Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. NK Cell Phenotype Assessed by Flow Cytometry
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iba, T.; Connors, J.M.; Levy, J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020, 69, 1181–1189. [Google Scholar] [CrossRef]
- WHO Working Group on the Clinical Characterisation and Management of COVID-19 Infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Patel, K.; Greenwood, D.C.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00063. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Patel, K.; Straudi, S.; Yee Sien, N.; Fayed, N.; Melvin, J.L.; Sivan, M. Applying the WHO ICF Framework to the Outcome Measures Used in the Evaluation of Long-Term Clinical Outcomes in Coronavirus Outbreaks. Int. J. Environ. Res. Public Health 2020, 17, 6476. [Google Scholar] [CrossRef] [PubMed]
- Carod-Artal, F.J. Post-COVID-19 syndrome: Epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev. Neurol. 2021, 72, 384–396. [Google Scholar] [CrossRef]
- Ganesh, R.; Grach, S.L.; Ghosh, A.K.; Bierle, D.M.; Salonen, B.R.; Collins, N.M.; Joshi, A.Y.; Boeder, N.D., Jr.; Anstine, C.V.; Mueller, M.R.; et al. The Female-Predominant Persistent Immune Dysregulation of the Post-COVID Syndrome. Mayo Clin. Proc. 2022, 97, 454–464. [Google Scholar] [CrossRef]
- Orendáčová, M.; Kvašňák, E.; Vránová, J. Effect of neurofeedback therapy on neurological post-COVID-19 complications (A pilot study). PLoS ONE 2022, 17, e0271350. [Google Scholar] [CrossRef] [PubMed]
- Malkova, A.; Kudryavtsev, I.; Starshinova, A.; Kudlay, D.; Zinchenko, Y.; Glushkova, A.; Yablonskiy, P.; Shoenfeld, Y. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens 2021, 10, 1408. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Klok, F.A.; Boon, G.J.A.M.; Barco, S.; Endres, M.; Geelhoed, J.J.M.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.J.; Preston, N.; Parkin, A.; Makower, S.; Ross, D.; Gee, J.; Halpin, S.J.; Horton, M.; Sivan, M. The COVID-19 Yorkshire Rehabilitation Scale (C19-YRS): Application and psychometric analysis in a post-COVID-19 syndrome cohort. J. Med. Virol. 2022, 94, 1027–1034. [Google Scholar] [CrossRef]
- Sivan, M.; Parkin, A.; Makower, S.; Greenwood, D.C. Post-COVID syndrome symptoms, functional disability, and clinical severity phenotypes in hospitalized and nonhospitalized individuals: A cross-sectional evaluation from a community COVID rehabilitation service. J. Med. Virol. 2022, 94, 1419–1427. [Google Scholar] [CrossRef]
- Kudryavtsev, I.; Rubinstein, A.; Golovkin, A.; Kalinina, O.; Vasilyev, K.; Rudenko, L.; Isakova-Sivak, I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses 2022, 14, 1082. [Google Scholar] [CrossRef]
- Moga, E.; Lynton-Pons, E.; Domingo, P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 904686. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Puan, K.J.; Wang, L.W.; Teng, K.W.W.; Loh, C.Y.; Tan, K.P.; Carissimo, G.; Chan, Y.H.; Poh, C.M.; Lee, C.Y.; et al. Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals. Front. Immunol. 2021, 12, 710217. [Google Scholar] [CrossRef]
