessed on 4 September 2023).
- Axsome Therapeutics. Axsome Therapeutics Announces Positive Results from the COMET-SI Trial of AXS-05 in Patients with Major Depressive Disorder Who Have Suicidal Ideation. 2020. Available online: https://www.globenewswire.com/news-release/2020/12/08/2141143/0/en/Axsome-Therapeutics-Announces-Positive-Results-from-the-COMET-SI-Trial-of-AXS-05-in-Patients-with-Major-Depressive-Disorder-Who-Have-Suicidal-Ideation.html (accessed on 4 September 2023).
- Jones, A.; Streicher, C.; Alter, S.; Thomas, Z.; Tabuteau, H. Improvement in Anxiety Symptoms in Depressed Patients Treated with AXS-05 (DEXTROMETHORPHAN-BUPROPION): Results from the Evolve Open-Label, Long-Term Study. CNS Spectr. 2023, 28, 260. [Google Scholar] [CrossRef]
- VistaGen Therapeutics AV-101 as Adjunct Antidepressant Therapy in Patients with Major Depression (ELEVATE). 2019. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03078322 (accessed on 4 September 2023).
- Park, L.T.; Kadriu, B.; Gould, T.D.; Zanos, P.; Greenstein, D.; Evans, J.W.; Yuan, P.; Farmer, C.A.; Oppenheimer, M.; George, J.M.; et al. A Randomized Trial of the N-Methyl-d-Aspartate Receptor Glycine Site Antagonist Prodrug 4-Chlorokynurenine in Treatment-Resistant Depression. Int. J. Neuropsychopharmacol. 2020, 23, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ragguett, R.-M.; Rong, C.; Kratiuk, K.; McIntyre, R.S. Rapastinel—An investigational NMDA-R modulator for major depressive disorder: Evidence to date. Expert Opin. Investig. Drugs 2019, 28, 113–119. [Google Scholar] [CrossRef]
- Burgdorf, J.; Zhang, X.; Weiss, C.; Gross, A.; Boikess, S.R.; Kroes, R.A.; Khan, M.A.; Burch, R.M.; Rex, C.S.; Disterhoft, J.F.; et al. The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience 2015, 308, 202–211. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, J.; Han, M.; Yao, W.; Yang, C.; Ren, Q.; Ma, M.; Chen, Q.-X.; Hashimoto, K. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Psychopharmacology 2016, 233, 3647–3657. [Google Scholar] [CrossRef]
- Preskorn, S.; Macaluso, M.; Mehra, D.V.; Zammit, G.; Moskal, J.R.; Burch, R.M. Randomized Proof of Concept Trial of GLYX-13, an N-Methyl-D-Aspartate Receptor Glycine Site Partial Agonist, in Major Depressive Disorder Nonresponsive to a Previous Antidepressant Agent. J. Psychiatr. Pract. 2015, 21, 140–149. [Google Scholar] [CrossRef]
- Fasipe, O.; Akhideno, P.; Owhin, O.; Ibiyemi-Fasipe, O. Announcing the first novel class of rapid-onset antidepressants in clinical practice. J. Med. Sci. 2019, 39, 205–216. [Google Scholar] [CrossRef]
- Naurex Naurex’s First Orally Active Molecule, NRX-1074, Demonstrates Statistically Significant Improvement in Depression Scores within 24 Hours in Phase 2 Study for Major Depressive Disorder. 2015. Available online: https://www.mccormick.northwestern.edu/research/molecular-therapeutics-falk-center/documents/publicity/naurex-nrx-1074.pdf (accessed on 4 September 2023).
