Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs
Abstract
:1. Introduction
2. Results
2.1. Plants Extraction Yield
2.2. Bacterial Identification
2.3. Biofilm Classification and Antimicrobial Susceptibility Characteristics
2.4. Antibacterial Effects on Planktonic Cells
2.5. Antibiofilm Effects against S. pseudintermedius and MRSP
2.6. Chemical Composition of PB Extracts
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction
4.2. Bacterial Isolation and Identification
4.3. DNA Extraction for Staphylococcal Species
4.4. Detection of mecA Encoding in S. pseudintermedius Isolates through Single PCR
4.5. Antimicrobial Susceptibility Testing
4.6. Determination of MIC and MBC
4.7. Determination of Antibiofilm Activity
4.8. Biofilm Detection via XTT
4.9. GC–MS
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253-e52. [Google Scholar] [CrossRef]
- Brown, H.L.; Metters, G.; Hitchings, M.D.; Wilkinson, T.S.; Sousa, L.; Cooper, J.; Dance, H.; Atterbury, R.J.; Jenkins, R. Antibacterial and antivirulence activity of Manuka Honey against genetically diverse Staphylococcus pseudintermedius strains. Appl. Environ. Microbiol. 2020, 86, e01768-20. [Google Scholar] [CrossRef]
- Lynch, S.A.; Helbig, K.J. The complex diseases of Staphylococcus pseudintermedius in canines: Where to next? Vet. Sci. 2021, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, A.; Lloyd, D.H. What has changed in canine pyoderma? A narrative review. Vet. J. 2018, 235, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Detwiler, A.; Bloom, P.; Petersen, A.; Rosser, E.J., Jr. Multi-drug and methicillin resistance of staphylococci from canine patients at a veterinary teaching hospital (2006–2011). Vet. Q. 2013, 33, 60–67. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2016, 101, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Shibata, S.; Murayama, N.; Nagata, M.; Nishifuji, K.; Iwasaki, T.; Fukata, T. Antimicrobial susceptibility and methicillin resistance in Staphylococcus pseudintermedius and Staphylococcus schleiferi subsp. coagulans isolated from dogs with pyoderma in Japan. J. Vet. Med. Sci. 2010, 72, 1615–1619. [Google Scholar]
- Abdullahi, I.N.; Zarazaga, M.; Campaña-Burguet, A.; Eguizábal, P.; Lozano, C.; Torres, C. Nasal Staphylococcus aureus and S. pseudintermedius carriage in healthy dogs and cats: A systematic review of their antibiotic resistance, virulence and genetic ages of zoonotic relevance. J. Appl. Microbiol. 2022, 133, 3368–3390. [Google Scholar] [CrossRef] [PubMed]
- Van Duijkeren, E.; Catry, B.; Greko, C.; Moreno, M.A.; Pomba, M.C.; Pyörälä, S.; Ruzauskas, M.; Sanders, P.; Threlfall, E.J.; Torren-Edo, J.; et al. Review on methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2011, 66, 2705–2714. [Google Scholar] [CrossRef]
- Silva, V.; Oliveira, A.; Manageiro, V.; Caniça, M.; Contente, D.; Capita, R.; Alonso-Calleja, C.; Carvalho, I.; Capelo, J.L.; Igrejas, G.; et al. Clonal diversity and antimicrobial resistance of methicillin-resistant Staphylococcus pseudintermedius isolated from canine pyoderma. Microorganisms 2021, 9, 482. [Google Scholar] [CrossRef]
- Grönthal, T.; Moodley, A.; Nykäsenoja, S.; Junnila, J.; Guardabassi, L.; Thomson, K.; Rantala, M. Large outbreak caused by methicillin resistant Staphylococcus pseudintermedius ST71 in a Finnish Veterinary Teaching Hospital—From outbreak control to outbreak prevention. PLoS ONE 2014, 9, e110084. [Google Scholar] [CrossRef] [PubMed]
