Influence Mechanism of Drug–Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Methodological Validation
2.2. Characterization of CSD Prepared by P188, P407 and PEG8000
2.2.1. Surface Morphology and Microstructure of CSD
2.2.2. Crystalline Form and Crystalline Domain Size (CDSz)
2.2.3. Crystalline Size of BFZ
2.2.4. Crystallinity of BFZ
2.2.5. Intrinsic Dissolution Rate
2.3. Effect of Humidity on the Microstructure and Dissolution Behavior of CSD
2.3.1. Effect of Humidity on the IDR
2.3.2. Effect of Humidity Treatment on the Crystallinity and Microstructure of CDSz
2.3.3. Compatibility of BFZ with Polymers
2.3.4. Surface Composition of CSD
3. Materials and Methods
3.1. Materials
3.2. HPLC Method and Methodology
3.3. Preparation of BFZ-CSD and Physical Mixing (PM)
3.4. Powder X-ray Diffraction (PXRD)
3.5. Scanning Electron Microscopy (SEM)
3.6. Differential Scanning Calorimetry (DSC)
3.6.1. Drug–Polymer Flory–Huggins Interaction Parameter
3.6.2. Compatibility of BFZ with Polymers
3.7. Hansen Solubility Parameter
3.8. Laser Particle Size Analyzer
3.9. Stability Experiment
3.10. X-ray Photoelectron Spectroscopy (XPS)
3.11. Intrinsic Dissolution Rate (IDR)
3.12. Statistical Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olga, C.; Pimnitah, V.; Komal, K.; Nefzi, A.; Oleinikov, A.V. Small Molecule Compounds Identified from Mixture-Based Library Inhibit Binding between Plasmodium falciparum Infected Erythrocytes and Endothelial Receptor ICAM-1. Int. J. Mol. Sci. 2021, 22, 5659. [Google Scholar]
- Yu, C.; Jian, Y.; Dominik, E.; Fangzhe, Z.; Dawei, Q.; Lurua, K.; Jia, C.; Peurla, M.; Rosenholm, J.M.; Zhao, Z.; et al. Self-Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angew. Chem. 2020, 133, 3099–3107. [Google Scholar]
- Elebring, T.; Gill, A.; Plowright, A.T. What is the most important approach in current drug discovery: Doing the right things or doing things right. Drug Discov. Today 2012, 17, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.P.; Young, R.J. Getting physical in drug discovery: A contemporary perspective on solubility and hydrophobicity. Drug Discov. Today 2010, 15, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.L.J.; Billa, N. Improved bioavailability of poorly soluble drugs through gastrointestinal muco-adhesion of lipid nanoparticles. Pharmaceutics 2021, 13, 1817. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Hu, Y.; Liu, L.; Su, L.; Li, N.; Yu, J.; Tang, B.; Yang, Z. Physical stability of amorphous solid dispersions: A physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharm. Res. 2018, 35, 1–18. [Google Scholar] [CrossRef]
- Zhao, P.; Hu, G.; Chen, H.; Li, M.; Wang, Y.; Sun, N.; Wang, L.; Xu, Y.; Xia, J.; Tian, B.; et al. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int. J. Pharmaceut. 2022, 616, 121538. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Williams, A.C.; Khutoryanskiy, V.V. Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. Int. J. Pharm. 2020, 590, 119884. [Google Scholar] [CrossRef]
- Thakur, P.S.; Sheokand, S.; Bansal, A.K. Factors affecting crystallization kinetics of fenofibrate and its implications for the generation of nanocrystalline solid dispersions via spray drying. Cryst. Growth Des. 2019, 19, 4417–4428. [Google Scholar] [CrossRef]
- Meere, M.; Pontrelli, G.; McGinty, S. Modelling phase separation in amorphous solid dispersions. Acta Biomater. 2019, 94, 410–424. [Google Scholar] [CrossRef]
