Anticandidal Activity of In Situ Methionine γ-Lyase-Based Thiosulfinate Generation System vs. Synthetic Thiosulfinates
Abstract
:1. Introduction
2. Results and Discussion
2.1. 1H NMR Kinetic Study of β-Elimination Reaction of S-alk(en)yl-L-Cysteine Sulfoxides Catalyzed by C115HMGL
2.2. Antifungal Activity of Synthetic Dialk(en)ylthiosulfinates and TGS against C. albicans
2.3. Combinatorial Effect of Synthetic Dialk(en)ylthiosulfinates and TGS with Known Therapeutic Drugs
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Synthesis of Dialk(en)ylthiosulfinates
3.4. Preparation of the C115H MGL
3.5. Kinetic Measurement via 1H NMR
3.6. Determination of Enzymatically Generated Dialk(en)ylthiosulfinates
3.7. Cell Culture
3.8. Antifungal Activity Evaluation
3.9. Checkerboard Assay
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gow, N.A.R.; Yadav, B. Microbe Profile: Candida albicans: A shape-changing, opportunistic pathogenic fungus of humans. Microbiology 2017, 163, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Fiori, B.; Trecarichi, E.M.; Posteraro, P.; Losito, A.R.; De Luca, A.; Sanguinetti, M.; Fadda, G.; Cauda, R.; Posteraro, B. Risk factors and outcomes of candidemia caused by biofilm-forming isolates in a tertiary care hospital. PLoS ONE 2012, 7, e33705. [Google Scholar] [CrossRef]
- Di Santo, R.J.N.P.R. Natural products as antifungal agents against clinically relevant pathogens. Nat. Prod. Med. 2010, 27, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and biological properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd Elhakim, Y.M.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Fufa, B. Anti-bacterial and anti-fungal properties of garlic extract (Allium sativum): A review. Microbiol. Res. J. Int. 2019, 28, 1–5. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Yang, J.; Lu, C.; Li, Y.; Luo, Y.; Cong, F.; Shi, R.; Wang, Z.; Chen, H.; et al. Allicin shows antifungal efficacy against Cryptococcus neoformans by blocking the fungal cell membrane. Front. Microbiol. 2022, 13, 1012516. [Google Scholar] [CrossRef]
- Leontiev, R.; Hohaus, N.; Jacob, C.; Gruhlke, M.C.H.; Slusarenko, A.J. A Comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci. Rep. 2018, 8, 6763. [Google Scholar] [CrossRef]
- Haase, H.; Hieke, N.; Plum, L.M.; Gruhlke, M.C.H.; Slusarenko, A.J.; Rink, L. Impact of allicin on macrophage activity. Food Chem. 2012, 134, 141–148. [Google Scholar] [CrossRef]
- Gruhlke, M.C.H.; Nicco, C.; Batteux, F.; Slusarenko, A.J. The effects of allicin, a reactives species from garlic, on a selection of mammalian cell lines. Antioxidants 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Appel, E.; Vallon-Eberhard, A.; Rabinkov, A.; Brenner, O.; Shin, I.; Sasson, K.; Shadkchan, Y.; Osherov, N.; Jung, S.; Mirelman, D. Therapy of murine pulmonary aspergillosis with antibody-alliinase conjugates and alliin. Antimicrob. Agents Chemother. 2010, 54, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Morozova, E.A.; Kulikova, V.V.; Rodionov, A.N.; Revtovich, S.V.; Anufrieva, N.V.; Demidkina, T.V. Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie 2016, 128–129, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Morozova, E.; Kulikova, V.; Koval, V.; Anufrieva, N.; Chernukha, M.; Avetisyan, L.; Lebedeva, L.; Medvedeva, O.; Burmistrov, E.; Shaginyan, I.; et al. Encapsulated methionine γ-lyase: Application in enzyme prodrug therapy of Pseudomonas aeruginosa infection. ACS Omega 2020, 5, 7782–7786. [Google Scholar] [CrossRef] [PubMed]
- Abo Qoura, L.; Morozova, E.; Kulikova, V.; Karshieva, S.; Sokolova, D.; Koval, V.; Revtovich, S.; Demidkina, T.; Pokrovsky, V.S. Methionine γ-lyase-daidzein in combination with S-propyl-L-cysteine sulfoxide as a targeted prodrug enzyme system for malignant solid tumor xenografts. Int. J. Mol. Sci. 2022, 23, 12048. [Google Scholar] [CrossRef]
- Rose, P.; Whiteman, M.; Moore, P.K.; Zhu, Y.Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents. Nat. Prod. Rep. 2005, 22, 351–368. [Google Scholar] [CrossRef]