- Savchenko, A.A.; Tikhonova, E.; Kudryavtsev, I.; Kudlay, D.; Korsunsky, I.; Beleniuk, V.; Borisov, A. TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. Viruses 2022, 14, 646. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dyer, A.H.; Naughton, A.; Kiersey, R.; Holden, D.; Gardiner, M.; Dowds, J.; O’Brien, K.; Bannan, C.; Nadarajan, P.; et al. Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health. Front. Immunol. 2021, 12, 676932. [Google Scholar] [CrossRef]
- Bernard, N.F.; Alsulami, K.; Pavey, E.; Dupuy, F.P. NK Cells in Protection from HIV Infection. Viruses 2022, 14, 1143. [Google Scholar] [CrossRef] [PubMed]
- Fionda, C.; Scarno, G.; Stabile, H.; Molfetta, R.; Di Censo, C.; Gismondi, A.; Paolini, R.; Sozzani, S.; Santoni, A.; Sciumè, G. NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. Int. J. Mol. Sci. 2022, 23, 7859. [Google Scholar] [CrossRef]
- Deng, X.; Terunuma, H.; Nieda, M. Exploring the Utility of NK Cells in COVID-19. Biomedicines 2022, 10, 1002. [Google Scholar] [CrossRef]
- Pituch-Noworolska, A.M. NK cells in SARS-CoV-2 infection. Cent. Eur. J. Immunol. 2022, 47, 95–101. [Google Scholar] [CrossRef]
- Di Vito, C.; Calcaterra, F.; Coianiz, N.; Terzoli, S.; Voza, A.; Mikulak, J.; Della Bella, S.; Mavilio, D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front. Immunol. 2022, 13, 888248. [Google Scholar] [CrossRef]
- Herrera, L.; Martin-Inaraja, M.; Santos, S.; Inglés-Ferrándiz, M.; Azkarate, A.; Perez-Vaquero, M.A.; Vesga, M.A.; Vicario, J.L.; Soria, B.; Solano, C.; et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022, 165, 234–249. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasichaolu, H.; Zhang, X.; Li, X.; Li, X.; Li, D. Circulating Cytokines and Lymphocyte Subsets in Patients Who Have Recovered from COVID-19. Biomed. Res. Int. 2020, 2020, 7570981. [Google Scholar] [CrossRef]
- van Eeden, C.; Khan, L.; Osman, M.S.; Cohen Tervaert, J.W. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int. J. Mol. Sci. 2020, 21, 6351. [Google Scholar] [CrossRef]
- Prinz, D.; Klein, K.; List, J.; Knab, V.M.; Menzl, I.; Leidenfrost, N.; Heller, G.; Polić, B.; Putz, E.M.; Witalisz-Siepracka, A.; et al. Loss of NKG2D in murine NK cells leads to increased perforin production upon long-term stimulation with IL-2. Eur. J. Immunol. 2020, 50, 880–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, P.; Bork, K.; Massa, C.; Selke, P.; Seliger, B.; Horstkorte, R. Sialylation of Human Natural Killer (NK) Cells is Regulated by IL-2. J. Clin. Med. 2020, 9, 1816. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, C.; Wölfer, J.; Holling, M.; Brokinkel, B.; Stummer, W.; Wiendl, H.; Thomas, C.; Schulte-Mecklenbeck, A.; Grauer, O.M. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci. Rep. 2022, 12, 6769. [Google Scholar] [CrossRef]
- Eller, M.A.; Currier, J.R. OMIP-007: Phenotypic analysis of human natural killer cells. Cytometry A. 2012, 81, 447–449. [Google Scholar] [CrossRef]
- Barnes, S.; Schilizzi, O.; Audsley, K.M.; Newnes, H.V.; Foley, B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int. J. Mol. Sci. 2020, 21, 8864. [Google Scholar] [CrossRef]
- Gonzalez, J.C.; Chakraborty, S.; Thulin, N.K.; Wang, T.T. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes. Immunol. Rev. 2022, 309, 64–74. [Google Scholar] [CrossRef]