- Chunhui, H.; Zhengsheng, L.; Chengyu, L.; Yaogang, Z.; Haining, F.; Feng, Q. Improvement of Antialveolar Echinococcosis Efficacy of Albendazole by a Novel Nanocrystalline Formulation with Enhanced Oral Bioavailability. ACS Infect Dis. 2020, 6, 802–810. [Google Scholar]
- Liu, C.; Liu, Z.; Chen, Y.; Chen, Z.; Chen, H.; Pui, Y.; Qian, F. Oral bioavailability enhancement of beta-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion. Eur. J. Pharm. Biopharm. 2018, 124, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.; Qiuli, Y.; Yao, L.; Chunhui, H. Study on the regulation mechanism of effective glass transition temperature on the crystallization of crystalline solid dispersion. Drug Deliv. Transl. Res. 2023, 13, 2677–2689. [Google Scholar]
- Hua, H.; Yong, Z.; Yao, L.; Yufei, G.; Chunhui, H. Influence of Intermolecular Interactions on Crystallite Size in Crystalline Solid Dispersions. Pharmaceutics. 2023, 15, 2493. [Google Scholar] [CrossRef]
- Khater, A.J.; Almurisi, S.H.; Mahmood, S.; Madheswaran, T.; Chatterjee, B.; Sri, P.; Mazlan, N.A.B.A. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int. J. Pharm. 2023, 647, 123536. [Google Scholar]
- Bookwala, M.; Wildfong, P. The Implications of Drug-Polymer Interactions on the Physical Stability of Amorphous Solid Dispersions. Drug Deliv. Pharm. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Myślińska, M.; Stocker, M.W.; Ferguson, S.; Healy, A. A Comparison of Spray-drying and Co-precipitation for the Generation of Amorphous Solid Dispersions (ASDs) of Hydrochlorothiazide and Simvastatin. J. Pharm. Sci. 2023, 112, 2097–2114. [Google Scholar] [CrossRef]
- Trasi, N.S.; Baird, J.A.; Kestur, U.S.; Taylor, L.S. Factors influencing crystal growth rates from undercooled liquids of pharmaceutical compounds. J. Phys. Chem. B 2014, 118, 9974–9982. [Google Scholar] [CrossRef]
- Patel, N.G.; Serajuddin, A.T.M. Moisture Sorption by Polymeric Excipients Commonly Used in Amorphous Solid Dispersion and its Effect on Glass Transition Temperature: I. Polyvinylpyrrolidone and related copolymers. Int. J. Pharm. 2022, 616, 121532. [Google Scholar] [CrossRef]
- Bhujbal, S.V.; Su, Y.; Pathak, V.; Zemlyanov, D.Y.; Cavallaro, A.; Munson, E.; Taylor, L.S.; Zhou, Q. Effect of Storage Humidity on Physical Stability of Spray-Dried Naproxen Amorphous Solid Dispersions with Polyvinylpyrrolidone: Two Fluid Nozzle vs. Three Fluid Nozzle. Pharmaceutics 2021, 13, 1074. [Google Scholar] [CrossRef]
- Yasmine, J.; Taghrid, Z.; Catherine, D.; Niyazi, A.; Yann, P.; Arnaud, B. Investigation of the spontaneous nanoemulsification process with medium- and long-chain triglycerides. Colloids Surf. B 2021, 197, 111432–111441. [Google Scholar]
- Just, S.; Sievert, F.; Thommes, M.; Kreutz, J.B. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur. J. Pharm. Biopharm. 2013, 85, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Jonnalagadda, S.; Gupta, P.K. Use of Flory–Huggins Interaction Parameter and Contact Angle Values to Predict the Suitability of the Drug-Polymer System for the Production and Stability of Nanosuspensions. Pharm. Res. 2022, 39, 1001–1017. [Google Scholar] [CrossRef]
- Andrews, G.P.; Zhai, H.; Tipping, S.; Jones, D.S. Characterisation of the thermal, spectroscopic and drug dissolution properties of mefenamic acid and polyoxyethylene–polyoxypropylene solid dispersions. J. Pharm. Sci. 2009, 98, 4545–4546. [Google Scholar] [CrossRef] [PubMed]