- Crane, G.E. CYLOSERINE AS AN ANTIDEPRESSANT AGENT. Am. J. Psychiatry 1959, 115, 1025–1026. [Google Scholar] [CrossRef]
- Schade, S.; Paulus, W. D-Cycloserine in Neuropsychiatric Diseases: A Systematic Review. Int. J. Neuropsychopharmacol. 2016, 19, pyv102. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Jaussi, W.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Consolidation of Human Motor Cortical Neuroplasticity by D-Cycloserine. Neuropsychopharmacology 2004, 29, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Heresco-Levy, U.; Javitt, D.C.; Gelfin, Y.; Gorelik, E.; Bar, M.; Blanaru, M.; Kremer, I. Controlled trial of d-cycloserine adjuvant therapy for treatment-resistant major depressive disorder. J. Affect. Disord. 2006, 93, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Heresco-Levy, U.; Gelfin, G.; Bloch, B.; Levin, R.; Edelman, S.; Javitt, D.C.; Kremer, I. A randomized add-on trial of high-dose d-cycloserine for treatment-resistant depression. Int. J. Neuropsychopharmacol. 2013, 16, 501–506. [Google Scholar] [CrossRef]
- McGirr, A.; Cole, J.; Sohn, M.; Harris, A.; Bray, S. Adjunctive D-Cycloserine with Intermittent Theta-Burst Stimulation: A Randomized Placebo-Controlled Trial in Major Depressive Disorder. Biol. Psychiatry 2022, 91, S78. [Google Scholar] [CrossRef]
- Jaeschke, G.; Kolczewski, S.; Spooren, W.; Vieira, E.; Bitter-Stoll, N.; Boissin, P.; Borroni, E.; Büttelmann, B.; Ceccarelli, S.; Clemann, N.; et al. Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators: Discovery of 2-Chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1 H-imidazol-4-ylethynyl]pyridine (Basimglurant, RO4917523), a Promising Novel Medicine for Psychiatric Diseases. J. Med. Chem. 2015, 58, 1358–1371. [Google Scholar] [CrossRef]
- Quiroz, J.A.; Tamburri, P.; Deptula, D.; Banken, L.; Beyer, U.; Rabbia, M.; Parkar, N.; Fontoura, P.; Santarelli, L. Efficacy and Safety of Basimglurant as Adjunctive Therapy for Major Depression: A Randomized Clinical Trial. JAMA Psychiatry 2016, 73, 675–684. [Google Scholar] [CrossRef]
- Cosson, V.; Schaedeli-Stark, F.; Arab-Alameddine, M.; Chavanne, C.; Guerini, E.; Derks, M.; Mallalieu, N.L. Population Pharmacokinetic and Exposure-dizziness Modeling for a Metabotropic Glutamate Receptor Subtype 5 Negative Allosteric Modulator in Major Depressive Disorder Patients: PK and Exposure-dizziness modeling for basimglurant. Clin. Transl. Sci. 2018, 11, 523–531. [Google Scholar] [CrossRef]
- Banasr, M.; Chowdhury, G.M.I.; Terwilliger, R.; Newton, S.S.; Duman, R.S.; Behar, K.L.; Sanacora, G. Glial pathology in an animal model of depression: Reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol. Psychiatry 2010, 15, 501–511. [Google Scholar] [CrossRef]
- Mizuta, I.; Ohta, M.; Ohta, K.; Nishimura, M.; Mizuta, E.; Kuno, S. Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neurosci. Lett. 2001, 310, 117–120. [Google Scholar] [CrossRef]
- Brennan, B.P.; Hudson, J.I.; Jensen, J.E.; McCarthy, J.; Roberts, J.L.; Prescot, A.P.; Cohen, B.M.; Pope, H.G.; Renshaw, P.F.; Öngür, D. Rapid Enhancement of Glutamatergic Neurotransmission in Bipolar Depression Following Treatment with Riluzole. Neuropsychopharmacology 2010, 35, 834–846. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.N.; Vingerhoets, C.; Hirdes, M.; McAlonan, G.M.; Amelsvoort, T.V.; Zinkstok, J.R. Efficacy and tolerability of riluzole in psychiatric disorders: A systematic review and preliminary meta-analysis. Psychiatry Res. 2019, 278, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Pinna, G. Allopregnanolone (1938–2019): A trajectory of 80 years of outstanding scientific achievements. Neurobiol. Stress 2020, 13, 100246. [Google Scholar] [CrossRef] [PubMed]
- Kanes, S.; Colquhoun, H.; Gunduz-Bruce, H.; Raines, S.; Arnold, R.; Schacterle, A.; Doherty, J.; Epperson, C.N.; Deligiannidis, K.M.; Riesenberg, R.; et al. Brexanolone (SAGE-547 injection) in post-partum depression: A randomised controlled trial. Lancet 2017, 390, 480–489. [Google Scholar] [CrossRef]
- Kanes, S.J.; Colquhoun, H.; Doherty, J.; Raines, S.; Hoffmann, E.; Rubinow, D.R.; Meltzer-Brody, S. Open-label, proof-of-concept study of brexanolone in the treatment of severe postpartum depression. Hum. Psychopharmacol. Clin. Exp. 2017, 32, e2576. [Google Scholar] [CrossRef]
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; et al. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 2018, 392, 1058–1070. [Google Scholar] [CrossRef]
- Hutcherson, T.C.; Cieri-Hutcherson, N.E.; Gosciak, M.F. Brexanolone for postpartum depression. Am. J. Health. Syst. Pharm. 2020, 77, 336–345. [Google Scholar] [CrossRef]
- FDA. FDA Approves First Treatment for Post-Partum Depression. 2019. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-post-partum-depression (accessed on 4 September 2023).