- Van Acker, H.H.; Capsomidis, A.; Smits, E.L.; Van Tendeloo, V.F. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front. Immunol. 2017, 8, 892. [Google Scholar] [CrossRef] [Green Version]
- Van Acker, H.H.; Van Acker, Z.P.; Versteven, M.; Ponsaerts, P.; Pende, D.; Berneman, Z.N.; Anguille, S.; Van Tendeloo, V.F.; Smits, E.L. CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for Interleukin-15. Cancers 2019, 11, 1029. [Google Scholar] [CrossRef] [Green Version]
- Adib Rad, H.; Basirat, Z.; Mostafazadeh, A.; Faramarzi, M.; Bijani, A.; Nouri, H.R.; Soleimani Amiri, S. Evaluation of peripheral blood NK cell subsets and cytokines in unexplained recurrent miscarriage. J. Chin. Med. Assoc. 2018, 81, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Papak, I.; Chruściel, E.; Dziubek, K.; Kurkowiak, M.; Urban-Wójciuk, Z.; Marjański, T.; Rzyman, W.; Marek-Trzonkowska, N. What Inhibits Natural Killers’ Performance in Tumour. Int. J. Mol. Sci. 2022, 23, 7030. [Google Scholar] [CrossRef] [PubMed]
- Vujanovic, L.; Chuckran, C.; Lin, Y.; Ding, F.; Sander, C.A.; Santos, P.M.; Lohr, J.; Mashadi-Hossein, A.; Warren, S.; White, A.; et al. CD56dim CD16- Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front. Immunol. 2019, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Corvino, D.; Kumar, A.; Bald, T. Plasticity of NK cells in Cancer. Front. Immunol. 2022, 13, 888313. [Google Scholar] [CrossRef] [PubMed]
- Kared, H.; Martelli, S.; Ng, T.P.; Pender, S.L.; Larbi, A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother. 2016, 65, 441–452. [Google Scholar] [CrossRef]
- Liu, B.; Yang, G.X.; Sun, Y.; Tomiyama, T.; Zhang, W.; Leung, P.S.C.; He, X.S.; Dhaliwal, S.; Invernizzi, P.; Gershwin, M.E.; et al. Decreased CD57 expression of natural killer cells enhanced cytotoxicity in patients with primary sclerosing cholangitis. Front. Immunol. 2022, 13, 912961. [Google Scholar] [CrossRef]
- Kudryavtsev, I.V.; Arsentieva, N.A.; Korobova, Z.R.; Isakov, D.V.; Rubinstein, A.A.; Batsunov, O.K.; Khamitova, I.V.; Kuznetsova, R.N.; Savin, T.V.; Akisheva, T.V.; et al. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients. Viruses 2022, 14, 1906. [Google Scholar] [CrossRef] [PubMed]
- Rajamanickam, A.; Pavan Kumar, N.; Pandiaraj, A.N.; Selvaraj, N.; Munisankar, S.; Renji, R.M.; Venkataramani, V.; Murhekar, M.; Thangaraj, J.W.V.; Muthusamy, S.K.; et al. Characterization of memory T cell subsets and common γ-chain cytokines in convalescent COVID-19 individuals. J. Leukoc. Biol. 2022, 112, 201–212. [Google Scholar] [CrossRef]
- Gosain, R.; Abdou, Y.; Singh, A.; Rana, N.; Puzanov, I.; Ernstoff, M.S. COVID-19 and Cancer: A Comprehensive Review. Curr. Oncol. Rep. 2020, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Gelmez, M.Y.; Oktelik, F.B.; Tahrali, I.; Yilmaz, V.; Kucuksezer, U.C.; Akdeniz, N.; Cetin, E.A.; Kose, M.; Cinar, C.; Oguz, F.S.; et al. Immune modulation as a consequence of SARS-CoV-2 infection. Front. Immunol. 2022, 13, 954391. [Google Scholar] [CrossRef]