- Morozova, E.A.; Revtovich, S.V.; Anufrieva, N.V.; Kulikova, V.V.; Nikulin, A.D.; Demidkina, T.V. Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: Structural bases of inactivation of the enzyme. Acta Crystallogr. 2014, D70, 3034–3042. [Google Scholar] [CrossRef]
- Miron, T.; Rabinkov, A.; Mirelman, D.; Wilchek, M.; Weiner, L. The mode of action of allicin: Its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim. Biophys. Acta. 2000, 1463, 20–30. [Google Scholar] [CrossRef]
- Morozova, E.; Anufrieva, N.; Koval, V.; Lesnova, E.; Kushch, A.; Timofeeva, V.; Solovieva, A.; Kulikova, V.; Revtovich, S.; Demidkina, T. Conjugates of methionine γ-lyase with polysialic acid: Two approaches to antitumor therapy. Int. J. Biol. Macromol. 2021, 182, 394–401. [Google Scholar] [CrossRef]
- Yamada, Y.; Azuma, K. Evaluation of the in vitro antifungal activity of allicin. Antimicrob. Agents Chemother. 1977, 11, 743–749. [Google Scholar] [CrossRef]
- An, M.-M.; Shen, H.; Cao, Y.-B.; Zhang, J.-D.; Cai, Y.; Wang, R.; Jiang, Y.-Y. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int. J. Antimicrob. Agents 2009, 33, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Arganoza, M.T.; Vaishampayan, J.K.; Akins, R.A. In vitro interaction between amphotericin B and azoles in Candida albicans. Antimicrob. Agents Chemother. 1996, 40, 2511–2516. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.E.; Lund, B.C.; Klepser, M.E.; Ernst, E.J.; Pfaller, M.A. Assessment of antifungal activities of fluconazole and amphotericin B administered alone and in combination against Candida albicans by using a dynamic in vitro mycotic infection model. Antimicrob. Agents Chemother. 1998, 42, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Brajtburg, J.; Powderly, W.G.; Kobayashi, G.S.; Medoff, G. Amphotericin B: Current understanding of mechanisms of action. Antimicrob. Agents Chemother. 1990, 34, 183–188. [Google Scholar] [CrossRef]
- Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther. 2015, 13, 787–798. [Google Scholar] [CrossRef]
- Okamoto, Y.; Aoki, S.; Mataga, I. Enhancement of amphotericin B activity against Candida albicans by superoxide radical. Mycopathologia 2004, 158, 9–15. [Google Scholar] [CrossRef]
- Ogita, A.; Hirooka, K.; Yamamoto, Y.; Tsutsui, N.; Fujita, K.-I.; Taniguchi, M.; Tanaka, T. Synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae. Toxicology 2005, 215, 205–213. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, K.S.; Han, I.; Kim, M.-H.; Jung, M.H.; Park, H.-K. Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs. PLoS ONE 2012, 7, e38242. [Google Scholar] [CrossRef]
- Khodavandi, A.; Alizadeh, F.; Aala, F.; Sekawi, Z.; Chong, P.P. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia 2010, 169, 287–295. [Google Scholar] [CrossRef]
- Degani, Y.; Patchornik, A. Selective cyanylation of sulfhydryl groups. II On the synthesis of 2-nitro-5-thiocyanatobenzoic acid. J. Org. Chem. 1971, 36, 2727–2728. [Google Scholar]
- Roseblade, A.; Ung, A.; Bebawy, M. Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer. Acta Pharmacol. Sin. 2017, 38, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.J.; Brown, S.A. Purge NMR: Effective and easy solvent suppression. J. Magn. Reson. 2005, 175, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Gnupot. Available online: http://gnuplot.info (accessed on 28 August 2023).
- Miron, T.; Rabinkov, A.; Mirelman, D.; Weiner, L.; Wilchek, M. A spectrophotometric assay for allicin and alliinase (Alliin lyase) activity: Reaction of 2-nitro-5-thiobenzoate with thiosulfinates. Anal. Biochem. 1998, 265, 317–325. [Google Scholar] [CrossRef] [PubMed]
- M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast. National Committee for Clinical and Laboratory Standards: Wayne, PA, USA, 2008; p. 14.
- Pillai, S.K.; Moellering, R.C.; Eliopoulos, G.M. Antimicrobial Combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; The Lippincott Williams & Wilkins Co.: Philadelphia, PA, USA, 2005; pp. 365–440. [Google Scholar]
- Ianevski, A.; Giri, A.K.; Aittokallio, T. SynergyFinder 3.0: An interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022, 50, 739–743. [Google Scholar] [CrossRef]
- Synergyfinder. Available online: https://synergyfinder.fimm.fi (accessed on 28 August 2023).