- Dichtel, L.E.; Nyer, M.; Dording, C.; Fisher, L.B.; Cusin, C.; Shapero, B.G.; Pedrelli, P.; Kimball, A.S.; Rao, E.M.; Mischoulon, D.; et al. Effects of Open-Label, Adjunctive Ganaxolone on Persistent Depression Despite Adequate Antidepressant Treatment in Postmenopausal Women: A Pilot Study. J. Clin. Psychiatry 2020, 81, 7602. [Google Scholar] [CrossRef]
- Gutierrez-Esteinou, R.; Maximos, B.; Riesenberg, R.; Johnson, K.A.; Aimetti, A.; Lappalainen, J.; Masuoka, L. T136. Safety and Efficacy of Intravenous Ganaxolone in Severe Postpartum Depression: Results from a Double-Blind, Placebo-Controlled Phase 2 Study. Biol. Psychiatry 2019, 85, S181–S182. [Google Scholar] [CrossRef]
- Sage Therapeutics. Sage Therapeutics Reports Topline Results from Pivotal Phase 3 MOUNTAIN Study of SAGE-217 in Major Depressive Disorder. 2019. Available online: https://www.businesswire.com/news/home/20191205005375/en/4676027/Sage-Therapeutics-Reports-Topline-Results-from-Pivotal-Phase-3-MOUNTAIN-Study-of-SAGE-217-in-Major-Depressive-Disorder (accessed on 4 September 2023).
- Clayton, A.H.; Lasser, R.; Parikh, S.V.; Iosifescu, D.V.; Jung, J.; Kotecha, M.; Forrestal, F.; Jonas, J.; Kanes, S.J.; Doherty, J. Zuranolone for the Treatment of Adults with Major Depressive Disorder: A Randomized, Placebo-Controlled Phase 3 Trial. Am. J. Psychiatry 2023, 180, 676–684. [Google Scholar] [CrossRef]
- Deligiannidis, K.M.; Meltzer-Brody, S.; Maximos, B.; Peeper, E.Q.; Freeman, M.; Lasser, R.; Bullock, A.; Kotecha, M.; Li, S.; Forrestal, F.; et al. Zuranolone for the Treatment of Postpartum Depression. Am. J. Psychiatry 2023, 180, 668–675. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA News Release. FDA Approves First Oral Treatment for Postpartum Depression. 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-treatment-postpartum-depression (accessed on 4 August 2023).
- Suchting, R.; Tirumalaraju, V.; Gareeb, R.; Bockmann, T.; De Dios, C.; Aickareth, J.; Pinjari, O.; Soares, J.C.; Cowen, P.J.; Selvaraj, S. Revisiting monoamine oxidase inhibitors for the treatment of depressive disorders: A systematic review and network meta-analysis. J. Affect. Disord. 2021, 282, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Sage Therapeutics. Business Wire. Sage Therapeutics and Biogen Announce FDA Accepts Filing of New Drug Application and Grants Priority Review of Zuranolone in the Treatment of Major Depressive Disorder and Postpartum Depression. 2023. Available online: https://www.businesswire.com/news/home/20230205005025/en/ (accessed on 4 September 2023).