- Ito, Y.; Nakahara, F.; Kagoya, Y.; Kurokawa, M. CD62L expression level determines the cell fate of myeloid progenitors. Stem Cell Rep. 2021, 16, 2871–2886. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.H.; Lin, Y.Q.; Tian, L.; Zhang, T.; Yan, D.M.; Yu, J.H.; Deng, Y.C. Natural killer cell homing and trafficking in tissues and tumors: From biology to application. Signal Transduct. Target Ther. 2022, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Raghavan, M. CD8αα homodimers function as a coreceptor for KIR3DL1. Proc. Natl. Acad. Sci. USA 2019, 116, 17951–17956. [Google Scholar] [CrossRef] [Green Version]
- McKinney, E.F.; Cuthbertson, I.; Harris, K.M.; Smilek, D.E.; Connor, C.; Manferrari, G.; Carr, E.J.; Zamvil, S.S.; Smith, K.G.C. A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nat. Commun. 2021, 12, 635. [Google Scholar] [CrossRef]
- Schulte-Wrede, U.; Sörensen, T.; Grün, J.R.; Häupl, T.; Hirseland, H.; Steinbrich-Zöllner, M.; Wu, P.; Radbruch, A.; Poddubnyy, D.; Sieper, J.; et al. An explorative study on deep profiling of peripheral leukocytes to identify predictors for responsiveness to anti-tumour necrosis factor alpha therapies in ankylosing spondylitis: Natural killer cells in focus. Arthritis Res. Ther. 2018, 20, 191. [Google Scholar] [CrossRef] [Green Version]
- Halma, J.; Pierce, S.; McLennan, R.; Bradley, T.; Fischer, R. Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance? Clin. Transl. Sci. 2022, 15, 1091–1103. [Google Scholar] [CrossRef]
- Khalil, M.; Wang, D.; Hashemi, E.; Terhune, S.S.; Malarkannan, S. Implications of a ‘Third Signal’ in NK Cells. Cells 2021, 10, 1955. [Google Scholar] [CrossRef]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Das, A. IL-2 mediates NK cell proliferation but not hyperactivity. Immunol. Res. 2018, 66, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, M.; Rabaan, A.A.; Fawarah, M.M.A.; Almuthree, S.A.; Alsubki, R.A.; Alfaraj, A.H.; Mashraqi, M.M.; Alshamrani, S.A.; Abduljabbar, W.A.; Alwashmi, A.S.S.; et al. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines 2023, 11, 101. [Google Scholar] [CrossRef]
- Chattopadhyay, P.K.; Betts, M.R.; Price, D.A.; Gostick, E.; Horton, H.; Roederer, M.; De Rosa, S.C. The cytolytic enzymes granyzme A, granzyme B, and perforin: Expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J. Leukoc. Biol. 2009, 85, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fugazzaro, S.; Contri, A.; Esseroukh, O.; Kaleci, S.; Croci, S.; Massari, M.; Facciolongo, N.C.; Besutti, G.; Iori, M.; Salvarani, C.; et al. Reggio Emilia COVID-19 Working Group. Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5185. [Google Scholar] [CrossRef]
- Maley, J.H.; Alba, G.A.; Barry, J.T.; Bartels, M.N.; Fleming, T.K.; Oleson, C.V.; Rydberg, L.; Sampsel, S.; Silver, J.K.; Sipes, S.; et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of breathing discomfort and respiratory sequelae in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM&R 2022, 14, 77–95. [Google Scholar] [CrossRef]
Parameters | Before Treatment | After Treatment |
---|---|---|
Feeling sick after exercise, n/% | 29/100% | 1/3.45% |
Fatigue, n/% | 29/100% | 2/6.90% |
Headache, n/% | 26/89.66% | 1/3.45% |
Subfebrile temperature, n/% | 18/62.07% | 0 |