- Patel, R. Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 2005, 437, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Tang, X.; Dong, W.; Sun, N.; Yuan, W. A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics 2023, 12, 12. [Google Scholar] [CrossRef]
- Pesset, C.M.; da Fonseca, C.O.; Antunes, M.; Dos Santos, A.L.L.; Teixeira, I.M.; Ribeiro, T.A.N.; Sachs, D.; Penna, B. Characterizing biofilm formation of Staphylococcus pseudintermedius in different suture materials. Microb. Pathog. 2022, 172, 105796. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, K.; Horswill, A.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef]
- Singh, A.; Walker, M.; Rousseau, J.; Weese, J.S. Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet. Res. 2013, 9, 93. [Google Scholar] [CrossRef]
- Bi, Y.; Xia, G.; Shi, C.; Wan, J.; Liu, L.; Chen, Y.; Yueming, W.; Wenjing, Z.; Min, Z.; Hongyan, H.; et al. Therapeutic strategies against bacterial biofilms. Fundam. Res. 2021, 1, 193–212. [Google Scholar] [CrossRef]
- Gu, H.; Lee, S.W.; Carnicelli, J.; Jiang, Z.; Ren, D. Antibiotic susceptibility of Escherichia coli cells during early-stage biofilm formation. J. Bacteriol. 2019, 201, 18. [Google Scholar] [CrossRef]
- Sadık, D.; Fatima Masume, U.; Anil, D. Antibiotic resistance in biofilm. In Bacterial Biofilms; Sadik, D., Melis Sümengen, Ö., Afet, A., Eds.; IntechOpen: Rijeka, Croatia, 2020; p. 9. [Google Scholar]
- Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid. Based Complement. Altern. Med. 2021, 2021, 3663315. [Google Scholar] [CrossRef]
- Kim, K.-J.; Liu, X.; Komabayashi, T.; Jeong, S.-I.; Selli, S. Natural products for infectious diseases. Evid. Based Complement. Altern. Med. 2016, 2016, 9459047. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Yang, J.; Wang, C.; Wu, J.; Li, Y.; Zhang, X.; Li, H.; Zhang, H.; Zhou, Y.; Lu, A.; et al. Natural products for infectious microbes and diseases: An overview of sources, compounds, and chemical diversities. Sci. China Life Sci. 2022, 65, 1123–1145. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.M.; Jensen, H.R.; Philogène, B.J.R.; Arnason, J.T. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 2008, 7, 65–75. [Google Scholar] [CrossRef]
- Runglawan, S.; Tawatchai, T.; Varima, W.; Nat, B.; Arunrat, C. Ethnobotany and species specific molecular markers of some medicinal sakhan (Piper, Piperaceae). J. Med. Plants Res. 2012, 6, 1168–1175. [Google Scholar] [CrossRef]
- Leesombun, A.; Boonmasawai, S.; Shimoda, N.; Nishikawa, Y. Effects of extracts from Thai piperaceae plants against infection with Toxoplasma gondii. PLoS ONE 2016, 11, e0156116. [Google Scholar] [CrossRef] [PubMed]
- Leesombun, A.; Boonmasawai, S.; Nishikawa, Y. Effects of Thai piperaceae plant extracts on Neospora caninum infection. Parasitol. Int. 2017, 66, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S.; Ali, M.; Khan, M.A. Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac. J. Trop. Biomed. 2012, 2 (Suppl. S3), S1945–S1953. [Google Scholar] [CrossRef]
- Fernandez, L.; Daruliza, K.; Sudhakaran, S.; Jegathambigai, R. Antimicrobial activity of the crude extract of Piper sarmentosum against methicilin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Vibrio cholera and Streptococcus pneumoniae. Eur. Rev. Med. Pharmacol. Sci. 2012, 16 (Suppl. S3), 105–111. [Google Scholar]
- Nayaka, N.; Sasadara, M.M.V.; Sanjaya, D.A.; Yuda, P.; Dewi, N.; Cahyaningsih, E.; Hartati, R. Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules 2021, 26, 2321. [Google Scholar] [CrossRef]
