Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall—Analysis of Phenolics Profiles by LC-MS/MS
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic and Flavonoid Contents
2.2. Polyphenolic Analysis by LC-MS/MS
2.3. Antioxidant Results
2.4. Enzyme Inhibition Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Preparation of Extracts (MEAA and WEAA)
4.4. Determination of Total Phenolic and Flavonoid Contents
4.5. LC-MS/MS Instrumentation and Chromatographic Conditions
4.6. Fe3+ Reducing Assay
4.7. FRAP Reducing Assay
4.8. Cu2+ Reducing Assay
4.9. DPPH Radical Scavenging Assay
4.10. ABTS Radical Scavenging Assay
4.11. DMPD Radical Scavenging Assay
4.12. Metal Chelating Assay
4.13. Anticholinergic Assay
4.14. Antidiabetic Assay
4.15. Antiglaucoma Assay
4.16. IC50 Value Determination
4.17. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akyuz, M. The determination of antidiabetic, anticholinesterase and antioxidant properties of ethanol and water extracts of blackberry (Rubus fruticosus L.) fruits at different maturity stages. S. Afr. J. Bot. 2022, 151, 1035–1048. [Google Scholar] [CrossRef]
- Elmastas, M.; Turkekul, I.; Ozturk, L.; Gulcin, I.; Isıldak, O.; Aboul-Enein, H.Y. The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Comb. Chem. High Throughput Screen 2006, 9, 443–448. [Google Scholar] [CrossRef]
- Cetin Cakmak, K.; Gulcin, I. Anticholinergic and antioxidant activities of usnic acid-An activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.R.; Strobel, B.W.; Hama, J.R.; Cedergreen, N. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ. Sci. Eur. 2021, 33, 10. [Google Scholar] [CrossRef]
- Bursal, E.; Aras, A.; Kılıc, O.; Taslimi, P.; Goren, A.C.; Gulcin, I. Phytochemical content, antioxidant activity and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase and α-glycosidase enzymes. J. Food Biochem. 2019, 43, e12776. [Google Scholar] [PubMed]
- Goodarzi, S.; Rafiei, S.; Javadi, M.; Khadem, H.H.; Norozi, S.A. A review on antioxidants and their health effects. J. Nutr. Food Secur. 2018, 3, 106–112. [Google Scholar]
- Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Polat Kose, P.; Gulcin, I.; Cetin Cakmak, K.C.; Kucuk, M.; Durmaz, L.; Goren, A.C.; et al. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J. Enzyme Inhib. Med. Chem. 2016, 31, 266–275. [Google Scholar] [CrossRef]
- Gulcin, I.; Beydemir, S.; Sat, I.G.; Kufrevioglu, O.I. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment. 2005, 34, 193–202. [Google Scholar] [CrossRef]
- Keskin, C.; Ozen, H.C.; Toker, Z.; Kızıl, G.; Kızıl, M. Determination of in vitro antioxidant and antimicrobial properties of shoot and root extracts of Astragalus diphtherites FENZL var. diphtherites and Astragalus gymnalopecias RECH. FIL. obtained by different solvents. KSU J. Agric. Nat. 2018, 21, 157–166. [Google Scholar]
- Sezer Senol, F.; Orhan, I.E.; Ozgen, U.; Renda, G.; Bulut, G.; Guven, L.; Karaoglan, E.S.; Sevindik, H.G.; Skalicka-Wozniak, K.; Koca Caliskan, U.; et al. Memory-vitalizing effect of twenty-five medicinal and edible plants and their isolated compounds. S. Afr. J. Bot. 2016, 102, 102–109. [Google Scholar] [CrossRef]
- Balaydın, H.T.; Gulcin, I.; Menzek, A.; Goksu, S.; Sahin, E. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzyme Inhib. Med. Chem. 2010, 25, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Phcog. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, M.; Bingol, Z.; Uç, E.M.; Koksal, E.; Goren, A.C.; Alwasel, S.H.; Gulcin, I. Comprehensive metabolite profiling of cinnamon (Cinnamomum zeylanicum) leaf oil using LC-HR/MS, GC/MS, and GC-FID: Determination of antiglaucoma, antioxidant, anticholinergic, and antidiabetic profiles. Life 2023, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Karagecili, H.; Izol, E.; Kirecci, E.; Gulcin, I. Determination of antioxidant, anti-Alzheimer, antidiabetic, antiglaucoma and antimicrobial effects of zivzik pomegranate (Punica granatum)-A chemical profiling by LC-MS/MS. Life 2023, 13, 735. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-d-glucopyranosyl)-hederagenin. Phytother. Res. 2006, 20, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Kızıltas, H.; Bingol, Z.; Goren, A.C.; Pınar, S.M.; Alwasel, S.H.; Gulcin, I. LC-HRMS profiling of phytochemicals, antidiabetic, anticholinergic and antioxidant activities of evaporated ethanol extract of Astragalus brachycalyx FISCHER. J. Chem. Metrol. 2021, 15, 135–151. [Google Scholar]