Memory problems, inability to concentrate, n/% | 22/75.86% | 1/3.45% |
Cognitive dysfunction, n/% | 9/31.03% | 0 |
Sleep disturbance, n/% | 7/24.14% | 0 |
Muscle pain, n/% | 1/3.45% | 0 |
Joint pain, n/% | 6/20.69% | 1/3.45% |
Cough, n/% | 10/34.48% | 0 |
Dyspnea, n/% | 3/10.34% | 0 |
Tachycardia, n/% | 3/10.34% | 0 |
Skin rash, n/% | 4/13.79% | 0 |
Diarrhea, n/% | 1/3.45% | 0 |
Leukocytes, 109/L ME (IQR) | 5.69 (5.00–6.75) | 5.25 (4.23–6.40) |
Granulocytes, % ME (IQR) | 56.0 (43.0–66.8) | 57.1 (43.0–72.4) |
Granulocytes, 109/L ME (IQR) | 2.48 (4.50–4.14) | 3.00 (1.57–5.00) |
Monocytes, % ME (IQR) | 7.0 (6.8–9.3) | 7.4 (5.0–9.5) |
Monocytes, 109/L ME (IQR) | 0.38 (0.31–0.59) | 0.38 (0.24–0.48) |
Lymphocytes, % ME (IQR) | 33.7 (26.7–43.4) | 30.0 (20.9–40.3) |
Lymphocytes, 109/L ME (IQR) | 2.36 (1.92–3.03) | 1.62 (1.21–2.20) |
NK Cell Subset | Healthy Controls | Before Treatment | After Treatment |
---|---|---|---|
CD16−CD56+ | 0.80 (0.15–2.50) | 0.13 (0.08–0.79) p1 = 0.013 | 0.29 (0.11–0.55) p1 = 0.049 |
CD16+CD56+ | 5.88 (0.23–11.70) | 0.21 (0.13–0.39) p1 = 0.001 | 0.74 (0.44–1.23) p2 < 0.013 |
CD16−CD56dim | 0.46 (0.10–0.88) | 0.91 (0.30–1.77) p1 = 0.023 | 1.33 (0.65–2.12) p1 = 0.001 |
CD16+CD56dim | 0.69 (0.07–1.33) | 0.97 (0.46–1.71) | 4.19 (2.78–7.36) p1,2 < 0.001 |
NK Cell Subset | Healthy Controls | Before Treatment | After Treatment |
---|---|---|---|
CD16−CD56+ | 0.24 (0.03–0.95) | 0.03 (0.01–0.21) | 0.05 (0.01–0.08) p1 = 0.008 |
CD16+CD56+ | 3.30 (0.12–5.35) | 0.13 (0.09–0.25) p1 < 0.001 | 0.42 (0.23–0.67) p2 < 0.001 |
CD16−CD56dim | 0.09 (0.03–0.13) | 0.11 (0.04–0.85) | 0.23 (0.05–0.47) |
CD16+CD56dim | 0.51 (0.06–1.02) | 0.36 (0.18–1.16) | 1.88 (1.35–4.22) p1,2 < 0.001 |
NK Cell Subset | Healthy Controls | Before Treatment | After Treatment |
---|---|---|---|
CD62L+CD57− | 1.74 (0.85–4.11) | 0.38 (0.23–1.52) p1 = 0.001 | 2.62 (1.97–4.29) p2 < 0.001 |
CD62L+CD57+ | 0.26 (0.14–0.63) | 0.11 (0.08–0.19) p1 = 0.009 | 0.62 (0.16–0.90) p2 < 0.001 |
CD62L−CD57− | 2.67 (0.32–4.90) | 0.53 (0.33–0.92) p1 = 0.001 | 2.18 (1.42–3.10) p2 < 0.001 |
CD62L−CD57+ | 1.09 (0.65–1.66) | 0.85 (0.53–1.64) | 1.60 (0.99–3.28) p2 = 0.003 |
NK Cell Subset | Healthy Controls | Before Treatment | After Treatment |
---|---|---|---|
CD16−CD56+ | 0.24 (0.05–0.80) | 0.05 (0.02–0.11) p1 = 0.014 | 0.04 (0.01–0.05) p1 = 0.001 |
CD16+CD56+ | 1.48 (0.12–4.40) | 0.05 (0.04–0.09) p1 < 0.001 | 0.11 (0.06–0.33) p1 = 0.006 p2 = 0.004 |
CD16−CD56dim | 0.07 (0.03–0.22) | 0.06 (0.01–0.23) | 0.08 (0.01–0.25) |
CD16+CD56dim | 0.24 (0.04–0.76) | 0.21 (0.07–0.43) | 0.50 (0.29–1.25) p1 = 0.022 p2 = 0.002 |
NK Cell Subset | Healthy Controls | Before Treatment | After Treatment |
---|---|---|---|
CD56+CD94− | 1.03 (0.06–2.91) | 0.04 (0.02–0.64) p1 = 0.001 | 0.09 (0.04–0.15) p1 = 0.007 |
CD56+CD94+ | 5.25 (0.13–8.22) | 0.20 (0.11–0.36) p1 = 0.001 | 0.48 (0.18–0.75) p1 = 0.047 p2 = 0.004 |
CD56dimCD94− | 0.50 (0.36–1.07) | 1.01 (0.38–1.91) | 2.57 (1.37–3.70) p1 < 0.001 p2 = 0.001 |
CD56dimCD94+ | 0.69 (0.17–1.42) | 1.25 (0.53–1.55) | 3.60 (2.47–5.89) p1,2 < 0.001 |
Characteristics | Indicators |
---|---|
Females, n/% | 15/51.72% |
Males, n/% | 14/48.28% |
