Synthesis and Investigation of Anti-Inflammatory Activity of New Thiourea Derivatives of Naproxen
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Procedure for the Synthesis of Thiourea Derivatives of Naproxen
2.2. Acute Oral Toxicity Evaluation
2.3. Carrageenan-Induced Paw Edema and Determination of the Anti-Inflammatory Activity
2.4. Investigation of COX-2 and 5-LOX Enzyme Inhibitory Properties
2.5. Molecular Docking Simulation
2.5.1. Molecular Docking of Tested Compounds into COX-2
2.5.2. Molecular Docking of the Tested Compounds into 5-LOX
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthetic Procedures
3.3. Evaluation of Toxicity Profile and Anti-Inflammatory Activity in Wistar Albino Rats
3.3.1. Acute Oral Toxicity Evaluation
3.3.2. Evaluation of Anti-Inflammatory Activity in Wistar Albino Rats
3.4. Investigation of COX-2 and 5-LOX Inhibitory Activity
3.5. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manjunathaiah Raghavendra, N.; Ramakrishna, K.; Sirisha, V.; Divya, P.; Venkateswara Rao, A. Computer aided discovery of potential anti-inflammatory (s)-naproxen analogs as COX-2 inhibitors. Med. Chem. 2013, 9, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Hasan, D.; Shono, A.; van Kalken, C.K.; van der Spek, P.J.; Krenning, E.P.; Kotani, T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal. 2022, 18, 13–59. [Google Scholar] [CrossRef]
- Vollbracht, C.; Kraft, K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and long COVID: Implications for the benefit of high-dose intravenous vitamin C. Front. Pharmacol. 2022, 13, 899198. [Google Scholar] [CrossRef]
- Anwar, S.; Almatroudi, A.; Allemailem, K.S.; Jacob Joseph, R.; Khan, A.A.; Rahmani, A.H. Protective effects of ginger extract against glycation and oxidative stress-induced health complications: An in vitro study. Processes 2020, 8, 468. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal. Transduct. Target. Ther. 2021, 6, 1–30. [Google Scholar] [CrossRef]
- Krieg, P.; Fürstenberger, G. The role of lipoxygenases in epidermis. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 2014, 1841, 390–400. [Google Scholar] [CrossRef]
- Bruno, F.; Spaziano, G.; Liparulo, A.; Roviezzo, F.; Nabavi, S.M.; Sureda, A.; Filosa, R.; D’Agostino, B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur. J. Med. Chem. 2018, 153, 65–72. [Google Scholar] [CrossRef]
- Sarveswaran, S.; Chakraborty, D.; Chitale, D.; Sears, R.; Ghosh, J. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J. Biol. Chem. 2015, 290, 4994–5006. [Google Scholar] [CrossRef]
- Khan, R.; Spagnoli, V.; Tardif, J.C.; L’Allier, P.L. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis 2015, 240, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulos, P.F.; Praticò, D. Overexpression of 5-lipoxygenase worsens the phenotype of a mouse model of tauopathy. Mol. Neurobiol. 2018, 55, 5926–5936. [Google Scholar] [CrossRef] [PubMed]
- Nejatian, N.; Häfner, A.K.; Shoghi, F.; Badenhoop, K.; Penna-Martinez, M. 5-Lipoxygenase (ALOX5): Genetic susceptibility to type 2 diabetes and vitamin D effects on monocytes. J. Steroid Biochem. Mol. Biol. 2019, 187, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Giannopoulos, P.F.; Ceballos-Diaz, C.; Golde, T.E.; Praticò, D. 5-lipoxygenase gene transfer worsens memory, amyloid, and tau brain pathologies in a mouse model of Alzheimer disease. Ann. Neurol. 2012, 72, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, S.; Gotoh, T.; Tomisato, W.; Mima, S.; Hoshino, T.; Hwang, H.J.; Takenaka, H.; Tsuchiya, T.; Mori, M.; Mizushima, T. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell. Death Differ. 2004, 11, 1009–1016. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Tanaka, A.; Kato, S.; Amagase, K.; Satoh, H. Roles of COX inhibition in pathogenesis of NSAID-induced small intestinal damage. Clin. Chim. Acta 2010, 411, 459–466. [Google Scholar] [CrossRef]