- Kocyigit, U.M.; Eruygur, N.; Atas, M.; Tekin, M.; Taslimi, P.; Gokalp, F.; Gulcin, I. Evaluation of anticholinergic, antidiabetic and antioxidant activity of Astragalus dumanii, an endemic plant. KSU J. Agric. Nat. 2022, 25 (Suppl. S1), 1–10. [Google Scholar]
- Sarikurkcu, C.; Zengin, G. Polyphenol profile and biological activity comparisons of different parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology 2020, 9, 231. [Google Scholar] [CrossRef]
- Cakilcioglu, U.; Turkoglu, I. An ethnobotanical survey of medicinal plants in Sivrice (Elazığ-Turkey). J. Ethnopharmacol. 2010, 132, 165–175. [Google Scholar] [CrossRef]
- Polat, R.; Cakilcioglu, U.; Satıl, F. Traditional uses of medicinal plants in Solhan (Bingöl-Turkey. J. Ethnopharmacol. 2013, 148, 951–963. [Google Scholar] [CrossRef]
- Sevimli-Gur, C.; Onbasılar, I.; Atilla, P.; Genc, R.; Cakar, N.; Deliloglu-Gurhan, I.; Bedir, E. In vitro growth stimulatory and in vivo wound healing studies on cycloartane-type saponins of Astragalus genus. J. Ethnopharmacol. 2011, 134, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Mukemre, M.; Behçet, L.; Cakılcıoglu, U. Ethnobotanical study on medicinal plants in villages of Çatak (Van-Turkey). J. Ethnopharmacol. 2015, 166, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Kurt-Celep, I.; Zengin, G.; Sinan, K.I.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Maggi, F.; Caprioli, G.; Angeloni, S.; Sharmeen, J.B. Comprehensive evaluation of two Astragalus species (A. campylosema and A. hirsutus) based on biological, toxicological properties and chemical profiling. Food Chem. Toxicol. 2021, 154, 112330. [Google Scholar] [CrossRef] [PubMed]
- Shojaii, A.; Motaghinejad, M.; Norouzi, S.; Motevalian, M. Evaluation of anti-inflammatory and analgesic activity of the extract and fractions of Astragalus hamosus in animal models. Iran. J. Pharm. Res. 2015, 14, 263–269. [Google Scholar]
- Abd Elkader, H.T.A.E.; Essawy, A.E.; Al-Shami, A.S. Astragalus species: Phytochemistry, biological actions and molecular mechanisms underlying their potential neuroprotective effects on neurological diseases. Phytochemistry 2022, 202, 113293. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Liu, Y.; Zhang, Y.Z.; Li, J.C.; Lai, J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharm. Res. 2022, 45, 367–389. [Google Scholar] [CrossRef]
- Tian, Q.E.; Yan, M.; Cai, H.L.; Tan, Q.Y.; Zhang, W.Y. Astragalus polysaccharides can regulate cytokine and P-glycoprotein expression in H22 tumor-bearing mice. World J. Gastroenterol. 2012, 18, 7079–7086. [Google Scholar] [CrossRef]
- Lei, H.; Wang, B.; Li, W.P.; Yang, Y.; Zhou, A.W.; Chen, M.Z. Anti-aging effect of astragalosides and its mechanism of action. Acta Pharmacol. Sin. 2003, 24, 230–234. [Google Scholar]
- Kondeva-Burdina, M.; Shkondrov, A.; Simeonova, R.; Vitcheva, V.; Krasteva, I.; Ionkova, I. In vitro/in vivo antioxidant and hepatoprotective potential of defatted extract and flavonoids isolated from Astragalus spruneri Boiss. (Fabaceae). Food Chem. Toxicol. 2018, 111, 631–640. [Google Scholar] [CrossRef]
- Aleebrahim-Dehkordi, E.; Heidari-Soureshjani, E.; Aryan, A.; Ganjirad, Z.; Soveyzi, F.; Hoseinsalari, A.; Derisi, M.M.; Rafieian-Kopaei, M. Antiviral compounds based on natural Astragalus polysaccharides (APS): Research and foresight in the strategies for combating SARS-CoV-2 (COVID-19). Mini Rev. Med. Chem. 2022, 22, 2299–2307. [Google Scholar]
- Nwozoa, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Proper. 2023, 26, 359–388. [Google Scholar] [CrossRef]
- Mamedova, R.; Agzamova, M.; Isaev, M. Triterpene glycosides of Astragalus and their genins. LXV. Cycloartane and lanostane triterpenoids of Astragalus orbiculatus. Chem. Nat. Comp. 2002, 38, 354–355. [Google Scholar] [CrossRef]
- Lekmine, S.; Boussekine, S.; Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, H.; Mekersi, N.; Bendjedid, S.; Bensouici, C. Investigation of photoprotective, anti-inflammatory, antioxidant capacities and LC–ESI–MS phenolic profile of Astragalus gombiformis Pomel. Foods 2021, 10, 1937. [Google Scholar] [CrossRef]