- Zahin, M.; Bokhari, N.A.; Ahmad, I.; Husain, F.M.; Althubiani, A.S.; Alruways, M.W.; Perveen, K.; Shalawi, M. Antioxidant, antibacterial, and antimutagenic activity of Piper nigrum seeds extracts. Saudi J. Biol. Sci. 2021, 28, 5094–5105. [Google Scholar] [CrossRef]
- Ngamsurach, P.; Praipipat, P. Comparative antibacterial activities of Garcinia cowa and Piper sarmentosum extracts against Staphylococcus aureus and Escherichia coli with studying on disc diffusion assay, material characterizations, and batch experiments. Heliyon 2022, 8, e11704. [Google Scholar] [CrossRef]
- Kulnanan, P.; Chuprom, J.; Thomrongsuwannakij, T.; Romyasamit, C.; Sangkanu, S.; Manin, N.; Nissapatorn, V.; de Lourdes Pereira, M.; Wilairatana, P.; Kitpipit, W.; et al. Antibacterial, antibiofilm, and anti-adhesion activities of Piper betle leaf extract against avian pathogenic Escherichia coli. Arch. Microbiol. 2021, 204, 49. [Google Scholar] [CrossRef] [PubMed]
- Rana, E.A.; Islam, M.Z.; Das, T.; Dutta, A.; Ahad, A.; Biswas, P.K.; Barua, H. Prevalence of coagulase-positive methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in dogs in Bangladesh. Vet. Med. Sci. 2022, 8, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, S.; Najafifar, A.; Askari Badouei, M.; Zahraei Salehi, T.; Ashrafi Tamai, I.; Khaksar, E.; Abbassi, M.S.; Ghazisaeedi, F. Genetic characterisation of methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in pets and veterinary personnel in Iran: New insights into emerging methicillin-resistant S. pseudintermedius (MRSP). J. Glob. Antimicrob. Resist. 2019, 16, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Nakaminami, H.; Okamura, Y.; Tanaka, S.; Wajima, T.; Murayama, N.; Noguchi, N. Prevalence of antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with superficial pyoderma. J. Vet. Med. Sci. 2021, 83, 214–219. [Google Scholar] [CrossRef]
- Jantorn, P.; Heemmamad, H.; Soimala, T.; Indoung, S.; Saising, J.; Chokpaisarn, J.; Wanna, W.; Tipmanee, V.; Saeloh, D. Antibiotic resistance profile and biofilm production of Staphylococcus pseudintermedius isolated from dogs in Thailand. Pharmaceuticals 2021, 14, 592. [Google Scholar] [CrossRef]
- Pires dos Santos, T.; Damborg, P.; Moodley, A.; Guardabassi, L. Systematic review on global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: Inference of population structure from multilocus sequence typing data. Front. Microbiol. 2016, 7, 1599. [Google Scholar] [CrossRef]
- Schissler, J.R.; Hillier, A.; Daniels, J.B.; Cole, L.K.; Gebreyes, W.A. Evaluation of clinical laboratory standards institute interpretive criteria for methicillin-resistant Staphylococcus pseudintermedius isolated from dogs. J. Vet. Diagn. Investig. 2009, 21, 684–688. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, W.; Lin, D.; Luo, Q.; Zhou, Y.; Yang, T.; Deng, Y.; Liu, Y.H.; Liu, J.H. Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius in pets from South China. Vet. Microbiol. 2012, 160, 517–524. [Google Scholar] [CrossRef]
- Kumar, V.A.; Steffy, K.; Chatterjee, M.; Sugumar, M.; Dinesh, K.R.; Manoharan, A.; Karim, S.; Biswas, R. Detection of oxacillin-susceptible mecA-positive Staphylococcus aureus isolates by use of chromogenic medium MRSA ID. J. Clin. Microbiol. 2013, 51, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, E.; Viçosa, G.; Corsini, C.M.M.; Moreira, M.; Nero, L.; Conceição, L.G. Description of methicillin-resistant Staphylococcus pseudintermedius from canine pyoderma in Minas Gerais state, Brazil. Arq. Bras. Med. Vet. Zootec. 2016, 68, 299–306. [Google Scholar] [CrossRef]