- Shinu, P.; Sharma, M.; Gupta, G.L.; Mujwar, S.; Kandeel, M.; Kumar, M.; Nair, A.B.; Goyal, M.; Singh, P.; Attimarad, M.; et al. Computational Design, Synthesis, and Pharmacological Evaluation of Naproxen-Guaiacol Chimera for Gastro-Sparing Anti-Inflammatory Response by Selective COX2 Inhibition. Molecules 2022, 27, 6905. [Google Scholar] [CrossRef]
- Angiolillo, D.J.; Weisman, S.M. Clinical Pharmacology and Cardiovascular Safety of Naproxen. Am. J. Cardiovasc. Drugs 2017, 17, 97–107. [Google Scholar] [CrossRef]
- Domper Arnal, M.J.; Hijos-Mallada, G.; Lanas, A. Gastrointestinal and cardiovascular adverse events associated with NSAIDs. Expert. Opin. Drug. Saf. 2022, 21, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Han, M.İ.; Küçükgüzel, Ş.G. Anticancer and Antimicrobial Activities of Naproxen and Naproxen Derivatives. Mini Rev. Med. Chem. 2020, 20, 1300–1310. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Jishkariani, D.; Narindoshvili, T. Convenient synthesis of Ibuprofen and naproxen aminoacyl, dipeptidoyl and ester derivatives. Chem. Biol. Drug. Des. 2009, 73, 618–626. [Google Scholar] [CrossRef]
- Azizian, H.; Mousavi, Z.; Faraji, H.; Tajik, M.; Bagherzadeh, K.; Bayat, P.; Shafiee, A.; Almasirad, A. Arylhydrazone derivatives of naproxen as new analgesic and anti-inflammatory agents: Design, synthesis and molecular docking studies. J. Mol. Graph. Model. 2016, 67, 127–136. [Google Scholar] [CrossRef] [PubMed]
- El-Husseiny, W.M.; El-Sayed, M.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; Asiri, Y.A.; Abdel-Aziz, A.A. Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. Eur. J. Med. Chem. 2018, 158, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Elhenawy, A.A.; Al-Harbi, L.M.; El-Gazzar, M.A.; Khowdiary, M.M.; Ouidate, A.; Alosaimi, A.M.; Elhamid Salim, A. Naproxenylamino acid derivatives: Design, synthesis, docking, QSAR and anti-inflammatory and analgesic activity. Biomed. Pharmacother. 2019, 116, 109024. [Google Scholar] [CrossRef] [PubMed]
- Kalgutkar, A.S.; Marnett, A.B.; Crews, B.C.; Remmel, R.P.; Marnett, L.J. Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J. Med. Chem. 2000, 43, 2860–2870. [Google Scholar] [CrossRef]
- Berk, B.; Aktay, G.; Yesilada, E.; Ertan, M. Synthesis and pharmacological activities of some new 2-[1-(6-methoxy-2-naphthyl)ethyl]-6-(substituted)benzylidene thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one derivatives. Pharmazie 2001, 56, 613–616. [Google Scholar] [CrossRef]
- Ranatunge, R.R.; Augustyniak, M.E.; Dhawan, V.; Ellis, J.L.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Richardson, S.K.; Shumway, M.J.; Trocha, A.M.; et al. Synthesis and anti-inflammatory activity of a series of N-substituted naproxen glycolamides: Nitric oxide-donor naproxen prodrugs. Bioorg. Med. Chem. 2006, 14, 2589–2599. [Google Scholar] [CrossRef]
- Fernandes, J.; Singh, S.; Kumar, A.; Kumar, P. Synthesis, Analgesic and Anti-inflammatory Activity of Some Novel Derivatives of Naproxen. Res. J. Pharm. Tech. 2014, 7, 631–634. [Google Scholar]
- Levit, G.L.; Anikina, L.V.; Vikharev, Y.B.; Demin, A.M.; Safin, V.A.; Matveeva, T.V.; Krasnov, V.P. Synthesis and antiinflammatory and analgesic activity of naproxen amides with amino acid derivatives. Pharm. Chem. J. 2002, 36, 232–236. [Google Scholar] [CrossRef]