- Agzamova, M.A.; Isaev, M.I. Triterpene glycosides of Astragalus and their genins. XXXVIII. Cycloalpigenin D and cycloalpioside D from Astragalus alopecurus. Chem. Nat. Comp. 1991, 27, 326–332. [Google Scholar] [CrossRef]
- Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Phytochemical, antioxidant and biological activities of the essential oil of Astragalus alopecurus Pall. fruits from northern Iran. J. Essent. Oil Bear. Plants 2018, 21, 103–115. [Google Scholar] [CrossRef]
- Cetinkaya, Y.; Gocer, H.; Menzek, A.; Gulcin, I. Synthesis and antioxidant properties of (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives. Arch Pharm. 2012, 345, 323–334. [Google Scholar] [CrossRef]
- Polat Kose, L.; Gulcin, I. Inhibition effects of some lignans on carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Rec. Nat. Prod. 2017, 11, 558–561. [Google Scholar] [CrossRef]
- Aytac, S.; Gundogdu, O.; Bingol, Z.; Gulcin, I. Synthesis of Schiff bases containing phenol ring and investigation of their antioxidant capacity, anticholinesterase, butyrylcholinesterase and carbonic anhydrase inhibition properties. Pharmaceutics 2023, 15, 779. [Google Scholar] [CrossRef]
- Lisa-Molina, J.; Gomez-Murillo, P.; Arellano-Martín, I.; Jimenez, C.; Rodriguez-Escobar, M.L.; Tallini, L.R.; Viladomat, F.; Torras-Claveria, L.; Bastida, J. Alkaloid profile in wild autumn-flowering daffodils and their acetylcholinesterase inhibitory activity. Molecules 2023, 28, 1239. [Google Scholar] [CrossRef]
- Tran, T.H.; Vo, T.T.H.; Vo, T.Q.N.; Cao, T.C.N.; Tran, T.S. Synthesis and evaluation of the acetylcholinesterase inhibitory activities of some flavonoids derived from naringenin. Sci. World J. 2021, 2021, 4817900. [Google Scholar] [CrossRef]
- Kiziltas, H.; Goren, A.C.; Alwasel, S.; Gulcin, I. Comprehensive metabolic profiling of Acantholimon caryophyllaceum using LC-HRMS and evaluation of antioxidant activities, enzyme inhibition properties and molecular docking studies. S. Afr. J. Bot. 2022, 151, 743–751. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother. 2018, 106, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Gok, Y.; Taslimi, P.; Sen, B.; Bal, S.; Aktas, A.; Aygun, M.; Sadeghi, M.; Gulcin, I. Design, synthesis, characterization, crystal structure, in silico studies, and inhibitory properties of the PEPPSI type Pd(II)NHC complexes bearing chloro/fluorobenzyl group. Bioorg. Chem. 2023, 135, 106513. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.I.; Tugrak, M.; Sakagami, H.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis and bioactivity studies on new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3h-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. J. Enzyme Inhib. Med. Chem. 2010, 31, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Akıncıoglu, A.; Topal, M.; Gulcin, I.; Goksu, S. Novel sulfamides and sulfonamides incorporating tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch. Pharm. 2014, 347, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Purkerson, J.M.; Schwartz, G.J. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007, 71, 103–115. [Google Scholar] [CrossRef]
- Ghorai, S.; Pulya, S.; Ghosh, K.; Panda, P.; Ghosh, B.; Gayen, S. Structure-activity relationship of human carbonic anhydrase-II inhibitors: Detailed insight for future development as anti-glaucoma agents. Bioorg. Chem. 2020, 95, 103557. [Google Scholar] [CrossRef]
- Guney, M.; Coskun, A.; Topal, F.; Dastan, A.; Gulcin, I.; Supuran, C.T. Oxidation of cyanobenzocycloheptatrienes: Synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorg. Med. Chem. 2014, 22, 3537–3543. [Google Scholar] [CrossRef]
- Goksu, S.; Naderi, A.; Akbaba, Y.; Kalın, P.; Akıncıoglu, A.; Gulcin, I.; Durdagi, S.; Salmas, R.E. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg. Chem. 2014, 56, 75–82. [Google Scholar] [CrossRef]
- Kocyigit, U.M.; Budak, Y.; Gurdere, M.B.; Erturk, F.; Yencilek, B.; Taslimi, P.; Gulcin, I.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem. 2018, 124, 61–68. [Google Scholar] [CrossRef]