- Drozdz, S.J.; Goel, A.; McGarr, M.W.; Katz, J.; Ritvo, P.; Mattina, G.; Bhat, V.; Diep, C.; Ladha, K.S. Ketamine Assisted Psychotherapy: A Systematic Narrative Review of the Literature. J. Pain Res. 2022, 15, 1691–1706. [Google Scholar] [CrossRef] [PubMed]
- Piva, A.; Caffino, L.; Mottarlini, F.; Pintori, N.; Castillo Díaz, F.; Fumagalli, F.; Chiamulera, C. Metaplastic Effects of Ketamine and MK-801 on Glutamate Receptors Expression in Rat Medial Prefrontal Cortex and Hippocampus. Mol. Neurobiol. 2021, 58, 3443–3456. [Google Scholar] [CrossRef] [PubMed]
Compound | Sponsor | Mechanism | Side Effects | Study Source | Outcome | Sample | Design | Phase | N | Evidence Level |
---|---|---|---|---|---|---|---|---|---|---|
KETAMINE | NIMH/MayoClinic | NMDAR antagonism; AMPAR stimulation | Acute: transient dissociative and psychotomimetic effects, ⬆ HR/BP Chronic: dissociation; cognitive/locomotor deficits; renal toxicity (high abuse potential) | Berman et al., 2000 | + | MDD/BPD | RDBPCT, CO, inactive placebo, IV | II | N = 7 | ++++ |
Zarate et al., 2006a | + | TRD | RDBPCT, CO, inactive placebo, IV | II | N = 17 | |||||
Price et al., 2009 | + | TRD+SI | RDBPCT, single IV infusion [continuation trial for responders⟶ aan het Rot et al., 2010] | II | N = 26 | |||||
aan het Rot et al., 2010 | + | TRD | Pilot OL, repeated infusion [continuation of Price et al., 2009 IV ketamine-responders] | I | N = 10 | |||||
Mathew et al., 2010 | + | TRD | Pilot RCT, single IV dose with lamotrigine pre-treatment & successive continuation riluzole | IV | N = 26 | |||||
Diazgranados et al., 2010a | + | TRBPD | RDBPCT, CO, active placebo, IV, adjunct | II | N = 18 | |||||
Diazgranados et al., 2010b | + | SI+TRD | Single open label IV infusion | II | N = 33 | |||||
Zarate et al., 2012 | + | TRBPD | RDBPCT, CO, inactive placebo, IV, adjunct | II | N = 15 | |||||
Murrough et al., 2013 | + | TRD | RDBPCT, PA, active control, single IV infusion | II | N = 72 (47) | |||||
Sos et al., 2013 | + | MDD | a priori RDBPCT, CO, inactive placebo, IV | III | N = 27 | |||||
Lapidus et al., 2014 | + | TRMDD | RDBPCT, CO, inactive placebo, IN | N/A | N = 20 | |||||
Hu et al., 2016 | + | TRMDD+SI | RDBCT, PG, inactive placebo, single IV infusion, adjunct to new OAD escitalopram | N/A | N = 30 (15) | |||||
Singh et al., 2016a | + | TRD | RDBPCT, inactive placebo, repeated admin, IV | II | N = 67 | |||||
Fava et al., 2018 | + | TRD | RDBPCT, IV adjunct, active placebo, multiple doses, 5-groups (including one control group) | II | N = 99 (80) | |||||
Phillips et al., 2019 | + | TRD | RDBCT, CO, midazolam placebo, repeated/maintenance IV infusions | III | N = 41 | |||||
Domany et al., 2019 | + | TRD/SI/HC | POC, RDBPCT, repeated oral adjunct, inactive placebo | III | N = 41 (22) | |||||
Ionescu et al., 2019 | TRD+SI | RDBPCT, repeated dosing, IV, adjunct | N/A | N = 26 (13) | ||||||
Wilkinson et al., 2019 | + | severe/TR mood disorders | Chart review case series of repeated IV dosing titrated by weight, uncontrolled | N/A | N = 54 | |||||
Roy et al., 2020 | + | Adolescent TRD | Single group open label repeated IV dosing; with pre/post administration MRS imaging | II | N = 13 | |||||
Wilkinson et al., 2017 | + | SI | Systematic Review/Meta-Analysis of 10 controlled trials testing a single IV infusion | SR|MA | N = 167 | |||||
Correia-Melo et al., 2020 | + | TRD | RDBACT, ketamine group; esketamine group | II | N = 63 | |||||