- Shakeel, A. Thiourea Derivatives in Drug Design and Medicinal Chemistry: A Short Review. J. Drug. Des. Med. Chem. 2016, 2, 10. [Google Scholar] [CrossRef]
- Calixto, S.D.; Simão, T.L.B.V.; Palmeira-Mello, M.V.; Viana, G.M.; Assumpção, P.W.M.C.; Rezende, M.G.; do Espirito Santo, C.C.; de Oliveira Mussi, V.; Rodrigues, C.R.; Lasunskaia, E.; et al. Antimycobacterial and anti-inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg. Med. Chem. 2022, 53, 116506. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Zhang, T.; Zhu, H.; Qian, H.; Zhang, H.; Huang, W.; Gust, R. Design and synthesis of thiourea derivatives containing a benzo[5,6]cyclohepta[1,2-b]pyridine moiety as potential antitumor and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2012, 22, 2701–2704. [Google Scholar] [CrossRef]
- Pingaew, R.; Sinthupoom, N.; Mandi, P.; Prachayasittikul, V.; Cherdtrakulkiat, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and in silico study of bis-thiourea derivatives as anticancer, antimalarial and antimicrobial agents. Med. Chem. Res. 2017, 26, 3136–3148. [Google Scholar] [CrossRef]
- Ammar, Y.A.; Fayed, E.A.; Bayoumi, A.H.; Saleh, M.A.; El-Araby, M.E. Design and synthesis of pyridine-amide based compounds appended naproxen moiety as anti-microbial and anti-inflammatory agents. Am. J. Pharm. Tech. Res. 2015, 5, 245–273. [Google Scholar]
- Eissa, S.I.; Farrag, A.M.; Galeel, A.A. Non-carboxylic analogues of aryl propionic acid: Synthesis, anti-inflammatory, analgesic, antipyretic and ulcerogenic potential. Drug. Res. 2014, 64, 485–492. [Google Scholar] [CrossRef]
- Elhenawy, A.A.; Al-Harbi, L.M.; Moustafa, G.O.; El-Gazzar, M.A.; Abdel-Rahman, R.F.; Salim, A.E. Synthesis, comparative docking, and pharmacological activity of naproxen amino acid derivatives as possible anti-inflammatory and analgesic agents. Drug. Des. Dev. Ther. 2019, 13, 1773–1790. [Google Scholar] [CrossRef]
- Kulkarni, S.K.; Pal Singh, V. Licofelone-a novel analgesic and anti-inflammatory agent. Curr. Top. Med. Chem. 2007, 7, 251–263. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, W.; Li, Y.; Sun, Y.; Zhang, Y.; Ji, H.; Lai, Y. Darbufelone, a novel anti-inflammatory drug, induces growth inhibition of lung cancer cells both in vitro and in vivo. Cancer Chemother. Pharmacol. 2010, 66, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.B.; Gupta, R. Contemporary Computational Applications and Tools in Drug Discovery. ACS Med. Chem. Lett. 2022, 13, 1016–1029. [Google Scholar] [CrossRef] [PubMed]
- Mughal, E.U.; Ashraf, J.; Hussein, E.M.; Nazir, Y.; Alwuthaynani, A.S.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Ahmed, S.A. Design, synthesis, and structural characterization of thioflavones and thioflavonols as potential tyrosinase inhibitors: In vitro and in silico studies. ACS Omega 2022, 7, 17444–17461. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.H.; Anwar, S.; Raut, R.; Almatroudi, A.; Babiker, A.Y.; Khan, A.A.; Alsahli, M.A.; Almatroodi, S.A. Therapeutic Potential of Myrrh, a Natural Resin, in Health Management through Modulation of Oxidative Stress, Inflammation, and Advanced Glycation End Products Formation Using In Vitro and In Silico Analysis. Appl. Sci. 2022, 12, 9175. [Google Scholar] [CrossRef]
- Anwar, S.; Raut, R.; Alsahli, M.A.; Almatroudi, A.; Alfheeaid, H.; Alzahrani, F.M.; Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Rahmani, A.H. Role of Ajwa date fruit pulp and seed in the management of diseases through in vitro and in silico analysis. Biology 2022, 11, 78. [Google Scholar] [CrossRef]