DMTS | |
low field | CH3: 3.04 (s) |
high field | CH3: 2.66 (s) |
DETS | |
low field | CH3: 1.40 (t, 7.4 Hz) |
high field | CH3: 1.33 (t) |
other signals | 3.27 (dq), 3.19 (dq), 3.18 (q) |
DPTS | |
low field | CH3: 1.02 (t, 7.4 Hz) |
high field | CH3: 0.97 (t) |
other signals | 3.12–3.24 (m), 1.68–1.85 (m) |
DATS | |
low field | =CH2 (cis): 5.49 (d 1, 10.1 Hz)=CH2 (trans): 5.46 (d 1, 16.9 Hz) |
high field | =CH2 (cis): 5.22 (d 1)=CH2 (trans): 5.32 (d 1) |
other signals | 5.80–6.04 (m), 3.74–4.01 2 (m) |
Pyruvate | 2.33 (s) |
DMTS | DETS | DPTS | DATS | |
---|---|---|---|---|
Initial turnover rate 1, s−1 | 0.23 ± 0.01 | 1.03 ± 0.09 | 0.97 ± 0.04 | 1.56 ± 0.04 |
Turnover rate at half-conversion, s−1 | 0.07 ± 0.002 | 0.39 ± 0.01 | 0.39 ± 0.01 | 0.75 ± 0.08 |
Half-conversion time, min | 231 | 29 | 29 | 14 |
Reaction slowdown rate 2 | 70% | 62% | 60% | 52% |
Antimycotic Drug | C. albicans, MIC ± CI (95%) | |
---|---|---|
μg/mL | μM | |
Synthetic thiosulfinates | ||
DMTS | 2.68 ± 0.57 | 24 ± 5.1 |
DETS | 0.72 ± 0.16 | 5.2 ± 1.15 |
DPTS | 0.69 ± 0.26 | 4.1 ± 1.54 |
DATS | 3.31 ± 1.10 | 20 ± 6.65 |
TGSs | ||
C115H MGL/methiin | 1.11 ± 0.22 | 10 ± 1.98 |
C115H MGL/ethiin | 0.41 ± 0.09 | 3 ± 0.66 |
C115H MGL/propiin | 0.36 ± 0.09 | 2.2 ± 0.55 |
C115H MGL/alliin | 0.39 ± 0.07 | 2.4 ± 0.43 |
Commercial drugs | ||
AmpB | 0.46 ± 0.25 | 0.5 ± 0.27 |
FLC | 1.06 ± 0.21 | 3.5 ± 0.69 |
5-FC | 0.16 ± 0.03 | 1.2 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revtovich, S.; Lyfenko, A.; Tkachev, Y.; Kulikova, V.; Koval, V.; Puchkov, V.; Anufrieva, N.; Solyev, P.; Morozova, E. Anticandidal Activity of In Situ Methionine γ-Lyase-Based Thiosulfinate Generation System vs. Synthetic Thiosulfinates. Pharmaceuticals 2023, 16, 1695. https://doi.org/10.3390/ph16121695
Revtovich S, Lyfenko A, Tkachev Y, Kulikova V, Koval V, Puchkov V, Anufrieva N, Solyev P, Morozova E. Anticandidal Activity of In Situ Methionine γ-Lyase-Based Thiosulfinate Generation System vs. Synthetic Thiosulfinates. Pharmaceuticals. 2023; 16(12):1695. https://doi.org/10.3390/ph16121695
Chicago/Turabian StyleRevtovich, Svetlana, Anna Lyfenko, Yaroslav Tkachev, Vitalia Kulikova, Vasiliy Koval, Vladimir Puchkov, Natalya Anufrieva, Pavel Solyev, and Elena Morozova. 2023. "Anticandidal Activity of In Situ Methionine γ-Lyase-Based Thiosulfinate Generation System vs. Synthetic Thiosulfinates" Pharmaceuticals 16, no. 12: 1695. https://doi.org/10.3390/ph16121695
APA StyleRevtovich, S., Lyfenko, A., Tkachev, Y., Kulikova, V., Koval, V., Puchkov, V., Anufrieva, N., Solyev, P., & Morozova, E. (2023). Anticandidal Activity of In Situ Methionine γ-Lyase-Based Thiosulfinate Generation System vs. Synthetic Thiosulfinates. Pharmaceuticals, 16(12), 1695. https://doi.org/10.3390/ph16121695