- Kucukoglu, K.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg. Chem. 2019, 86, 316–321. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44 (Suppl. S1), S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, L.; Chen, H.; Zhang, X.; Lei, Y.; Liu, W.; Xu, H.; Ma, B.; Zhu, C. Novel hydroxychalcone-based dual inhibitors of aldose reductase and α-glucosidase as potential therapeutic agents against diabetes mellitus and its complications. J. Med. Chem. 2022, 65, 9174–9192. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Bashir, S.; Jaan, S.; Nawaz, H.; Nishan, U.; Abbasi, S.W.; Jamal, S.B.; Khan, A.; Afridi4, S.G.; Iqbal, A. Computational analysis of plant-derived terpenes as α-glucosidase inhibitors for the discovery of therapeutic agents against type 2 diabetes mellitus. S. Afr. J. Bot. 2021, 143, 462–473. [Google Scholar] [CrossRef]
- Jo, J.; Lee, D.; Park, Y.H.; Choi, H.; Yun, H.; Park, D.H.; Choi, Y.K.; Kwak, J.; Yang, M.K.; Yoo, J.W.; et al. Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. Eur. J. Med. Chem. 2021, 217, 113325–113340. [Google Scholar] [CrossRef]
- Caglayan, C.; Demir, Y.; Kucukler, S.; Taslimi, P.; Kandemir, F.M.; Gulcin, I. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. J. Food Biochem. 2019, 43, e12720. [Google Scholar] [CrossRef]
- Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonamides towards acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des. 2018, 91, 854–866. [Google Scholar] [CrossRef]
- Koksal, E.; Gulcin, I. Antioxidant activity of cauliflower (Brassica oleracea L.). Turk. J. Agric. For. 2008, 32, 65–78. [Google Scholar]
- Karagecili, H.; Yılmaz, M.A.; Erturk, A.; Kızıltas, H.; Guven, L.; Alwasel, S.H.; Gulcin, I. Comprehensive metabolite profiling of Berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 2023, 28, 1739. [Google Scholar] [CrossRef]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive profiling of most widely used spices for their phenolic compounds through LC-ESI-QTOF-MS(2) and their antioxidant potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef]
- Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Taslimi, P.; Koksal, E.; Goren, A.C.; Bursal, E.; Aras, A.; Kılıc, O.; Alwasel, S.; Gulcin, I. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem. 2020, 13, 4528–4537. [Google Scholar] [CrossRef]
- Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer 2019, 72, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Krasteva, I.; Nikolov, S. Flavonoids in Astragalus corniculatus. Quim. Nova 2008, 31, 59–60. [Google Scholar] [CrossRef]
- Lekmine, S.; Bendjedid, S.; Benslama, O.; Martín-García, A.I.; Boussekine, S.; Kadi, K.; Akkal, S.; Nieto, G.; Sami, R.; Al-Mushhin, A.A.M.; et al. Ultrasound-assisted extraction, LC-MS/MS analysis, anticholinesterase, and antioxidant activities of valuable natural metabolites from Astragalus armatus Willd.: In silico molecular docking and in vitro enzymatic studies. Antioxidants 2022, 11, 2000. [Google Scholar] [CrossRef]
- Chamandy, A.; Zhao, M.; Rammal, H.; Ennahar, S. Hyphenated LC-ABTS+ and LC-DAD-HRMS for simultaneous analysis and identification of antioxidant compounds in Astragalus emarginatus Labill. extracts. J. Pharm. Anal. 2022, 12, 253–262. [Google Scholar] [CrossRef]
- Gulcin, I.; Sat, I.G.; Beydemir, Ş.; Kufrevioglu, O.I. Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital. J. Food Sci. 2004, 16, 17–30. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Long. 2009, 2, 897484. [Google Scholar] [CrossRef]
- Kızıltas, H.; Bingol, Z.; Goren, A.C.; Alwasel, S.H.; Gulcin, I. Verbascum speciousum Schrad: Analysis of phenolic compounds by LC-HRMS and determination of antioxidant and enzyme inhibitory properties. Rec. Nat. Prod. 2023, 17, 485–500. [Google Scholar]
- Zengin, G.; Ceylan, R.; Guler, G.O.; Carradori, S.; Uysal, S.; Aktumsek, A. Enzyme inhibitory effect and antioxidant properties 835 of Astragalus lagurus extracts. Curr. Enzyme Inhib. 2016, 12, 177–182. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Mohammadi Motamed, S.; Farzaneh, A.; Ghanizadeh, B.S.T. Antioxidant activity and total phenolic and flavonoid content of Astragalus squarrosus Bunge. Afr. J. Biotechnol. 2011, 10, 19176–19180. [Google Scholar] [CrossRef]
- Albayrak, S.; Kaya, O. Antioxidant and antimicrobial activities of four Astragalus species growing wild in Turkey. Turk. J. Biochem. 2018, 43, 425–434. [Google Scholar] [CrossRef]