- Nordin, N.A.; Chai, T.W.; Tan, B.L.; Choi, C.L.; Abd Halim, A.N.; Hussain, H.; Ngaini, Z. Novel synthetic monothiourea aspirin derivatives bearing alkylated amines as potential antimicrobial agents. J. Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Karim, N.; Khan, I.; Khan, W.; Khan, I.; Khan, A.; Halim, S.A.; Khan, H.; Hussain, J.; Al-Harrasi, A. Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: An in-vitro, in-vivo, and in-silico approach. Front. Immunol. 2019, 10, 581. [Google Scholar] [CrossRef]
- Ahmadi, M.; Bekeschus, S.; Weltmann, K.D.; von Woedtke, T.; Wende, K. Non-steroidal anti-inflammatory drugs: Recent advances in the use of synthetic COX-2 inhibitors. RSC Med. Chem. 2022, 13, 471–496. [Google Scholar] [CrossRef] [PubMed]
- Duggan, K.C.; Walters, M.J.; Musee, J.; Harp, J.M.; Kiefer, J.R.; Oates, J.A.; Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem. 2010, 285, 34950–34959. [Google Scholar] [CrossRef]
- Pergola, C.; Werz, O. 5-Lipoxygenase inhibitors: A review of recent developments and patents. Expert. Opin. Ther. Pat. 2010, 20, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Kahnt, A.S.; Angioni, C.; Göbel, T.; Hofmann, B.; Roos, J.; Steinbrink, S.D.; Rörsch, F.; Thomas, D.; Geisslinger, G.; Zacharowski, K.; et al. Inhibitors of human 5-lipoxygenase potently interfere with prostaglandin transport. Front. Pharmacol. 2022, 12, 782584. [Google Scholar] [CrossRef]
- Ihsan, A.; Wang, X.; Huang, X.J.; Liu, Y.; Liu, Q.; Zhou, W.; Yuan, Z.H. Acute and subchronic toxicological evaluation of Mequindox in Wistar rats. Regul. Toxicol. Pharmacol. 2010, 57, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Salga, M.S.; Ali, H.M.; Abdulla, M.A.; Abdelwahab, S.I. Acute oral toxicity evaluations of some zinc (II) complexes derived from 1-(2-Salicylaldiminoethyl) piperazine schiff bases in rats. Int. J. Mol. Sci. 2012, 13, 1393–1404. [Google Scholar] [CrossRef]
- Rodríguez-Cal y Mayor, A.; Castañeda-Hernández, G.; Favari, L.; Martinez-Cruz, A.; Guízar-Sahagún, G.; Cruz-Antonio, L. Pharmacokinetics and anti-inflammatory effect of naproxen in rats with acute and subacute spinal cord injury. Naunyn Schmiedeb Arch. Pharmacol. 2020, 393, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Mićović, T.; Stanković, J.S.K.; Bauer, R.; Nöst, X.; Marković, Z.; Milenković, D.; Jakovljević, V.; Tomović, M.; Bradić, J.; Stešević, D.; et al. In vitro, in vivo and in silico evaluation of the anti-inflammatory potential of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). J. Ethnopharmacol. 2022, 293, 115201. [Google Scholar] [CrossRef]
- COX2. Inhibitor Screening Kit (Fluorometric) (ab283401). Available online: https://www.abcam.com/products/assay-kits/cox2-inhibitor-screening-kit-fluorometric-ab283401.html (accessed on 27 February 2023).
- ab284521–5-Lipoxygenase Inhibitor Screening Kit (Fluorometric). Available online: https://www.abcam.com/ps/products/284/ab284521/documents/5-Lipoxygenase-Inhibitor-Screening-Kit-protocol-book-v2-ab284521%20(website).pdf (accessed on 27 February 2023).
- Protein Data Bank. Available online: http://www.rcsb.org/ (accessed on 26 March 2023).
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef] [PubMed]
- MAKE Receptor 3.2.0.2: OpenEye Scientific Software, Santa Fe, USA. Available online: https://docs.eyesopen.com/applications/oedocking/make_receptor/make_receptor_setup.html (accessed on 28 March 2023).