ESKETAMINE/(S)–KETAMINE (SPRAVATO) | J&J (Janssen) | NMDAR antagonism (non-selective/non-competitive) | Transient dissociation (less than ketamine), sedation, anxiety, hypoesthesia, vertigo, dizziness, dysgeusia, GI disturbances, ⬆ BP | Singh et al., 2016b | + | TRD | RDBPCT, IV, adjunct, x2 randomized, PA, optional OL continuation phase | II | N = 30 (20) | +++++ |
Canuso et al., 2018 | + | TRMDD+SI | RDBPCT, IN, adjunct; concluded ineffective for SI | II | N = 68 (35) | |||||
Daly et al., 2018 | + | TRD | RDBPCT, IN, multiple doses, adjunct, partial OL | II | N = 67 (34) | |||||
Ochs-Ross et al., 2018 | Geriatric MDD | RDBPCT, active control, flexible dosing, IN | III | N = 138 | ||||||
Daly et al., 2019 | + | TRD | Long-term RDB withdrawal study, adjunct, IN | III | N = 297 | |||||
Fedgchin et al., 2019 | + | TRD | RDBPCT, IN, active placebo, adjunct; 3 arm | III | N = 346 (233) | |||||
Popova et al., 2019 | + | TRD | RDBPCT, active control, adjunct, flexible dosing | III | N = 227 | |||||
Fu et al., 2020 | + | MDD+active SI | RDBPCT, IN, adjunct, inactive placebo; plus optional follow up continuation (n=192) | III | N = 226 (114) | |||||
Ochs-Ross et al., 2020 | - | Geriatric TRD | RDBACT, adjunct, IN, flexible dosing, new OAD | III | N = 138 (72) | |||||
Wajs et al., 2020 | - | Geriatric TRD | Long-term, OL, uncontrolled, adjunct, IN [continuation of Ochs-Ross et al., 2020] | III | N = 802 | |||||
Ionescu et al., 2020 | + | MDD+active SI | RDBPCT, IN, inactive placebo, new OAD | III | N = 227 (115) | |||||
Correia-Melo et al., 2020 | + | TRD | RDBACT, ketamine group; esketamine group | II | N = 63 | |||||
Zaki et al., 2023 | + | TRD | OL, long-term extension study | III | N = 768 | |||||
Dextromethorphan (DM) Compounds | — | NMDAR antagonism; low affinity σ1 opioid receptor agonism; SERT/NET inhibition | GI disturbances, dizziness, QTc prolongation (in those with heart conditions) | Lee et al., 2012 with corrigendum | - | BPD | RDBPCT, PA, stratified, adjunct | III | N = 309 (203) | Ø |
AVP-923/Nudexta [DM+quinidine] | Avanir | NMDAR antagonism; σ1 agonism; SNRI | Nausea, dizziness, peripheral edema, rare liver malfunction | Messias & Everett, 2012 | + | TRD | Case report on emotional lability in depression | N/A | N = 1 | + |
Kelly & Lieberman, 2014 | + | TRBPD-II | Preliminary retrospective chart review/case series, adjunct; high dropout rates due to nausea | N/A | N = 77 | |||||
Murrough et al., 2017b | + | TRD | POC, repeated BID administration, OL, single arm | IIa | N = 20 | |||||
AXS-05 [DM+bupropion] | Axsome | NMDAR antagonism; σ1 agonism; SNRI; nACh antagonism | Anxiety, restlessness, dry mouth, arrhythmia, irritability, insomnia, hyperventilation | Iosifescu et al., 2022 | + | MDE | RDBPCT, PA, active control, oral | II | N = 97 | +++++ |
Tabuteau et al., 2022 | + | MDD | RDBPCT, PA, 2 arm, oral, repeated administration | III | N = 327 (163) | |||||
NCT02741791/STRIDE-1 | - | TRD | RDBPCT with active placebo, parallel groups, proceding open-label bupropion lead in period | III | N = 312 (156) | |||||
LANICEMINE (AZD6765) | AstraZeneca | low trapping NMDAR channel blocker | No dissociative or psychotomimetic effects | Zarate et al., 2013 | - | TRD | RDBPCT, CO, single IV infusion, inactive placebo | II | N = 22 | Ø |
Sanacora et al., 2013 (NCT00491686) | - | TRMDD | RDBPCT, single administration, IV, parallel groups, monotherapy, PILOT | IIa | N = 34 (16) | |||||