- Ibrahim, L.F.; Marzouk, M.M.; Hussein, S.R.; Kawashty, S.A.; Mahmoud, K.; Saleh, N.A. Flavonoid constituents and biological screening of Astragalus bombycinus Boiss. Nat. Prod. Res. 2013, 27, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Sokmen, M.; Agar, G.; Adiguzel, A.; Baris, O.; Sahin, F. Antimicrobial and antioxidant activities of methanol and hexane extract of some endemic Astragalus species. Asian J. Chem. 2008, 20, 2125–2132. [Google Scholar]
- Bourezzane, S.; Haba, H.; Long, C.; Benkhaled, M. Chemical composition and antioxidant activity of Astragalus monspessulanus L. growing in semiarid areas of Algeria. J. Serb. Chem. Soc. 2018, 83, 31–38. [Google Scholar] [CrossRef]
- Huyut, Z.; Beydemir, S.; Gulcin, I. Inhibition properties of some flavonoids on carbonic anhydrase I and II isoenzymes purified from human erythrocytes. J. Biochem. Mol. Toxicol. 2017, 31, e21930. [Google Scholar] [CrossRef]
- Tokalı, F.S.; Taslimi, P.; Sadeghian, N.; Taskın-Tok, T.; Gulcin, I. Synthesis, characterization, bioactivity impacts of new anthranilic acid hydrazones containing aryl sulfonate moiety as fenamate isosteres. ChemistrySelect 2023, 8, e20230024. [Google Scholar] [CrossRef]
- Hakansson, K.; Carlsson, M.; Svensson, L.A.; Liljas, A. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J. Mol. Biol. 1992, 227, 1192–1204. [Google Scholar] [CrossRef]
- Senol, H.; Celik Turgut, G.; Sen, A.; Saglamtas, R.; Tuncay, S.; Gulcin, I.; Topcu, G. Synthesis of nitrogen-containing oleanolic acid derivatives as carbonic anhydrase and acetylcholinesterase inhibitors. Med. Chem. Res. 2023, 32, 694–704. [Google Scholar] [CrossRef]
- Atmaca, U.; Saglamtas, R.; Sert, Y.; Çelik, M.; Gulcin, I. Metal-free synthesis via intramolecular cyclization, enzyme inhibition properties and molecular docking of novel isoindolinones. ChemistrySelect 2023, 8, e20220457. [Google Scholar] [CrossRef]
- Karaca, E.O.; Bingol, Z.; Gurbuz, N.; Ozdemir, I.; Gulcin, I. Vinyl functionalized 5,6-dimethylbenzimidazolium salts: Synthesis and biological activities. J. Biochem. Mol. Toxicol. 2023, 37, e23255. [Google Scholar] [CrossRef] [PubMed]
- Topal, F.; Gulcin, I.; Dastan, A.; Guney, M. Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors. Int. J. Biol. Macromol. 2017, 94, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Eruygur, N.; Atas, M.; Tekin, M.; Taslimi, P.; Kocyigit, U.M.; Gulcin, I. In vitro antioxidant, antimicrobial, anticholinesterase and antidiabetic activities of Turkish endemic Achillea cucullata (Asteraceae) from ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Aksu, K.; Ozgeriş, B.; Taslimi, P.; Naderi, A.; Gulcin, I.; Goksu, S. Antioxidant activity, acetylcholinesterase and carbonic anhydrase inhibitory properties of novel ureas derived from phenethylamines. Arch. Pharm. 2016, 349, 944–954. [Google Scholar] [CrossRef]
- Kalın, P.; Gulcin, I.; Goren, A.C. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Rec. Nat. Prod. 2015, 9, 496–502. [Google Scholar]
- Polat Kose, L.; Gulcin, I.; Goren, A.C.; Namiesnik, J.; Martinez-Ayala, A.L.; Gorinstein, S. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 2015, 74, 712–721. [Google Scholar] [CrossRef]
- Tohma, H.; Koksal, E.; Kilic, O.; Alan, Y.; Yilmaz, M.A.; Gulcin, I.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef]
- Gulcin, I.; Kaya, R.; Goren, A.C.; Akıncıoglu, H.; Topal, M.; Bingol, Z.; Cetin Cakmak, K.; Ozturk Sarikaya, S.B.; Durmaz, L.; Alwasel, S. Anticholinergic, antidiabetic and antioxidant activities of Cinnamon (Cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Proper. 2019, 22, 1511–1526. [Google Scholar] [CrossRef]
- Gulcin, I.; Goren, A.C.; Taslimi, P.; Alwasel, S.H.; Kilic, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-Analysis of its polyphenol contents by LC-MS/MS. Biocat. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Han, H.; Yılmaz, H.; Gulcin, I. Antioxidant activity of flaxseed (Linum usitatissimum L.) and analysis of its polyphenol contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Tohma, H.; Altay, A.; Koksal, E.; Goren, A.C.; Gulcin, I. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria)—Analysis of its phenolic compounds by LC-MS/MS. J. Food Measure. Charac. 2019, 13, 1607–1619. [Google Scholar] [CrossRef]