- Ma, M.; Chu, M.; Tao, L.; Li, J.; Li, X.; Huang, H.; Qu, K.; Wang, H.; Li, L.; Du, T. First report of oxacillin susceptible mecA-positive Staphylococcus aureus in a children’s hospital in Kunming, China. Infect. Drug Resist. 2021, 14, 2597–2606. [Google Scholar] [CrossRef]
- Pu, W.; Su, Y.; Li, J.; Li, C.; Yang, Z.; Deng, H.; Ni, C. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS ONE 2014, 9, e88134. [Google Scholar] [CrossRef] [PubMed]
- Viñes, J.; Fàbregas, N.; Pérez, D.; Cuscó, A.; Fonticoba, R.; Francino, O.; Ferrer, L.; Migura-Garcia, L. Concordance between antimicrobial resistance phenotype and genotype of Staphylococcus pseudintermedius from healthy Dogs. Antibiotics 2022, 11, 1625. [Google Scholar] [CrossRef]
- Lai, C.H.; Ma, Y.C.; Shia, W.Y.; Hsieh, Y.L.; Wang, C.M. Risk Factors for antimicrobial resistance of Staphylococcus Species isolated from dogs with superficial pyoderma and their owners. Vet. Sci. 2022, 9, 306. [Google Scholar] [CrossRef]
- Nocera, F.P.; Iovane, G.; De Martino, L.; Holbein, B. Antimicrobial activity of the iron-chelator, DIBI, against multidrug-resistant canine methicillin-susceptible Staphylococcus pseudintermedius: A preliminary study of four clinical strains. Pathogens 2022, 11, 656. [Google Scholar] [CrossRef]
- Leesombun, A.; Boonmasawai, S. Categorization of antimicrobial agents prescribed in the Veterinary Teaching Hospital in Thailand. J. Appl. Anim. Sci. 2019, 12, 25–38. [Google Scholar]
- Arima, S.; Ochi, H.; Mitsuhashi, M.; Kibe, R.; Takahashi, K.; Kataoka, Y. Staphylococcus pseudintermedius biofilms secrete factors that induce inflammatory reactions in vitro. Lett. Appl. Microbiol. 2018, 67, 214–219. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef]
- Cerca, N.; Martins, S.; Cerca, F.; Jefferson, K.K.; Pier, G.B.; Oliveira, R.; Azeredo, J. Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J. Antimicrob. Chemother. 2005, 56, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Lubis, R.R.; Marlisa; Wahyuni, D.D. Antibacterial activity of betle leaf (Piper betle l.) extract on inhibiting Staphylococcus aureus in conjunctivitis patient. Am. J. Clin. Exp. Immunol. 2020, 9, 1–5. [Google Scholar] [PubMed]
- Jalil, V.; Khan, M.; Haider, S.Z.; Shamim, S. Investigation of the antibacterial, anti-Biofilm, and antioxidative effect of Piper betle leaf extract against Bacillus gaemokensis MW067143 isolated from dental caries, an in vitro-in silico approach. Microorganisms 2022, 10, 2485. [Google Scholar] [CrossRef] [PubMed]
- Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Altern. Med. 2019, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Khan, I.A.; Ali, I.; Ali, F.; Kumar, M.; Kumar, A.; Johri, R.K.; Abdullah, S.T.; Bani, S.; Pandey, A.; et al. Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrob. Agents Chemother. 2009, 53, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Gundala, S.R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M.D.; Aneja, R. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol. Appl. Pharmacol. 2014, 280, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Narayanamoorthy, S.; Gamre, S.; Majumdar, A.G.; Goswami, M.; Gami, U.; Cherian, S.; Subramanian, M. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Free Radic. Biol. Med. 2018, 120, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Ahmad, S.H.; Lgu, K.S. Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers. Sci. World J. 2012, 2012, 102805. [Google Scholar] [CrossRef]