- OMEGA 2.5.1.4: OpenEye Scientific Software, Santa Fe, NM. Available online: http://www.eyesopen.com/ (accessed on 28 March 2023).
- Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and the Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef]
- FRED 3.2.0.2: OpenEye Scientific Software, Santa Fe, NM. Available online: https://www.eyesopen.com/ (accessed on 28 March 2023).
- McGann, M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 2011, 51, 578–596. [Google Scholar] [CrossRef]
- McGann, M. FRED and HYBRID docking performance on standardized datasets. J. Comput. Aided Mol. Des. 2012, 26, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Bleylevens, I.W.; Bitorina, A.V.; Wichapong, K.; Nicolaes, G.A. Optimization of Compound Ranking for Structure-Based Virtual Ligand Screening Using an Established FRED–Surflex Consensus Approach. Chem. Biol. Drug. Des. 2014, 83, 37–51. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug. Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Carugo, O.; Pongor, S. A normalized root-mean-spuare distance for comparing protein three-dimensional structures. Protein Sci. 2001, 10, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Control Group |
---|---|---|---|---|---|---|---|---|
Organ | ||||||||
Kidney | 0.31 ± 0.03 | 0.34 ± 0.04 | 0.32 ± 0.06 | 0.33 ± 0.07 | 0.30 ± 0.03 | 0.35 ± 0.05 | 0.29 ± 0.03 | 0.33 ± 0.01 |
Heart | 0.32 ± 0.02 | 0.33 ± 0.04 | 0.31 ± 0.03 | 0.30 ± 0.03 | 0.31 ± 0.03 | 0.34 ± 0.02 | 0.33 ± 0.03 | 0.31 ± 0.01 |
Liver | 2.73 ± 0.24 | 3.07 ± 0.38 | 2.85 ± 0.17 | 2.45 ± 0.15 | 2.97 ± 0.33 | 3.01 ± 0.29 | 2.64 ± 0.46 | 2.91 ± 0.10 |
Stomach | 0.54 ± 0.05 | 0.57 ± 0.04 | 0.50 ± 0.05 | 0.50 ± 0.05 | 0.53 ± 0.04 | 0.55 ± 0.03 | 0.50 ± 0.04 | 0.53 ± 0.04 |
Rat Paw Thickness (mm) (% of Inhibition) | |||||
---|---|---|---|---|---|
Experimental Groups | 0 h | 1 h | 2 h | 3 h | 4 h |
Compound 1 2.5 mg/kg | 4.57 ± 0.31 | 6.50 ± 0.40 (20.275%) | 6.50 ± 0.40 (11.111%) | 6.20 ± 0.30 (10.502%) | 5.53 ± 0.29 (33.333%) |
Compound 1 5.0 mg/kg | 4.40 ± 0.36 | 7.00 ± 0.10 (−7.216%) | 6.50 ± 0.17 (3.448%) | 5.8 ± 0.20 (23.288%) | 5.27 ± 0.29 (40.230%) |
Compound 1 10.0 mg/kg | 4.47 ± 0.51 | 7.03 ± 0.12 (−5.842%) | 6.60 ± 0.10 (1.916%) | 6.10 ± 0.17 (10.502%) | 5.27 ± 0.50 (44.800%) * |
Compound 2 2.5 mg/kg | 4.37 ± 0.15 | 6.57 ± 1.16 (9.278%) | 6.07 ± 0.72 (21.839%) | 5.77 ± 0.42 (23.288%) | 5.30 ± 0.26 (35.632%) |
Compound 2 5.0 mg/kg | 4.77 ± 0.21 | 7.03 ± 0.47 (6.529%) | 6.40 ± 0.53 (24.904%) | 5.70 ± 0.20 (48.858%) * | 5.53 ± 0.29 (47.126%) * |