Sanacora et al., 2013 (NCT00781742) | + | TRMDD | RDBPCT, multiple infusions, IV, parallel groups, 3 arm, adjunctive, inactive placebo | IIb | N = 152 (102) | |||||
Sanacora et al., 2017 | - | TRMDD | RDBPCT, PA, IV, 3 arm, inactive placebo, repeated administration, adjunct | IIb | N = 302 (202) | |||||
RILUZOLE | Stanley Medical Research Institute/NIMH/Yale University | AMPAR stimulation; NMDAR inhibition; ⬆ VGLUT reuptake | GI disturbances, dizziness, drowsiness | Zarate et al., 2004 | + | TRD | open label monotherapy | II | N = 19 | +/− |
Zarate et al., 2005 | + | BPD | Adjunct to lithium, OL, non-randomized | II | N = 14 | |||||
Sanacora et al., 2007 | + | TRD | Adjunct to traditional antidepressant, OL | II | N = 10 | |||||
Brennan et al., 2010 | - | BPD | OL, adjunct, brain imaging of POC/ACC, 1 arm | N/A | N = 14 | |||||
Salardini et al., 2016 | + | MDE | RDBPCT, parallel groups, adjunct to citalopram | II & III | N = 64 (32) | |||||
Mathew et al., 2010 | - | TRD | RDBPCT, adjunct to single IV dose ketamine | IV | N = 26 | |||||
Ibrahim et al., 2012a | - | TRD | RDBPCT, adjunct to single dose ketamine | IV | N = 42 | |||||
Niciu et al., 2014 | - | TRD | adjunct to ketamine infusion, parallel groups, oral, flexible dose, RDBPCT | IV | N = 52 | |||||
NCT00376220 | - | BPD | RDBPCT, PA, repeated administration, inactive placebo, gradual dose titration | II | N = 94 (47) | |||||
Park et al., 2017 | - | BPD | RDBPCT, PA, monotherapy, | II | N = 19 | |||||
NCT01204918 | - | TRMDD | RDBPCT, PA, 3 arm, adjunct to SSRI/SNRI | II | N = 104 (64) | |||||
RISLEMENDEZ (CERC-301/MK0657) | Cerecor/NIMH | NMDAR antagonism (NR2B-selective) | No significant dissociative or psychotic effects | Ibrahim et al., 2012b | - | TRD | Pilot RDBPCT, CO, oral, monotherapy | I | N = 5 | Ø |
Paterson et al., 2015b | - | MDD/SI | RDBPCT, sequential parallel, 3-arm, adjunct, repeated administration, low dose; high dropouts | II | N = 137 (81) | |||||
MEMANTINE | NIMH/Forest Laboratories | NMDAR antagonism; σ1 receptor agonism | Body aches, dizziness, confusion, headache, drowsiness, insomnia, constipation, agitation, hallucinations | Zarate et al., 2006b | - | MDD | RDBPCT, parallel, monotherapy, daily oral, | III | N = 32 (16) | +/− |
Muhonen et al., 2008 | - | MDD+alcoholism | Naturalistic RDBPCT, PA, escitalopram placebo, adjunct | IV | N = 80 (40) | |||||
Anand et al., 2012 | - | TRBPD | POC, RDBPCT, parallel groups, adjunct to lamotrigine, repeated administration | IV | N = 29 (14) | |||||
Lenze et al., 2012 | - | Geriatric MDD | Pilot RDBPCT, PA, with 12 month follow up, placebo group and healthy comparator group | IV | N = 35 (17) | |||||
Smith et al., 2013 | - | TRMDD | RDBPCT, PA, adjunct, repeated administration, | IV | N = 31 (15) | |||||
Lepow et al., 2017 | + | MDD | Case Series/retrospective chart review of subjects from Zarate et al., 2006, 2013; Ibrahim et al., 2012a | N/A | N = 7 | |||||
Lavretsky et al., 2020 | - | Geriatric MDD | RDBPCT, adjunct to escitalopram, 12 month naturalistic follow up | IV | N = 95 | |||||
D-METHADONE (Dextromethadone/REL-1017) | Relmada | NMDAR antagonism (non-competitive, non-opioid selective) | No ketamine-like psychotomimetic effects | Fava et al., 2022 | + | MDD | RDBPCT, PA, 3 arms, adjunct, repeated dosing, oral solution dissolved in cranberry juice | IIa | N = 62 | +/− |
NCT04688164 (RELIANCE I) | - | MDD | RDBPCT, 2 arms, adjunctive | III | N = 232 | |||||
NCT05081167 (RELIANCE III) | - | MDD | RDBPCT, 2 arms, monotherapy | III | N = 232 | |||||