- Bajwa, J. Canine superficial pyoderma and therapeutic considerations. Can. Vet. J. 2016, 57, 204–206. [Google Scholar] [PubMed]
- Weese, J.S.; van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Velasco, V.; Buyukcangaz, E.; Sherwood, J.S.; Stepan, R.M.; Koslofsky, R.J.; Logue, C.M. Characterization of Staphylococcus aureus from humans and a comparison with isolates of animal Origin, in North Dakota, United States. PLoS ONE 2015, 10, e0140497. [Google Scholar] [CrossRef]
- Botoni, L.S.; Scherer, C.B.; Silva, R.O.; Coura, F.M.; Heinemann, M.B.; Paes-Leme, F.O.; Osta-Val, A.P. Prevalence and in vitro susceptibility of methicillin-resistant Staphylococcus pseudintermedius (MRSP) from skin and nostrils of dogs with superficial pyoderma. Pesqui. Vet. Bras. 2016, 36, 1178–1180. [Google Scholar] [CrossRef]
- Nocera, F.P.; Mancini, S.; Najar, B.; Bertelloni, F.; Pistelli, L.; De Filippis, A.; Fiorito, F.; De Martino, L.; Fratini, F. Antimicrobial activity of some essential oils against methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius-associated pyoderma in dogs. Animals 2020, 10, 1782. [Google Scholar] [CrossRef]
- Bai, J.; Shi, X.; Nagaraja, T.G. A multiplex PCR procedure for the detection of six major virulence genes in Escherichia coli O157:H7. J. Microbiol. Methods 2010, 82, 85–89. [Google Scholar] [CrossRef]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J. Clin. Microbiol. 2004, 42, 4947–4955. [Google Scholar] [CrossRef]
- Yahya Ahmed, M.; Abdalbagi Ali, H.; Mohammed Taher Gorish, B.; Omer Ali, S.; Saif Aldein Abdalrhim, E.; Hamza Mergani, M.; Abass Abd Elgadir, A.; Khalid Mohammed, S.; Omer Ahmed, S.; Alsaeid Musa, N.; et al. Molecular detection of Staphylococcal enterotoxins and mecA Genes products in selected food samples collected from different areas in Khartoum State. Int. J. Microbiol. 2021, 202, 5520573. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). CLSI Approved Standard M100-S15. In Clinical and Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Yu, H.H.; Kim, Y.J.; Lee, N.K.; Paik, H.D. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 2019, 29, 1177–1183. [Google Scholar] [CrossRef]
- Larsuprom, L.; Rungroj, N.; Lekcharoensuk, C.; Pruksakorn, C.; Kongkiatpaiboon, S.; Chen, C.; Sukatta, U. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma. Vet. Dermatol. 2019, 30, 487-e145. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Oh, T.; Bae, S. Antibiofilm activity of silver nanoparticles against biofilm forming Staphylococcus pseudintermedius isolated from dogs with otitis externa. Vet. Med. Sci. 2021, 7, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Bumunang, E.W.; Stanford, K.; Bie, X.; Niu, Y.D.; McAllister, T.A. Biofilm formation by Shiga toxin-producing Escherichia coli on stainless steel coupons as affected by temperature and incubation time. Microorganisms 2019, 7, 95. [Google Scholar] [CrossRef]
- Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control. 2008, 19, 1070–1075. [Google Scholar] [CrossRef]
Plant Extracts | (MIC) (µg/mL) | Bacterial Isolates | |||
---|---|---|---|---|---|
SA | MRSA | SP | MRSP | ||
ATCC 25923 | ATCC33591 | (n = 23) | (n = 10) | ||
PB | MIC50 | 1024 | 256 | 256 | 512 |
MIC90 | 512 | 512 | |||
GM of MIC | 362.04 | 477.71 | |||
MIC range | 256–1024 | 256–1024 | |||
PN | MIC50 | 128 | 512 | 1024 | 2048 |