Compound 2 10.0 mg/kg | 4.63 ± 0.06 | 6.5 ± 0.40 (23.024%) | 6.17 ± 0.67 (29.502%) | 5.53 ± 0.15 (50.685%) * | 5.33 ± 0.25 (51.724%) * |
Compound 3 2.5 mg/kg | 4.30 ± 0.28 | 6.25 ± 0.21 (19.588%) | 6.0 ± 0.57 (21.839%) | 5.50 ± 0.42 (34.247%) | 5.10 ± 0.14 (44.737%) |
Compound 3 5.0 mg/kg | 4.13 ± 0.25 | 6.40 ± 0.79 (6.529%) | 5.73 ± 0.38 (26.437%) * | 5.44 ± 0.28 (28.584%) | 4.97 ± 0.42 (42.529%) * |
Compound 3 10.0 mg/kg | 3.90 ± 0.20 | 6.23 ± 0.25 (3.780%) | 5.80 ± 0.26 (12.644%) | 5.27 ± 0.15 (25.114%) | 4.67 ± 0.38 (47.217%) * |
Compound 4 2.5 mg/kg | 4.03 ± 0.06 | 5.93 ± 0.25 (21.649%) | 5.40 ± 0.10 (37.165%) * | 5.17 ± 0.15 (37.900%) | 4.90 ± 0.10 (40.523%) * |
Compound 4 5.0 mg/kg | 4.40 ± 0.62 | 6.10 ± 0.44 (29.897%) * | 5.97 ± 0.25 (27.969%) | 5.70 ± 0.46 (28.767%) | 5.22 ± 0.50 (43.218%) * |
Compound 4 10.0 mg/kg | 4.23 ± 0.06 | 6.00 ± 0.10 (27.148%) * | 5.70 ± 0.20 (32.567%) * | 5.30 ± 0.17 (41.553%) * | 4.90 ± 0.20 (54.013%) * |
Compound 5 2.5 mg/kg | 3.57 ± 0.12 | 5.73 ± 0.12 (10.653%) | 5.37 ± 0.25 (17.241%) | 5.20 ± 0.20 (10.502%) | 4.57 ± 0.15 (31.034%) |
Compound 5 5.0 mg/kg | 3.10 ± 0.00 | 5.05 ± 0.07 (19.588%) | 4.85 ± 0.07 (19.540%) | 4.40 ± 0.14 (28.767%) | 3.95 ± 0.07 (41.379%) |
Compound 5 10.0 mg/kg | 4.00 ± 0.28 | 5.5 ± 0.71 (38.144%) * | 5.35 ± 0.64 (37.931%) * | 5.90 ± 0.71 (39.726%) | 4.75 ± 0.49 (48.276%) |
Compound 6 2.5 mg/kg | 4.03 ± 0.06 | 6.17 ± 0.31 (11.753%) | 5.87 ± 0.23 (15.709%) | 5.37 ± 0.55 (26.941%) | 4.93 ± 0.21 (37.931%) |
Compound 6 5.0 mg/kg | 4.47 ± 0.35 | 6.47 ± 0.57 (17.526%) | 6.17 ± 0.06 (21.839%) | 5.77 ± 0.06 (28.767%) | 5.27 ± 0.21 (44.724%) |
Compound 6 10.0 mg/kg | 4.30 ± 0.62 | 6.20 ± 0.20 (21.649%) | 6.17 ± 0.23 (14.176%) | 5.27 ± 0.72 (47.103%) | 5.03 ± 0.76 (49.425%) * |
Compound 7 2.5 mg/kg | 5.13 ± 0.29 | 7.03 ± 0.15 (21.649%) | 6.47 ± 0.21 (38.697%) * | 6.10 ± 0.20 (47.032%) * | 5.87 ± 0.21 (49.425%) * |
Compound 7 5.0 mg/kg | 5.27 ± 0.40 | 7.10 ± 0.17 (24.399%) | 6.80 ± 0.20 (29.502%) * | 6.43 ± 0.32 (36.073%) | 6.03 ± 0.61 (47.126%) |
Compound 7 10.0 mg/kg | 4.80 ± 0.53 | 6.87 ± 0.25 (14.777%) | 6.50 ± 0.36 (21.839%) | 6.03 ± 0.21 (32.420%) | 5.47 ± 0.38 (54.123%) * |
1% DMSO | 4.40 ± 0.08 | 6.83 ± 0.30 | 6.58 ± 0.30 | 6.23 ± 0.46 | 5.85 ± 0.31 |
Naproxen 2.5 mg/kg | 4.23 ± 0.40 | 6.20 ± 0.10 (18.900%) | 5.87 ± 0.12 (24.904%) | 5.60 ± 0.17 (25.114%) | 5.03 ± 0.25 (44.828%) |
Naproxen 5.0 mg/kg | 4.10 ± 0.10 | 5.87 ± 0.23 (27.148%) | 5.37 ± 0.31 (41.762%) | 5.07 ± 0.35 (47.083%) | 4.83 ± 0.21 (49.448%) |