NITROUS OXIDE (N2O) | Washington University School of Medicine | NMDAR, AMPAR, KAR, nACh, & 5-HT3 antagonism; GABAA & GlyR potentiation | Well-tolerated Anxiety, nausea, headache, sedation, high abuse potential | Nagele et al., 2015 | + | TRD | Pilot RDBPCT, CO, adjunct to existing treatment, one hour inhalation of 1:1 ratio of nitrous oxide-oxygen OR placebo 1:1 ratio of nitrogen(inert)-oxygen twice over two weeks | II | N = 21 | ++ |
Yan et al., 2022 | + | TRD | RDBPCT, one hour inhalation of 1:1 ratio of nitrous oxide-oxygen OR placebo 1:1 ratio of nitrogen, one time | II | N = 44 | |||||
RAPASTINEL (GLYX-13) | Allergan | NMDAR functional partial agonism (glycine site) | Dissociation | Preskorn et al., 2015 | + | TRMDD | RDBPCT, PA, single administration, multiple doses, IV, inverted U dose response curve, monotherapy | II | N = 115 | Ø |
NCT02943564 | - | MDD | RDBPCT, PA, IV, adjunct, two doses | III | N = 658 (421) | |||||
RAP-MD-01, NCT03675776 | terminated | MDD | RDBPCT, PA, IV, monotherapy, two doses, terminated due to futility | III | N = 50 | |||||
RAP-MD-02, NCT02932943 | - | MDD | RDBPCT, adjunct, IV | III | N = 465 (231) | |||||
RAP-MD-03, NCT02943577 | - | MDD | RDBPCT, adjunct, IV | III | N = 429 (206) | |||||
RAP-MD-04, NCT02951988 | - | MDD | RDBPCT, adjunct, IV, for relapse prevention, two doses, initial open label phase | III | N = 604 (402) | |||||
APIMOSTINEL (NRX-1074/AGN241751) | Allergan | NMDAR functional partial agonism (glycine site) | No ketamine-like psychotomimetic effects | Naurex, 2015 | + | MDD | RDBPCT, single administration, IV, 4 arm | IIb | N = 140 | +++ |
D-CYCLOSERINE | NARSAD/NYS Psychiatric Institute | NMDAR functional partial agonism (glycine site) | Well-tolerated hyperexcitability, dizziness, anxiety, fatigue, GI distress | Heresco-Levy et al., 2006 | - | TRD | RDBPCT, CO, adjunct, dose too low | IIb | N = 22 | +++ |
Heresco-Levy et al., 2013 | + | TRD | RDBPCT, PA, gradual titration to high dose | II | N = 26 (13) | |||||
Kantrowitz et al., 2015 | + | TRBPD | adjunct, maintenance therapy after single ketamine infusion, gradual titration to high dose, | IV | N = 8 | |||||
Newport et al., 2015 | + | Depression | Meta-Analysis/Systematic Review of RDBPCT (Heresco-Levy et al 2006, 2013) | MA|SR | N = 48 | |||||
McGirr et al., 2022 | + | Depression | RDBPCT, iTBS plus placebo or DCS | II | N = 50 | |||||
SARCOSINE | — | GlyT1 inhibition (⬆ NMDAR activity) | Well-tolerated | Huang et al., 2013 | + | MDD | RDBPCT, citalopram control | II | N = 40 | +++ |
BASIMGLURANT (RG-7090/RO4917523) | Hoffman-Roche/Chugai | mGluR5 NAM | GI disturbances, dizziness | Quiroz et al., 2016 | - | TRMDD | RDBPCT, parallel group, 3-arm, adjunct, modified-release basimglurant | IIb | N = 333 (223) | + |
ARKETAMINE (PCN-101) | Perception Neuroscience | NMDAR antagonism | Transient dissociation, nausea, dizziness, somnolence, numbness, blurred vision, ⬆ BP | Leal et al., 2021 | + | TRD | Pilot OL, single infusion | I | N = 7 | +/− |
Leal et al., 2023 | - | TRD | Pilot RDBPCT, crossover study | II | N = 10 | |||||
NCT05414422 | - | TRD | RDBPCT, 3 arm | IIa | N = 102 | |||||
AV-101 (4-Chlorokynurenine/4-CI-KYN) | VistaScience | NMDAR glycine binding site | Headache, drowsiness, MSK pain, sleep disturbances | NCT03078322/ELEVATE | - | MDD | RBDPCT | II | N = 180 | − |
Park et al., 2020 | - | TRD | RDBPCT, crossover study | II | N = 22 | |||||