MIC90 | 4096 | 4096 | |||
GM of MIC | 955.43 | 2352.53 | |||
MIC range | 128–4096 | 2048–4096 | |||
PS | MIC50 | 4096 | 1024 | 1024 | 1024 |
MIC90 | 1024 | 2048 | |||
GM of MIC | 955.43 | 1351.18 | |||
MIC range | 256–4096 | 1024–2048 |
No. | Retention Time (min) | Classes | Compounds | Formula | Chemical Structure | Peak Area (%) |
---|---|---|---|---|---|---|
1 | 6.82 | Alkanes | Undecane | C11H24 | 0.17 | |
2 | 8.3 | Phenols | Catechol | C6H6O2 | 0.377 | |
3 | 8.55 | Coumarins | Benzofuran, 2,3-dihydro- | C8H8O | 0.3 | |
4 | 9.03 | Propenylphenols | Chavicol | C9H10O | 0.174 | |
5 | 10.65 | Propenylphenols | Chavibetol | C10H12O2 | 12.3 | |
6 | 11.38 | Sesquiterpene | Caryophyllene | C15H24 | 0.857 | |
7 | 11.9 | Phenols | Hydroxychavicol | C9H10O2 | 36.02 | |
8 | 12.03 | Sesquiterpene | γ-Muurolene | C15H24 | 2.05 | |
9 | 12.13 | Sesquiterpene | Germacrene D | C15H24 | 0.77 | |
10 | 12.32 | Benzoic acid | 3,5-Dimethylbenzoic acid | C9H10O2 | 5.87 | |
11 | 12.54 | Phenols | Isoeugenol | C10H12O2 | 6.78 | |
12 | 13.9 | Propenylphenols | Allylpyrocatechol diacetate | C13H14O4 | 17.56 | |
13 | 16.71 | Alkaloids | Piperidine | C5H11N | 3.17 | |
14 | 17.44 | Benzodioxoles | Piperlonguminine | C16H19NO3 | 0.04 | |
15 | 18.49 | Diterpene | Phytol | C20H40O | 1.28 | |
16 | 18.58 | Fatty acid methyl esters | Methyl stearate | C19H38O2 | 0.15 | |
17 | 19.39 | Sesquiterpene | Neophytadiene | C20H38 | 0.4 | |
18 | 19.93 | Alkaloids | Piperine | C17H19NO3 | 0.7 | |
Total | 88.97 |
Stages | Gene Target | ||
---|---|---|---|
nuc | mecA | 16S rRNA | |
Stage 1: 1 cycle | 3 min step at 94 °C | 3 min step at 94 °C | 3 min step at 94 °C |
Stage 2: 30 cycles | 30 s at 94 °C | 30 s at 94 °C | 30 s at 94 °C |
30 s at 50 °C | 30 s at 58 °C | 30 s at 55 °C | |
60 s at 72 °C | 60 s at 72 °C | 60 s at 72 °C | |
Stage 3: 1 cycle | 5 min at 72 °C | 5 min at 72 °C | 5 min at 72 °C |
Species | Primer | Sequence (5′-3′) | Gene Target | Expected Size (bp) | References |
---|---|---|---|---|---|
S. pseudintermedius | pse-F2 pse-R5 | 5′-TRGGCAGTAGGATTCGTTAA-3′ 5′-CTTTTGGTGCTYCMTTTTGG-3′ | nuc | 926 | [64] |
Staphylococcus spp. | MecA1 MecA2 | 5′-CCAATTCCACATTGTTTCGGTCTAA-3 5′-CCAATTCCACATTGTTTCGGTCTAA-3′ | mecA | 310 | [69] |
Staphylococcus spp. | Staph 756-F Staph 750-R | 5′-AACTCTGTTATTAGGGAAGAACA-3′ 5′-CCACCTTCCTCCGGTTTGTCACC-3′ | 16S rRNA | 756 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leesombun, A.; Sungpradit, S.; Bangphoomi, N.; Thongjuy, O.; Wechusdorn, J.; Riengvirodkij, S.; Wannawong, J.; Boonmasawai, S. Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs. Pharmaceuticals 2023, 16, 741. https://doi.org/10.3390/ph16050741
Leesombun A, Sungpradit S, Bangphoomi N, Thongjuy O, Wechusdorn J, Riengvirodkij S, Wannawong J, Boonmasawai S. Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs. Pharmaceuticals. 2023; 16(5):741. https://doi.org/10.3390/ph16050741
Chicago/Turabian StyleLeesombun, Arpron, Sivapong Sungpradit, Norasuthi Bangphoomi, Orathai Thongjuy, Jantraporn Wechusdorn, Sunee Riengvirodkij, Jakaphan Wannawong, and Sookruetai Boonmasawai. 2023. "Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs" Pharmaceuticals 16, no. 5: 741. https://doi.org/10.3390/ph16050741
APA StyleLeesombun, A., Sungpradit, S., Bangphoomi, N., Thongjuy, O., Wechusdorn, J., Riengvirodkij, S., Wannawong, J., & Boonmasawai, S. (2023). Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs. Pharmaceuticals, 16(5), 741. https://doi.org/10.3390/ph16050741