Naproxen 10.0 mg/kg | 4.17 ± 0.30 | 5.73 ± 0.20 (35.395%) | 5.40 ± 0.40 (43.295%) | 5.20 ± 0.30 (45.205%) | 4.80 ± 0.40 (56.322%) |
Compound | COX-2 Percent of Inhibition | COX-2 (IC50 µM) | 5-LOX Percent of Inhibition | 5-LOX (IC50 µM) |
---|---|---|---|---|
1 | 24.73 ± 1.11 | - | 34.25 ± 1.04 | 19.16 ± 0.96 |
2 | 18.77 ± 4.37 | - | 25.12 ± 1.83 | 39.77 ± 1.98 |
3 | 23.39 ± 0.57 | - | 47.02 ± 4.32 | 9.52 ± 1.51 |
4 | 37.71 ± 0.28 | - | 77.20 ± 0.26 | 0.30 ± 0.12 |
5 | 19.58 ± 4.55 | - | 46.19 ± 4.87 | 16.74 ± 1.79 |
6 | 23.99 ± 5.36 | - | 23.63 ± 2.14 | - |
7 | 24.23 ± 5.77 | - | 20.72 ± 4.19 | - |
Naproxen | 72.15 ± 1.40 | 0.20 ± 0.02 | Not tested | Not tested |
Celecoxib | 85.02 ± 0.31 | 0.07 ± 0.01 | Not tested | Not tested |
Zileuton | Not tested | Not tested | 64.85 ± 0.39 | 0.36 ± 0.10 |
Compound | COX-2 | 5-LOX |
---|---|---|
1 | −14.40 | −7.70 |
2 | −14.90 | −7.47 |
3 | −14.13 | −6.74 |
4 | −14.94 | −8.39 |
5 | −14.42 | −7.30 |
6 | −8.76 | −7.77 |
7 | −9.41 | −7.98 |
Naproxen | −13.13 | - |
Zileuton | - | −8.77 |
NDGA | - | −10.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedeljković, N.; Dobričić, V.; Bošković, J.; Vesović, M.; Bradić, J.; Anđić, M.; Kočović, A.; Jeremić, N.; Novaković, J.; Jakovljević, V.; et al. Synthesis and Investigation of Anti-Inflammatory Activity of New Thiourea Derivatives of Naproxen. Pharmaceuticals 2023, 16, 666. https://doi.org/10.3390/ph16050666
Nedeljković N, Dobričić V, Bošković J, Vesović M, Bradić J, Anđić M, Kočović A, Jeremić N, Novaković J, Jakovljević V, et al. Synthesis and Investigation of Anti-Inflammatory Activity of New Thiourea Derivatives of Naproxen. Pharmaceuticals. 2023; 16(5):666. https://doi.org/10.3390/ph16050666
Chicago/Turabian StyleNedeljković, Nikola, Vladimir Dobričić, Jelena Bošković, Marina Vesović, Jovana Bradić, Marijana Anđić, Aleksandar Kočović, Nevena Jeremić, Jovana Novaković, Vladimir Jakovljević, and et al. 2023. "Synthesis and Investigation of Anti-Inflammatory Activity of New Thiourea Derivatives of Naproxen" Pharmaceuticals 16, no. 5: 666. https://doi.org/10.3390/ph16050666
APA StyleNedeljković, N., Dobričić, V., Bošković, J., Vesović, M., Bradić, J., Anđić, M., Kočović, A., Jeremić, N., Novaković, J., Jakovljević, V., Vujić, Z., & Nikolić, M. (2023). Synthesis and Investigation of Anti-Inflammatory Activity of New Thiourea Derivatives of Naproxen. Pharmaceuticals, 16(5), 666. https://doi.org/10.3390/ph16050666