Average age, years | 57.0 |
Age groups, n/% | |
<45 | 8/27.59% |
45–59 | 15/51.72% |
≥60 | 6/20.69% |
WHO Clinical Progression Scale, n/% | |
1−3 | 13/44.83% |
4−5 | 12/41.38% |
6−7 | 4/13.79% |
Symptoms, n/% | |
Fever | 29/100% |
Other symptoms of intoxication | 29/100% |
Cough | 24/82.76% |
Other respiratory symptoms | 29/100% |
Respiratory failure with respiratory support | 4/13.79% |
Respiratory failure with intubation and mechanical ventilation | 2/6.90% |
Anosmia | 5/17.24% |
Gastrointestinal tract injury | 11/37.93 |
Diarrhea | 3/10.34 |
Biomarkers, Me (IQR) | |
Leukocytes, 109 cells/L | 5.38 (4.21–7.53) |
Lymphocytes, 109 cells/L | 0.80 (0.47–1.53) |
C-reactive protein, mg/L | 62.4 (25.2–98.5) |
D-dimers, ng/mL | 653.0 (435.7–904.8) |
Lactate dehydrogenase activity, ME/L | 638 (417–811) |
Complications, n/% | |
Pneumonia, including | 22/75.86% |
CT scan findings-CT1 | 12/50.0% |
CT scan findings-CT2 | 8/40.91% |
CT scan findings-CT3 | 2/9.09% |
Systemic inflammatory response syndrome | 29/100% |
Damage to the cardiovascular system | 3/10.34% |
Acute renal failure | 1/3.45% |
Acute liver failure | 3/10.34% |
Depression, anxiety | 6/20.69% |
Several complications | 23/79.31% |
Accompanying illnesses, n/%, including | |
Hypertonic disease | 23/79.31% |
Other cardiovascular diseases | 9/31.03% |
Cerebrovascular insufficiency | 6/20.69% |
Diabetes | 2/6.9% |
Chronic lung disease | 1/3.45 |
Chronic liver disease | 3/10.34 |
Obesity | 9/31.03% |
Other diseases | 5/17.24% |
Several diseases | 27/93.10% |
Post-COVID-19 Functional Status Scale, n/% | |
1 | 9/31.03% |
2 | 14/48.28% |
3 | 6/20.69% |
No | CDs | Fluo. | Clone | Cat | Dilution | NK Cell Subset |
---|---|---|---|---|---|---|
1 | CD57 | FITC | NC1 | IM0466U | 1:4 | Effector NK cells |
2 | CD94 | PE | R34.34 | IM1980U | 1:2 | Immature NK cells |
3 | CD62L | ECD | DREG5 | IM2276 | 1:4 | Immature NK cells |
4 | CD56 | PC5.5 | N901 | A07789 | 1:2 | Lineage NK cells marker |
5 | CD16 | PC7 | 3G8 | 6607118 | 1:4 | NK cell subsets |
6 | CD8 | APC | B9.11 | IM2469 | 1:8 | NK cell subset marker |
7 | CD3 | APC-A700 | UCHT1 | B10823 | 1:4 | T cell exclusion |
8 | CD45 | APC-A750 | J33 | A79392 | 1:4 | Lineage lymphocytes marker, cell debris exclusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savchenko, A.A.; Kudryavtsev, I.V.; Isakov, D.V.; Sadowski, I.S.; Belenyuk, V.D.; Borisov, A.G. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals 2023, 16, 537. https://doi.org/10.3390/ph16040537
Savchenko AA, Kudryavtsev IV, Isakov DV, Sadowski IS, Belenyuk VD, Borisov AG. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals. 2023; 16(4):537. https://doi.org/10.3390/ph16040537
Chicago/Turabian StyleSavchenko, Andrei A., Igor V. Kudryavtsev, Dmitry V. Isakov, Ivan S. Sadowski, Vasily D. Belenyuk, and Alexandr G. Borisov. 2023. "Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome" Pharmaceuticals 16, no. 4: 537. https://doi.org/10.3390/ph16040537
APA StyleSavchenko, A. A., Kudryavtsev, I. V., Isakov, D. V., Sadowski, I. S., Belenyuk, V. D., & Borisov, A. G. (2023). Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals, 16(4), 537. https://doi.org/10.3390/ph16040537