- Bursal, E.; Taslimi, P.; Gören, A.; Gulcin, I. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocat. Agric. Biotechnol. 2020, 28, 101711. [Google Scholar] [CrossRef]
- Turkan, F.; Atalar, M.N.; Aras, A.; Gulcin, I.; Bursal, E. ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorg. Chem. 2020, 94, 103333. [Google Scholar] [CrossRef]
- Koksal, E.; Tohma, S.H.; Kılıc, O.; Alan, Y.; Aras, A.; Gulcin, I.; Bursal, E. Assessment of antimicrobial and antioxidant activities of Nepeta trachonitica: Analysis of its phenolic compounds using HPLC-MS/MS. Sci. Pharm. 2017, 85, 24. [Google Scholar] [CrossRef] [PubMed]
- Artunc, T.; Menzek, A.; Taslimi, P.; Gulcin, I.; Kazaz, C.; Sahin, E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg. Chem. 2020, 100, 103884. [Google Scholar] [CrossRef]
- Sehitoglu, M.H.; Han, H.; Kalin, P.; Gulcin, I.; Ozkan, A.; Aboul-Enein, H.Y. Pistachio (Pistacia vera L.) gum: A potent inhibitor of reactive oxygen species. J. Enzyme Inhib. Med. Chem. 2015, 30, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, I. Antioxidant activity of an Anatolian herbal tea-Origanum minutiflorum: Isolation and characterization of its secondary metabolites. Int. J. Food Proper. 2018, 21, 374–384. [Google Scholar] [CrossRef]
- Kızıltas, H.; Bingol, Z.; Goren, A.C.; Alwasel, S.H.; Gulcin, I. Anticholinergic, antidiabetic and antioxidant activities of Ferula orientalis L.-Analysis of its polyphenol contents by LC-HRMS. Rec. Nat. Prod. 2021, 15, 513–528. [Google Scholar] [CrossRef]
- Apak, R.; Calokerinos, A.; Gorinstein, S.; Segundo, M.A.; Hibbert, D.B.; Gulcin, I.; Demirci Cekic, S.; Guclu, K.; Ozyurek, M.; Esin Celik, S.; et al. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species. Pure Appl. Chem. 2022, 94, 87–144. [Google Scholar] [CrossRef]
- Gulcin, I.; Topal, F.; Cakmakcı, R.; Goren, A.C.; Bilsel, M.; Erdogan, U. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, C585–C593. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Aras, A.; Bursal, E.; Turkan, F.; Tohma, H.; Kilic, O.; Gulcin, I.; Koksal, E. Phytochemical content, antidiabetic, anticholinergic, and antioxidant activities of endemic Lecokia cretica extracts. Chem. Biodivers. 2019, 16, e1900341. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 26, 1199–1200. [Google Scholar] [CrossRef]
- Karakaya, S.; Bingol, Z.; Koca, M.; Dagoglu, S.; Pınar, N.M.; Demirci, B.; Gulcin, I.; Brestic, M.; Sytar, O. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with acetylcholinesterase and cholinesterase inhibition potential. Saudi Pharm. J. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Bingol, Z.; Kızıltas, H.; Goren, A.C.; Polat Kose, L.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, I. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.)-profiling of phenolic compounds by LC-HRMS. Heliyon 2021, 7, e06986. [Google Scholar] [CrossRef]
- Goksu, H.; Topal, M.; Keskin, A.; Gultekin, M.S.; Celik, M.; Gulcin, I.; Tanc, M.; Supuran, C.T. 9,10-Dibromo-N-aryl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones; synthesis and investigation of their effects on carbonic anhydrase isozymes I, II, IX, and XII. Arch. Pharm. 2016, 349, 466–474. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritiene, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Polat Kose, L.; Bingol, Z.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Durmaz, L.; Koksal, E.; Alwasel, S.; Gulcin, I. Anticholinergic and antioxidant activities of avocado (Folium perseae) leaves—Phytochemical content by LC-MS/MS analysis. Int. J. Food Proper. 2020, 23, 878–893. [Google Scholar] [CrossRef]
- Kızıltas, H.; Bingol, Z.; Goren, A.C.; Polat Kose, L.; Durmaz, L.; Topal, F.; Alwasel, S.H.; Gulcin, I. LC-HRMS profiling, antidiabetic, anticholinergic and antioxidant activities of aerial parts of kınkor (Ferulago stelleta). Molecules 2021, 6, 2469. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Sari, Y.; Aktas, A.; Taslimi, P.; Gok, Y.; Caglayan, C.; Gulcin, I. Novel N-propylphthalimide and 4-vinylbenzyl substituted benzimidazole salts: Synthesis, characterization and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, and carbonic anhydrase enzymes. J. Biochem. Mol. Toxicol. 2018, 32, e22009. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Huseyinova, A.; Kaya, R.; Taslimi, P.; Farzaliyev, V.; Mammadyarova, X.; Sujayev, A.; Tuzun, B.; Turkan, F.; Kocyigit, U.M.; Alwasel, S.; et al. Design, synthesis, characterization, biological evaluation, and molecular docking studies of novel 1,2-aminopropanthiols substituted derivatives as selective carbonic anhydrase, acetylcholinesterase, and α-glycosidase enzymes inhibitors. J. Biomol. Struc. Dyn. 2021, 40, 236–248. [Google Scholar] [CrossRef]