MIJ-821 (CAD9271) | Novartis | NMDAR antagonism | Amnesia, dizziness, somnolence | Ghaemi et al., 2021 | + | TRD | RDBPCT, parallel group, 3-arm | II | N = 70 | +++ |
DECOGLURANT | Roche Pharmaceutical | mGlu2/3 Receptor Antagonist | Headache, somnolence, orthostactic hypotension, nausea, dizziness, orthostatic ⬆ HR | Umbricht et al., 2020 | - | TRMDD | RDBPCT, parallel group, 4-arm, adjunct | II | N = 357 | Ø |
TS-161 (TP0473292) | Taisho Pharmaceutical | mGlu2/3 Receptor Antagonist | Nausea, dizziness, vomit | Watanabe et al., 2021 | + | TRD | RDBPCT, parallel group | I | N = 8 | +/− |
NCT04821271 | ongoing | TRD | RDBPCT, 2 arm, crossover study | II | N = 25 |
Compound | Sponser | Mechanism | Side Effects | Study Source | Sample | Outcome | Design | N | Phase | Evidence Level |
---|---|---|---|---|---|---|---|---|---|---|
BREXANOLONE (SAGE-547/Zulresso) | Sage | GABAA NAS PAM (ALLO analog) | Sedation, acute loss of consciousness, flushed skin/face, dry mouth, vertigo | Kanes et al., 2017a | severe PPD | + | Single-arm, OL | N = 4 | II | +++++ |
Kanes et al., 2017b (NCT02614547) | TRPPD | + | RDBPCT parallel group | N = 21 (10) | II | |||||
Meltzer-Brody et al., 2018 (NCT02942004) | PPD | + | multicenter, RDBPCT, 3-arm | N = 138 (45) | III | |||||
Meltzer-Brody et al., 2018 (NCT02942017) | PPD | + | multicenter, RDBPCT, 2-arm | N = 108 (54) | III | |||||
Hutcherson et al., 2020 | PPD | +/− | Review of above 3 RCTs and 1 quasi-experimental study | N = 271 (160) | SR|MR | |||||
ZURANOLONE (SAGE-217) | Sage | GABAA NAS PAM (ALLO analog) | Headache, dizziness, nausea, somnolence | Gunduz-Bruce et al., 2019 | MDD | + | RDBPCT | N = 89 (45) | II | +++++ |
MOUNTAIN (Sage, 2019) | MDD | - | RDBPCT, 3-arm | N = 581 (424) | III | |||||
Clayton et al., 2023 | MDD | + | RDBPCT | N = 543 | III | |||||
Deligiannidis et al., 2023 | PPD | + | RDBPCT | N = 196 | III | |||||
GANAXOLONE (CCD-1042) | Marinus | GABAA NAS PAM (ALLO analog) | Sedation, dizziness | Gutierrez-Esteinou et al., 2019 | severe PPD | + | RDBPCT, 3 doses | N = 58 (30) | II | +++ |
Dichtel et al., 2020 | postmenopausal women w/TRD | + | pilot OL, adjunct, uncontrolled | N = 10 | N/A |
+++++ | FDA-approval for depression (positive results from Phase 3 RCTs) |
++++ | Support from meta-analyses/systematic reviews of Phase III RDBPCTs with positive data (N > 100 per group) |
+++ | Positive results in Phase II and/or in RDBPCT(s), including meta-analysis/systematic reviews (N of 30–100 per group) |
++ | Positive results in smaller RCTs (N < 30 per group) |
+ | Preliminary positive results in open-label, uncontrolled, observational, OR case series |
+/− | Results vary between/within studies; inconclusive efficacy based on available data |
Ø | FDA rejected or overall negative/unsubstantiated results |
+ | Overall Positive Study Outcome |
– | Overall Negative Study Outcome |
+/− | Mixed Study Results |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecera, C.M.; C. Courtes, A.; Jones, G.; Soares, J.C.; Machado-Vieira, R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals 2023, 16, 1572. https://doi.org/10.3390/ph16111572
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals. 2023; 16(11):1572. https://doi.org/10.3390/ph16111572
Chicago/Turabian StyleVecera, Courtney M., Alan C. Courtes, Gregory Jones, Jair C. Soares, and Rodrigo Machado-Vieira. 2023. "Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression" Pharmaceuticals 16, no. 11: 1572. https://doi.org/10.3390/ph16111572