- Jenquin, M.R.; McGinity, J.W. Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions. Int. J. Pharm. 1994, 101, 33–34. [Google Scholar] [CrossRef]
- Tao, J.; Sun, Y.; Zhang, G.G.Z.; Yu, L. Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm. Res. 2009, 26, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Pawar, J.; Suryawanshi, D.; Moravkar, K.; Aware, R.; Shetty, V.; Maniruzzaman, M.; Amin, P. Study the influence of formulation process parameters on solubility and dissolution enhancement of efavirenz solid solutions prepared by hot-melt extrusion: A QbD methodology. Drug Deliv. Transl. Res. 2018, 8, 1644–1657. [Google Scholar] [CrossRef]
Group (30% Drug Loading) | Crystalline Size (μm) | ||
---|---|---|---|
Dv (0.1) | Dv (0.5) | Dv (0.9) | |
BFZ | 8.10 | 26.84 | 45.44 |
CSD-BFZ-P188 | 5.45 | 11.56 | 23.29 |
CSD-BFZ-P407 | 7.10 | 18.76 | 38.04 |
CSD-BFZ-PEG8000 | 14.55 | 20.64 | 29.33 |
Drug Loading (%) | P188 | P407 | PEG8000 | |||
---|---|---|---|---|---|---|
∆Hf (J·g−1) | RC (%) | ∆Hf (J·g−1) | RC (%) | ∆Hf (J·g−1) | RC (%) | |
100 (raw BFZ) | 109.95 | 100.00 | 109.95 | 100.00 | 109.95 | 100.00 |
90 | 84.77 | 77.10 | 110.63 | 100.62 | 106.51 | 96.87 |
80 | 92.56 | 84.19 | 94.83 | 86.24 | 96.95 | 88.18 |
70 | 97.29 | 88.48 | 105.99 | 96.39 | 103.81 | 94.42 |
60 | 88.17 | 80.19 | 85.58 | 77.84 | 89.25 | 81.17 |
50 | 82.42 | 74.96 | 86.54 | 78.71 | 80.84 | 73.52 |
40 | 70.60 | 64.21 | 74.75 | 67.99 | 50.33 | 45.77 |
30 | 42.87 | 38.99 | 54.60 | 49.66 | 65.60 | 59.66 |
20 | 10.90 | 9.91 | 13.10 | 11.91 | 16.50 | 15.01 |
CSD | Time | Linear Equation of ΔHf-Drug Loading | R2 | Solubility |
---|---|---|---|---|
CSD-BFZ-P188 | 0 d | Y = 1.2331X − 22.234 | 0.9718 | 18.03 ± 0.62% |
7 d | Y = 1.3345X − 22.453 | 0.9946 | 16.83 ± 0.41% | |
15 d | Y = 1.3367X − 22.248 | 0.9935 | 16.64 ± 0.82% | |
30 d | Y = 1.3614X − 22.681 | 0.9920 | 16.66 ± 0.22% | |
CSD-BFZ-P407 | 0 d | Y = 1.3362X − 24.274 | 0.9903 | 18.17 ± 0.12% |
7 d | Y = 1.3629X − 23.923 | 0.9940 | 17.55 ± 0.15% | |
15 d | Y = 1.3639X − 23.722 | 0.9970 | 17.39 ± 0.18% | |
30 d | Y = 1.3424X − 23.205 | 0.9985 | 17.29 ± 0.23% | |
CSD-BFZ-PEG | 0 d | Y = 1.3371X − 25.437 | 0.9877 | 19.02 ± 0.89% |
7 d | Y = 1.4005X − 27.683 | 0.9939 | 19.77 ± 0.22% | |
15 d | Y = 1.3377X − 20.231 | 0.9968 | 15.12 ± 0.11% | |
30 d | Y = 1.2517X − 15.924 | 0.9962 | 12.72 ± 0.35% |
Drug Loading | CH2Cl2/mL | BFZ/g | Polymer/g |
---|---|---|---|
30% | 20 | 0.3 | 0.7 |
50% | 20 | 0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Yan, Q.; Zhang, Y.; Yan, H. Influence Mechanism of Drug–Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion. Pharmaceuticals 2023, 16, 1640. https://doi.org/10.3390/ph16121640
Hu C, Yan Q, Zhang Y, Yan H. Influence Mechanism of Drug–Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion. Pharmaceuticals. 2023; 16(12):1640. https://doi.org/10.3390/ph16121640
Chicago/Turabian StyleHu, Chunhui, Qiuli Yan, Yong Zhang, and Haiying Yan. 2023. "Influence Mechanism of Drug–Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion" Pharmaceuticals 16, no. 12: 1640. https://doi.org/10.3390/ph16121640
APA StyleHu, C., Yan, Q., Zhang, Y., & Yan, H. (2023). Influence Mechanism of Drug–Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion. Pharmaceuticals, 16(12), 1640. https://doi.org/10.3390/ph16121640