- Yigit, M.; Barut Celepci, D.; Taslimi, P.; Yigit, B.; Cetinkaya, B.; Ozdemir, I.; Aygun, M.; Gulcin, I. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg. Chem. 2022, 120, 105566. [Google Scholar] [CrossRef]
- Durmaz, L.; Erturk, A.; Akyuz, M.; Polat Kose, L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, I. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase enzymes inhibition effects and antioxidant activity of coumestrol. Molecules 2022, 27, 3091. [Google Scholar] [CrossRef]
- Durmaz, L.; Kiziltas, H.; Guven, L.; Karagecili, H.; Alwasel, S.; Gulcin, I. Antioxidant, antidiabetic, anticholinergic, and antiglaucoma effects of magnofluorine. Molecules 2022, 27, 5902. [Google Scholar] [CrossRef]
- Aktas, A.; Yaklı, G.; Demir, Y.; Gulcin, I.; Aygun, M.; Gok, Y. The palladium-based complexes bearing 1,3-dibenzylbenzimidazolium with morpholine, triphenylphosphine, and pyridine derivate ligands: Synthesis, characterization, structure and enzyme inhibitions. Heliyon 2022, 8, e10625. [Google Scholar] [CrossRef]
- Kiziltas, H.; Goren, A.C.; Alwasel, S.; Gulcin, I. Sahlep (Dactylorhiza osmanica): Phytochemical analyses by LC-HRMS, molecular docking, antioxidant activity and enzyme inhibition profiles. Molecules 2022, 27, 6907. [Google Scholar] [CrossRef]
- Yigit, M.; Demir, Y.; Barut Celepci, D.; Taskın, T.; Arınc, A.; Yigit, B.; Aygun, M.; Ozdemir, I.; Gulcin, I. Phthalimide-tethered imidazolium salts: Synthesis, characterization, enzyme inhibitory properties and in silico studies. Arch. Pharm. 2023, 355, e2200348. [Google Scholar] [CrossRef] [PubMed]
- Turkes, C.; Akocak, S.; Isık, M.; Lolak, N.; Taslimi, P.; Durgun, M.; Gulcin, I.; Budak, Y.; Beydemir, S. Novel inhibitors with sulfamethazine backbone: Synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J. Biomol. Struct. Dyn. 2022, 40, 8752–8764. [Google Scholar] [CrossRef] [PubMed]
- Yigit, B.; Taslimi, P.; Barut Celepci, D.; Taskin-Tok, T.; Yigit, M.; Aygun, M.; Ozdemir, I.; Gulcin, I. Novel PEPPSI-type N-heterocyclic carbene palladium(II) complexes: Synthesis, characterization, in silico studies and enzyme inhibitory properties against some metabolic enzymes. Inorg. Chim. Acta 2023, 544, 121239. [Google Scholar] [CrossRef]
- Zahedi, N.A.; Mohammadi-Khanaposhtani, M.; Rezaei, P.; Askarzadeh, M.; Alikhani, M.; Adib, M.; Mahdavi, M.; Larijani, B.; Niakan, S.; Tehrani, M.B.; et al. Dual functional cholinesterase and carbonic anhydrase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis, in vitro, and in silico evaluations of coumarin-dihydropyridine derivatives. J. Mol. Struct. 2023, 1276, 134767. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Israfilova, Z.; Taslimi, P.; Gulcin, I.; Abdullayev, Y.; Farzaliyev, V.; Karaman, M.; Sujayev, A.; Alwasel, S.H. Some thiocyanate containing heterocyclic compounds: Synthesis, bioactivity and molecular docking study. ChemistrySelect 2023, 8, e20220365. [Google Scholar] [CrossRef]
- Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 1967, 242, 4221–4229. [Google Scholar] [CrossRef]
- Bulut, Z.; Abul, N.; Halıc Poslu, A.; Gulcin, I.; Ece, A.; Ercag, E.; Koz, O.; Koz, G. Structural characterization and biological evaluation of uracil-appended benzylic amines as acetylcholinesterase and carbonic anhydrase I and II inhibitors. J. Mol. Struct. 2023, 1280, 135047. [Google Scholar] [CrossRef]
No. | Analytes | RT a | M.I. (m/z) b | F.I. (m/z) c | Ion. Mode | MEAA (µg/mL) |
---|---|---|---|---|---|---|
1 | Quinic acid | 2.36 | 190.9 | 85.0 | Neg | N.D. |
2 | Fumaric acid | 3.94 | 114.9 | 71.1 | Neg | 855.07 |
3 | Gallic acid | 5.45 | 168.9 | 79.0 | Neg | N.D. |
4 | Pyrogallol | 6.53 | 124.9 | 96.6 | Neg | N.D. |
5 | Keracyanin chloride | 10.49 | 592.8 | 284.7 | Neg | N.D. |
6 | Cyanidin-3-O-glycoside | 10.53 | 447.1 | 283.8 | Neg | N.D. |
7 | Chlorogenic acid | 10.91 | 352.9 | 190.9 | Neg | 40.92 |
8 | Catechin | 10.93 | 289.1 | 244.9 | Neg | N.D. |
9 | Peonidin-3-O-glucoside | 10.98 | 460.9 | 298.8 | Neg | N.D. |
10 | 4-OH-Benzoic acid | 11.27 | 137.0 | 93.1 | Neg | 57.23 |
11 | Epicatechin | 11.42 | 289.0 | 244.9 | Neg | N.D. |
12 | Epigallocatechin gallate | 11.52 | 456.8 | 304.9 | Neg | N.D. |
13 | Caffeic acid | 11.51 | 178.8 | 134.8 | Neg | N.D. |
14 | Vanillic acid | 11.76 | 166.9 | 151.9 | Neg | N.D. |
15 | Syringic acid | 11.80 | 169.9 | 122.8 | Neg | N.D. |
16 | Vitexin | 11.77 | 430.9 | 310.9 | Neg | N.D. |
17 | Naringin | 12.01 | 579.0 | 270.8 | Neg | N.D. |
18 | Ellagic acid | 12.09 | 300.8 | 283.4 | Neg | 48.54 |
19 | Hesperidin | 12.17 | 609.0 | 300.9 | Neg | N.D. |
20 | p-Coumaric acid | 12.27 | 163.0 | 118.9 | Neg | 32.26 |
21 | Sinapic acid | 12.56 | 222.8 | 163.9 | Neg | N.D. |
22 | Taxifolin | 12.38 | 302.9 | 124.7 | Neg | N.D. |
23 | Ferulic acid | 12.47 | 193.0 | 134.0 | Neg | N.D. |
24 | Rosmarinic acid | 12.53 | 358.8 | 160.8 | Neg | 64.54 |
25 | Vanillin | 12.60 | 151.0 | 135.8 | Neg | N.D. |
26 | Myricetin | 12.58 | 316.9 | 150.9 | Neg | N.D. |
27 | Resveratrol | 13.16 | 226.8 | 184.8 | Neg | N.D. |
28 | Luteolin | 13.35 | 284.9 | 132.9 | Neg | 5.50 |
29 | Quercetin | 13.54 | 300,9 | 150.7 | Neg | 10.88 |
30 | Apigenin | 13.96 | 268.9 | 224.8 | Neg | N.D. |
31 | Naringenin | 14.11 | 270.9 | 150.8 | Neg | 1.44 |
32 | Isorhamnetin | 14.13 | 314.9 | 299.8 | Neg | 1489.11 |
33 | Chrysin | 15.59 | 252.8 | 208.8 | Neg | N.D. |
34 | Galangin | 15.71 | 268.9 | 168.8 | Neg | N.D. |
35 | Curcumin | 16.29 | 366.9 | 148.9 | Neg | N.D. |
Antioxidants | Fe3+ Reducing | Cu2+ Reducing | Fe3+-TPTZ Reducing | |||
---|---|---|---|---|---|---|
λ700 | r2 | λ450 | r2 | λ593 | r2 | |
BHA | 1.257 | 0.9523 | 1.800 | 0.9742 | 0.884 | 0.9899 |
BHT | 2.018 | 0.9466 | 2.912 | 0.9969 | 2.089 | 0.9581 |
α-Tocopherol | 1.895 | 0.9402 | 1.139 | 0.9967 | 1.995 | 0.9807 |
Trolox | 1.545 | 0.9966 | 2.323 | 0.9980 | 1.755 | 0.9990 |
MEAA | 0.308 | 0.9971 | 0.163 | 0.9918 | 0.284 | 0.9742 |
WEAA | 0.284 | 0.9910 | 0.137 | 0.9999 | 0.314 | 0.9894 |
Antioxidants | DPPH• Scavenging | ABTS•+ Scavenging | DMPD•+ Scavenging | Fe2+ Chelating | ||||
---|---|---|---|---|---|---|---|---|
IC50 | r2 | IC50 | r2 | IC50 | r2 | IC50 | r2 | |
BHA | 9.00 | 0.9399 | 7.71 | 0.9330 | 31.43 | 0.9993 | - | - |
BHT | 21.00 | 0.9668 | 7.71 | 0.9330 | - | - | 21.66 | 0.9908 |
Trolox | 5.92 | 0.9770 | 7.71 | 0.9330 | 14.38 | 0.9349 | - | - |
α-Tocopherol | 9.63 | 0.9947 | 8.10 | 0.9550 | - | - | - | - |
MEAA | 99.02 | 0.9977 | 32.21 | 0.9987 | 231.05 | 0.9967 | 46.21 | 0.9717 |
WEAA | 115.53 | 0.9934 | 30.22 | 0.9976 | 65.22 | 0.9987 | 33.01 | 0.9601 |
Inhibitors | α-Amylase | α-Glycosidase | AChE | hCA II | ||||
---|---|---|---|---|---|---|---|---|
IC50 | r2 | IC50 | r2 | IC50 | r2 | IC50 | r2 | |
MEAA (µg/mL) | 693.15 | 0.9647 | 9.07 | 0.9775 | 1.99 | 0.9923 | 147.70 | 0.9804 |
WEAA (µg/mL) | 346.58 | 0.9387 | 2.24 | 0.9155 | 2.45 | 0.9930 | 171.70 | 0.9671 |
Acetazolamide (nM) | - | - | - | - | - | - | 8.37 | 0.9825 |
Tacrine (nM) | - | - | - | - | 0.0246 | 0.9706 | - | - |
Acarbose (nM) | 6.46 | 0.9424 | 14.72 | 0.9922 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güven, L.; Erturk, A.; Miloğlu, F.D.; Alwasel, S.; Gulcin, İ. Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall—Analysis of Phenolics Profiles by LC-MS/MS. Pharmaceuticals 2023, 16, 659. https://doi.org/10.3390/ph16050659
Güven L, Erturk A, Miloğlu FD, Alwasel S, Gulcin İ. Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall—Analysis of Phenolics Profiles by LC-MS/MS. Pharmaceuticals. 2023; 16(5):659. https://doi.org/10.3390/ph16050659
Chicago/Turabian StyleGüven, Leyla, Adem Erturk, Fatma Demirkaya Miloğlu, Saleh Alwasel, and İlhami Gulcin. 2023. "Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall—Analysis of Phenolics Profiles by LC-MS/MS" Pharmaceuticals 16, no. 5: 659. https://doi.org/10.3390/ph16050659
APA StyleGüven, L., Erturk, A., Miloğlu, F. D., Alwasel, S., & Gulcin, İ. (2023). Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall—Analysis of Phenolics Profiles by LC-MS/MS. Pharmaceuticals, 16(5), 659. https://doi.org/10.3390/ph16050659